‘壹’ 数学九年级上册知识点归纳总结
1二次根式:形如式子为二次根式;
性质:是一个非负数;
2二次根式的乘除:
3二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并。
4海伦-秦九韶公式: ,S是三角形的面积,p为 。
1一元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方程。
2一元二次方程的解法
配方法:将方程的一边配成完全平方式,然后两边开方;
因式分解法:左边是两个因式的乘积,右边为零。
3一元二次方程在实际问题中的应用
4韦达定理:设是方程的两个根,那么有
1:一个图形绕某一点转动一个角度的图形变换
性质:对应点到旋转中心的距离相等;
对应点与旋转中心所连的线段的夹角等于旋转角
旋转前后的图形全等。
2中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;
中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;
3关于原点对称的点的坐标
1圆、圆心、半径、直径、圆弧、弦、半圆的定义
2垂直于弦的直径
圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;
垂直于弦的直径平分弦,并且平方弦所对的两条弧;
平分弦的直径垂直弦,并且平分弦所对的两条弧。
3弧、弦、圆心角
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
4圆周角
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;
半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。
5点和圆的位置关系
点在圆外d>r
点在圆上d=r
点在圆内d<r
定理:不在同一条直线上的三个点确定一个圆。
6直线和圆的位置关系
相交d<r
相切d=r
相离d>r
切线的性质定理:圆的切线垂直于过切点的半径;
切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线;
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。
7圆和圆的位置关系
外离d>R+r
外切d=R+r
相交R-r<d<R+r
内切d=R-r
内含d<R-r
8正多边形和圆
正多边形的中心:外接圆的圆心
正多边形的半径:外接圆的半径
正多边形的中心角:没边所对的圆心角
正多边形的边心距:中心到一边的距离
9弧长和扇形面积
弧长:
扇形面积:
10圆锥的侧面积和全面积
侧面积:
全面积:
11相交弦定理、切割线定理
1概率意义:在大量重复试验中,事件A发生的频率 稳定在某个常数p附近,则常数p叫做事
件A的概率。
2用列举法求概率
一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p(A)=
3用频率去估计概率
1二次函数 =
a>0,开口向上;a<0,开口向下;
对称轴: ;
顶点坐标: ;
图像的平移可以参照顶点的平移。
2用函数观点看一元二次方程
3二次函数与实际问题
1图形的相似
相似多边形的对应边的比值相等,对应角相等;
两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;
相似比:相似多边形对应边的比值。
2相似三角形
判定:
平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;
如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。
3相似三角形的周长和面积
相似三角形(多边形)的周长的比等于相似比;
相似三角形(多边形)的面积的比等于相似比的平方。
4位似
位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。
1锐角三角函数:正弦、余弦、正切;
2解直角三角形
1投影:平行投影、中心投影、正投影
2三视图:俯视图、主视图、左视图。
3三视图的画法
1本单元教学的主要内容.
一元二次方程概念;解一元二次方程的方法;一元二次方程应用题.
2本单元在教材中的地位与作用.
一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,它也是一种数学建模的方法.学好一元二次方程是学好二次函数不可或缺的,是学好高中数学的奠基工程.应该说,一元二次方程是本书的重点内容.
了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.
通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.根据数学模型恰如其分地给出一元二次方程的概念.结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等.通过掌握缺一次项的一元二次方程的解法──直接开方法,导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程.求根公式的条件:b2-4ac>0,b2-4ac=0,b2-4ac<0.通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它.提出问题、分析问题,建立一元二次方程的数学模型,并用该模型解决实际问题.
3情感、态度与价值观
经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经
历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决
实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.
1一元二次方程及其它有关的概念.
2用配方法、公式法、因式分解法降次──解一元二次方程.
3用实际问题建立一元二次方程的数学模型,并解决这个问题.
1一元二次方程配方法解题.
2用公式法解一元二次方程时的讨论.
3建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别.
1分析实际问题如何建立一元二次方程的数学模型.
2用配方法解一元二次方程的步骤.
3解一元二次方程公式法的推导.
本单元教学时间约需16课时,具体分配如下:
221一元二次方程2课时
222降次──解一元二次方程7课时
223实际问题与一元二次方程5课时
发现一元二次方程根与系数的关系2课时
1二次根式
式子叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。
2最简二次根式
若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
化二次根式为最简二次根式的方法和步骤:
如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
3同类二次根式
几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。
4二次根式的性质
5二次根式混合运算
二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。
1一元二次方程
含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2一元二次方程的一般形式
它的特征是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。
一元二次方程的解法
1直接开平方法
利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如的一元二次方程。根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根。
2配方法
配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。
3公式法
公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程的求根公式:
4因式分解法
因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
一元二次方程根的判别式
根的判别式
一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即
一元二次方程根与系数的关系
如果方程的两个实数根是,那么,。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
1定义
把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2性质
对应点到旋转中心的距离相等。对应点与旋转中心所连线段的夹角等于旋转角。
1定义
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2性质
关于中心对称的两个图形是全等形。关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3判定
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4中心对称图形
把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点五、坐标系中对称点的特征(3分)
1关于原点对称的点的特征
两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)
2关于x轴对称的点的特征
两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)
3关于y轴对称的点的特征
两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)
1圆的定义
在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2圆的几何表示
以点O为圆心的圆记作“⊙O”,读作“圆O”
弦、弧等与圆有关的定义
(1)弦
连接圆上任意两点的线段叫做弦。(如图中的AB)
(2)直径
经过圆心的弦叫做直径。(如途中的CD)
直径等于半径的2倍。
(3)半圆
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(4)弧、优弧、劣弧
圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)
垂径定理及其推论
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。弦的垂直平分线经过圆心,并且平分弦所对的两条弧。平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为:
过圆心
垂直于弦
直径平分弦知二推三,平分弦所对的优弧,平分弦所对的劣弧.
1圆的轴对称性
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2圆的中心对称性
圆是以圆心为对称中心的中心对称图形。
弧、弦、弦心距、圆心角之间的关系定理
1圆心角
顶点在圆心的角叫做圆心角。
2弦心距
从圆心到弦的距离叫做弦心距。
3弧、弦、弦心距、圆心角之间的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
圆周角定理及其推论
1圆周角
顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2圆周角定理
一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
点和圆的位置关系
设⊙O的半径是r,点P到圆心O的距离为d,则有:
d<r点P在⊙O内;
d=r点P在⊙O上;
d>r点P在⊙O外。
1过三点的圆
不在同一直线上的三个点确定一个圆。
2三角形的外接圆
经过三角形的三个顶点的圆叫做三角形的外接圆。
3三角形的外心
三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
4圆内接四边形性质(四点共圆的判定条件)
圆内接四边形对角互补。
先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。
直线与圆的位置关系
直线和圆有三种位置关系,具体如下:
相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,相离:直线和圆没有公共点时,叫做直线和圆相离。
如果⊙O的半径为r,圆心O到直线l的距离为d,那么:
直线l与⊙O相交d<r;
直线l与⊙O相切d=r;
直线l与⊙O相离d>r;
1切线的判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线。
2切线的性质定理
圆的切线垂直于经过切点的半径。
1切线长
在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。
2切线长定理
从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
三角形的内切圆
1三角形的内切圆
与三角形的各边都相切的圆叫做三角形的内切圆。
2三角形的内心
三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。
1圆和圆的位置关系
如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
如果两个圆有两个公共点,那么就说这两个圆相交。
2圆心距
两圆圆心的距离叫做两圆的圆心距。
3圆和圆位置关系的性质与判定
设两圆的半径分别为R和r,圆心距为d,那么
两圆外离d>R+r
两圆外切d=R+r
两圆相交R-r<d<R+r(R≥r)
两圆内切 d=R-r(R>r)
两圆内含d<R-r(R>r)
4两圆相切、相交的重要性质
如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。
1正多边形的定义
各边相等,各角也相等的多边形叫做正多边形。
2正多边形和圆的关系
只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
1正多边形的中心
正多边形的外接圆的圆心叫做这个正多边形的中心。
2正多边形的半径
正多边形的外接圆的半径叫做这个正多边形的半径。
3正多边形的边心距
正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。
4中心角
正边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。
1正多边形的轴对称性
正多边形都是轴对称图形。一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。
2正多边形的中心对称性
边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。
3正多边形的画法
先用量角器或尺规等分圆,再做正多边形。
1弧长公式
n°的圆心角所对的弧长l的计算公式为
2扇形面积公式
其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。
3圆锥的侧面积
其中l是圆锥的母线长,r是圆锥的地面半径。
补充:(此处为大纲要求外的知识,但对开发学生智力,改善学生数学思维模式有很大帮助)
1相交弦定理
⊙O中,弦AB与弦CD相交与点E,则AEBE=CEDE
2弦切角定理
弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角。
弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角。
即:∠BAC=∠ADC
3切割线定理PL:PA为⊙O切线,PBC为⊙O割线,则
‘贰’ 九年级数学知识点有哪些
九年级数学知识点:
1、邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2、对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3、垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4、平行线:在同一平面内,不相交的两条直线叫做平行线。
5、命题:判断一件事情的语句叫命题。
6、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
7、对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
8、两个三角形对应的两边及其夹角相等,两个三角形全等,简称“边角边”或“SAS”。
9、两个三角形对应的两角及其夹边相等,两个三角形全等,简称“角边角”或“ASA”。
10、两个三角形对应的两角及其一角的对边相等,两个三角形全等,简称“角角边”或“AAS”。
11、两个三角形对应的三条边相等,两个三角形全等,简称“边边边”或“SSS"。
12、两个直角三角形对应的一条斜边和一条直角边相等,两个直角三角形全等,简称“直角边、斜边”或“HL”。
‘叁’ 九年级数学知识点归纳总结
这篇文章我将九年级数学重要知识点做了归纳总结,希望可以帮助同学们系统的复习九年级数学的重要知识点。
有理数
1.定义
有理数为整数(正整数、0、负整数)和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。
2.有理数的性质
(1)顺序性
(2)封闭性
(3)稠密性
3.有理数的加法运算法则
(1)同号两数相加,取与加数相同的符号,并把绝对值相加。
(2)异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
(3)互为相反数的两数相加得0。
(4)一个数同0相加仍得这个数。
(5)互为相反数的两个数,可以先相加。
(6)符号相同的数可以先相加。
(7)分母相同的数可以先相加。
(8)几个数相加能得整数的可以先相加。
(9)减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。
二元一次方程组
1.定义:含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程。
2.二元一次方程组的解法
(1)代入法
由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。
(2)因式分解法
在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。
(3)配方法
将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。
(4)韦达定理法
通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。
(5)消常数项法
当方程组的两个方程都缺一次项时,可用消去常数项的方法解。
整式
1.整式的乘法:
①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
2.整式的除法:
①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
相似三角形
1.三角分别相等,三边成比例的两个三角形叫做相似三角形。
2.相似三角形的判定
①定理:两角分别对应相等的两个三角形相似。
②定理:两边成比例且夹角相等的两个三角形相似。
③定理:三边成比例的两个三角形相似。
④定理:一条直角边与斜边成比例的两个直角三角形相似。
根据以上判定定理,可以推出下列结论:
推论①三边对应平行的两个三角形相似。
推论②一个三角形的两边和三角形任意一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
3.相似三角形的性质
①相似三角形的对应角相等,对应边成比例。
②相似三角形任意对应线段的比等于相似比。
③相似三角形的面积比等于相似比的平方。
‘肆’ 初三上册数学知识点总结
读书,始读,未知有疑;其次,则渐渐有疑;中则节节是疑。过了这一番,疑渐渐释,以至融会贯通,都无所疑,方始是学。下面给大家分享一些初三上册数学知识点,希望对大家有所帮助。
初三上册数学知识点1
特殊平行四边形
1、菱形的性质与判定
①菱形的定义:
一组邻边相等的平行四边形叫做菱形。
②菱形的性质:
具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
③菱形的判别 方法 :
一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2、矩形的性质与判定
①矩形的定义:
有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。
②矩形的性质:
具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)
③矩形的判定:
有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
④推论:直角三角形斜边上的中线等于斜边的一半。
3、正方形的性质与判定
①正方形的定义:
一组邻边相等的矩形叫做正方形。
②正方形的性质:
正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)
③正方形常用的判定:
有一个内角是直角的菱形是正方形;
邻边相等的矩形是正方形;
对角线相等的菱形是正方形;
对角线互相垂直的矩形是正方形。
④正方形、矩形、菱形和平行边形四者之间的关系
⑤梯形定义:
一组对边平行且另一组对边不平行的四边形叫做梯形。
两条腰相等的梯形叫做等腰梯形。
一条腰和底垂直的梯形叫做直角梯形。
⑥等腰梯形的性质:
等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形。
三角形的中位线平行于第三边,并且等于第三边的一半。
夹在两条平行线间的平行线段相等。
在直角三角形中,斜边上的中线等于斜边的一半
初三上册数学知识点2
一元二次方程
1、认识一元二次方程
只含有一个未知数的整式方程,且都可以化为ax2+bx+c=0
(a、b、c为常数,a≠0)的形式,这样的方程叫一元二次方程。
把ax2+bx+c=0(a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。
2、用配方法求解一元二次方程
①配方法 <即将其变为(x+m)2=0的形式>
配方法解一元二次方程的基本步骤:
把方程化成一元二次方程的一般形式;
将二次项系数化成1;
把常数项移到方程的右边;
两边加上一次项系数的一半的平方;
把方程转化成的形式;
两边开方求其根。
3、用公式法求解一元二次方程
②公式法 (注意在找abc时须先把方程化为一般形式)
4、用因式分解法求解一元二次方程
③分解因式法
把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)
5、一元二次方程的根与系数的关系
①根与系数的关系:
当b2-4ac>0时,方程有两个不等的实数根;
当b2-4ac=0时,方程有两个相等的实数根;
当b2-4ac<0时,方程无实数根。
②如果一元二次方程 ax2+bx+c=0 的两根分别为x1、x2,则有:
③一元二次方程的根与系数的关系的作用:
已知方程的一根,求另一根;
不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式:
已知方程的两根x1、x2,可以构造一元二次方程:
x2-(x1+x2)x+x1x2=0
已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程x2-(x1+x2)x+x1x2=0的根
6、应用一元二次方程
①在利用方程来解应用题时,主要分为两个步骤:
设未知数(在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);
寻找等量关系(一般地,题目中会含有一表述等量关系的 句子 ,只须找到此句话即可根据其列出方程)。
②处理问题的过程可以进一步概括为
初三上册数学知识点3
图形的相似
1、成比例线段
①线段的比
如果选用同一个长度单位量得两条线段AB, CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成
四条线段a、b、c、d中,如果a与b的比等于c与d的比,即
那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.
②注意点:
a:b=k,说明a是b的k倍
由于线段 a、b的长度都是正数,所以k是正数
比与所选线段的长度单位无关,求出时两条线段的长度单位要一致
除了a=b之外,a:b≠b:a
比例的基本性质:若
则ad=bc; 若ad=bc, 则
2、平行线分线段成比例
平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图2, l1 // l2 // l3 ,则
3. 黄金分割
如图1,点C把线段AB分成两条线段AC和BC,如果
那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.
黄金分割点是最优美、最令人赏心悦目的点.
4.相似多边形
① 含义:
一般地,形状相同的图形称为相似图形.
对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.
②注意点:
在相似多边形中,最为简单的就是相似三角形.
对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.
全等三角形是相似三角的特例,这时相似比等于1.
注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.
相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.
相似三角形周长的比等于相似比.
相似三角形面积的比等于相似比的平方.
相似多边形的周长等于相似比;面积比等于相似比的平方.
5、探索三角形相似的条件
①相似三角形的判定方法:
②平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
③相似三角形的判定定理的证明
④利用相似三角形测高
⑤相似三角形的性质
⑥图形的位似
初三上册数学知识点 总结 相关 文章 :
★ 九年级数学上册重要知识点总结
★ 初三数学知识点考点归纳总结
★ 九年级上册数学知识点归纳整理
★ 初三数学知识点归纳总结
★ 初三数学知识点总结
★ 初三上册数学知识点盘点与数学学习方法
★ 初三数学重要公式知识大全
★ 初三九年级上册数学知识点
★ 初中数学必备知识点总结初三数学上册一二章知识点
★ 人教版九年级数学知识点归纳
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();‘伍’ 九年级数学知识点归纳
各个科目都有自己的 学习 方法 ,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。下面是我给大家整理的一些 九年级数学 知识点的学习资料,希望对大家有所帮助。
初三下册数学知识点 总结
半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。
如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线。
九年级下册数学知识点
知识点1.概念
把形状相同的图形叫做相似图形。(即对应角相等、对应边的比也相等的图形)
解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.
(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.
(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.
知识点2.比例线段
对于四条线段a,b,c,d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.
知识点3.相似多边形的性质
相似多边形的性质:相似多边形的对应角相等,对应边的比相等.
解读:(1)正确理解相似多边形的定义,明确“对应”关系.
(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.
知识点4.相似三角形的概念
对应角相等,对应边之比相等的三角形叫做相似三角形.
解读:(1)相似三角形是相似多边形中的一种;
(2)应结合相似多边形的性质来理解相似三角形;
(3)相似三角形应满足形状一样,但大小可以不同;
(4)相似用“∽”表示,读作“相似于”;
(5)相似三角形的对应边之比叫做相似比.
知识点5.相似三角的判定方法
(1)定义:对应角相等,对应边成比例的两个三角形相似;
(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.
(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.
(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.
(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.
(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.
知识点6.相似三角形的性质
(1)对应角相等,对应边的比相等;
(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;
(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.
(4)射影定理
苏教版九年级上册数学知识点归纳
1二次根式:形如式子为二次根式;
性质:是一个非负数;
2二次根式的乘除:
3二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并.
4海伦-秦九韶公式:,S是的面积,p为.
1:等号两边都是整式,且只有一个未知数,未知数的次是2的方程.
2配方法:将方程的一边配成完全平方式,然后两边开方;
因式分解法:左边是两个因式的乘积,右边为零.
3一元二次方程在实际问题中的应用
4韦达定理:设是方程的两个根,那么有
1:一个图形绕某一点转动一个角度的图形变换
性质:对应点到中心的距离相等;
对应点与旋转中心所连的线段的夹角等于旋转角
旋转前后的图形全等.
2中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;
中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;
九年级数学知识点归纳相关 文章 :
★ 初三数学知识点归纳总结
★ 九年级上册数学知识点归纳整理
★ 初三数学知识点考点归纳总结
★ 初三数学知识点归纳人教版
★ 九年级数学上册重要知识点总结
★ 九年级上册数学知识点归纳
★ 初中九年级数学知识点总结归纳
★ 初三数学中考复习重点章节知识点归纳
★ 初三数学知识点整理
‘陆’ 九年级数学知识点归纳总结
只有学习精彩,生命才精彩,只有学习成功,事业才成功。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。下面是我给大家整理的一些 九年级数学 的知识点,希望对大家有所帮助。
初三第一学期数学知识点
【角的度量与分类】
角的度量:度量角的大小,可用“度”作为度量单位。把一个圆周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。
角的分类:
(1)锐角:小于直角的角叫做锐角
(2)直角:平角的一半叫做直角
(3)钝角:大于直角而小于平角的角
(4)平角:把一条射线,绕着它的端点顺着一个方向旋转,当终止位置和起始位置成一直线时,所成的角叫做平角。
(5)周角:把一条射线,绕着它的端点顺着一个方向旋转,当终边和始边重合时,所成的角叫做周角。
(6)周角、平角、直角的关系是:l周角=2平角=4直角=360°
【锐角三角函数定义】
锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin)等于对边比斜边;sinA=a/c
余弦(cos)等于邻边比斜边;cosA=b/c
正切(tan)等于对边比邻边;tanA=a/b
余切(cot)等于邻边比对边;cotA=b/a
正割(sec)等于斜边比邻边;secA=c/b
余割(csc)等于斜边比对边。cscA=c/a
互余角的三角函数间的关系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα。
平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
初三数学知识点
1.有两条边相等的三角形是等腰三角形。
2.判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角形(简称:等角对等边)。
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,学习方法,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
标准差与方差
极差是什么:一组数据中数据与最小数据的差叫做极差,即极差=值-最小值。
计算器——求标准差与方差的一般步骤:
1.打开计算器,按“ON”键,按“MODE”“2”进入统计(SD)状态。
2.在开始数据输入之前,请务必按“SHIFT”“CLR”“1”“=”键清除统计存储器。
3.输入数据:按数字键输入数值,然后按“M+”键,就能完成一个数据的输入。如果想对此输入同样的数据时,还可在步骤3后按“SHIET”“;”,后输入该数据出现的频数,再按“M+”键。
4.当所有的数据全部输入结束后,按“SHIFT”“2”,选择的是“标准差”,就可以得到所求数据的标准差;
5.标准差的平方就是方差。
数学初三上册知识点归纳
分式的基本性质与应用:
(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;
(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;
(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.
分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.
最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.
分式的乘除法法则:.
分式的乘方:.
负整指数计算法则:
(1)公式:a0=1(a≠0),a-n=(a≠0);
(2)正整指数的运算法则都可用于负整指数计算;
(3)公式:,;
(4)公式:(-1)-2=1,(-1)-3=-1.
九年级数学知识点归纳 总结 相关 文章 :
★ 初三数学知识点考点归纳总结
★ 九年级数学上册重要知识点总结
★ 初三数学知识点归纳总结
★ 九年级上册数学知识点归纳整理
★ 人教版九年级数学知识点归纳
★ 初三数学知识点归纳人教版
★ 初中九年级数学知识点总结归纳
★ 最新初三数学知识点总结大全
★ 初三中考数学知识点归纳总结
★ 九年级上册数学知识点归纳
‘柒’ 九年级数学基础知识点
天才就是勤奋曾经有人这样说过。如果这话不完全正确,那至少在很大程度上是正确的。学习,就算是天才,也是需要不断练习与记忆的。下面是我给大家整理的一些 九年级数学 的知识点,希望对大家有所帮助。
初三年级下学期数学知识点
反比例函数
形如y=k/x(k为常数且k≠0,x≠0,y≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:
反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
当K>0时,反比例函数图像经过一,三象限,是减函数(即y随x的增大而减小)
当K<0时,反比例函数图像经过二,四象限,是增函数(即y随x的增大而增大)
由于反比例函数的自变量和因变量都不能为0,所以图像只能无限向坐标轴靠近,无法和坐标轴相交。
1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/x(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)
二次函数
知识点一、平面直角坐标系
1,平面直角坐标系
在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限。
2、点的坐标的概念
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。
知识点二、不同位置的点的坐标的特征
1、各象限内点的坐标的特征
点P(x,y)在第一象限
点P(x,y)在第二象限
点P(x,y)在第三象限
点P(x,y)在第四象限
2、坐标轴上的点的特征
点P(x,y)在x轴上,x为任意实数
点P(x,y)在y轴上,y为任意实数
点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)
3、两条坐标轴夹角平分线上点的坐标的特征
点P(x,y)在第一、三象限夹角平分线上x与y相等
点P(x,y)在第二、四象限夹角平分线上x与y互为相反数
4、和坐标轴平行的直线上点的坐标的特征
位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
5、关于x轴、y轴或远点对称的点的坐标的特征
点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数
点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数
点P与点p’关于原点对称横、纵坐标均互为相反数
6、点到坐标轴及原点的距离
点P(x,y)到坐标轴及原点的距离:
(1)点P(x,y)到x轴的距离等于
(2)点P(x,y)到y轴的距离等于
(3)点P(x,y)到原点的距离等于
初 三年级数学 知识点归纳
旋转
一.知识框架
二.知识概念
1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。)
2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。
3.中心对称图形与中心对称:
中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。
中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。
4.中心对称的性质:
关于中心对称的两个图形是全等形。
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。
本章内容通过让学生经历观察、操作等过程了解旋转的概念,探索旋转的性质,进一步发展空间观察,培养几何思维和审美意识,在实际问题中体验数学的快乐,激发对学习学习。
九年级上册数学复习知识点
知识点1:一元二次方程的基本概念
1、一元二次方程3x2+5x-2=0的常数项是-2。
2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。
3、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。
4、把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0。
知识点2:直角坐标系与点的位置
1、直角坐标系中,点A(3,0)在y轴上。
2、直角坐标系中,x轴上的任意点的横坐标为0。
3、直角坐标系中,点A(1,1)在第一象限。
4、直角坐标系中,点A(-2,3)在第四象限。
5、直角坐标系中,点A(-2,1)在第二象限。
知识点3:已知自变量的值求函数值
1、当x=2时,函数y=的值为1。
2、当x=3时,函数y=的值为1。
3、当x=-1时,函数y=的值为1。
知识点4:基本函数的概念及性质
1、函数y=-8x是一次函数。
2、函数y=4x+1是正比例函数。
3、函数是反比例函数。
4、抛物线y=-3(x-2)2-5的开口向下。
5、抛物线y=4(x-3)2-10的对称轴是x=3。
6、抛物线的顶点坐标是(1,2)。
7、反比例函数的图象在第一、三象限。
知识点5:数据的平均数中位数与众数
1、数据13,10,12,8,7的平均数是10。
2、数据3,4,2,4,4的众数是4。
3、数据1,2,3,4,5的中位数是3。
知识点6:特殊三角函数值
1.cos30°=。
2.sin260°+cos260°=1。
3.2sin30°+tan45°=2。
4.tan45°=1。
5.cos60°+sin30°=1。
九年级数学基础知识点相关 文章 :
★ 初三数学基础知识点总结
★ 九年级数学上册重要知识点总结
★ 九年级数学知识点上册
★ 九年级上册数学知识点归纳整理
★ 初三数学知识点考点归纳总结
★ 初中数学基础知识点总结
★ 初中数学基础知识点归纳总结
★ 初三数学知识点归纳总结
★ 初三数学基础知识的复习规划
★ 初三数学复习知识点总结
‘捌’ 九年级数学知识点总结
各个科目都有自己的 学习 方法 ,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。下面是我给大家整理的一些 九年级数学 的知识点,希望对大家有所帮助。
初三数学上册知识点归纳
1.数的分类及概念数系表:
说明:分类的原则:1)相称(不重、不漏)2)有标准
2.非负数:正实数与零的统称。(表为:x0)
性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:
①定义及表示法
②性质:A.a1/a(a1);B.1/a中,aC.0
4.相反数:
①定义及表示法
②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:
①定义(三要素)
②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数自然数)
定义及表示:
奇数:2n-1
偶数:2n(n为自然数)
7.绝对值:
①定义(两种):
代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│0,符号││是非负数的标志;
③数a的绝对值只有一个;
④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。
九年级下册数学知识点归纳
一、平行线分线段成比例定理及其推论:
1.定理:三条平行线截两条直线,所得的对应线段成比例。
2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。
二、相似预备定理:
平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。
三、相似三角形:
1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。
2.性质:(1)相似三角形的对应角相等;
(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;
(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。
说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。
3.判定定理:
(1)两角对应相等,两三角形相似;
(2)两边对应成比例,且夹角相等,两三角形相似;
(3)三边对应成比例,两三角形相似;
(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。
九年级下册数学知识点
圆
★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
☆内容提要☆
一、圆的基本性质
1.圆的定义(两种)
2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理
4.垂径定理及其推论
5.“等对等”定理及其推论
6.与圆有关的角:⑴圆心角定义(等对等定理)
⑵圆周角定义(圆周角定理,与圆心角的关系)
⑶弦切角定义(弦切角定理)
二、直线和圆的位置关系
1.切线的性质(重点)
2.切线的判定定理(重点)
3.切线长定理
九年级数学知识点 总结 相关 文章 :
★ 九年级数学上册重要知识点总结
★ 初三数学知识点考点归纳总结
★ 人教版九年级数学知识点归纳
★ 初三数学知识点归纳总结
★ 九年级上册数学知识点归纳整理
★ 最新初三数学知识点总结大全
★ 初三数学知识点归纳人教版
★ 初中九年级数学知识点总结归纳
★ 初三数学知识点整理
★ 初三数学复习知识点总结
‘玖’ 人教版初三数学知识点归纳
对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如。学习需要持之以恒。下面是我给大家整理的一些初三数学的知识点,希望对大家有所帮助。
初三上册数学复习资料
一、能正确理解实数的有关概念
我们已经知道整数和统称为.并规定无限不循环是无理数,这样我们把有理数和无理数统称为实数,即实数这个大家庭里有有理数和无理数两大成员.学习时应注意分清有理数和无理数是两类完全不同的数,就是说如果一个数是有理数,那么它一定不是无理数,反之,如果一个数是无理数,那么它一定不是有理数.
二、正确理解实数的分类
实数的分类可从两个角度去思考,即(1)按定义来分类;(2)按正、来分类.但要注意0在实数里也扮演着重要角色.我们通常把正实数和0合称为非负数,把负实数和0合称为非正数.
三、正确理解实数与数轴的关系
实数与数轴上的点是一一对应的,就是说所有的实数都可以用数轴上的点来表示;反之,数轴上的每一个点都表示一个实数.数轴上的任一点表示的数,是有理数,就是无理数.
在数轴上,表示相反数的两个点在原点的两旁,并且两点到原点的距离相等.实数a的绝对值就是在数轴上这个数对应的点与原点的距离.
利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,绝对值大的反而小.
四、熟练掌握实数的有关性质
实数和有理数一样也有许多的重要性质.具体地讲可从以下几方面去思考:
1,相反数实数a的相反数是-a,0的相反数是0,具体地,若a与b互为相反数,则a+b=0;反之,若a+b=0,则a与b互为相反数.
2,绝对值一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0.实数a的绝对值可表示就是说实数a的绝对值一定是一个非负数,
3,倒数乘积为1的两个实数互为倒数,即若a与b互为倒数,则ab=1;反之,若ab=1,则a与b互为倒数.这里应特别注意的是0没有倒数.
4,实数大小的比较任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.
5,实数的运算实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.
九年级下学期数学复习资料
特殊值的形式
①当x=1时 y=a+b+c
②当x=-1时 y=a-b+c
③当x=2时 y=4a+2b+c
④当x=-2时 y=4a-2b+c
二次函数的性质
定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)
奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数 。 周期性:无
解析式:
①y=ax^2+bx+c[一般式]
⑴a≠0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b^2)/4a);
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,图象与x轴交于一点;
(-b/2a,0);
Δ<0,图象与x轴无交点;
②y=a(x-h)^2+k[顶点式]
此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a; ③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)
对称轴X=(X1+X2)/2 当a>0 且X≧(X1+X2)/2时,Y随X的增大而增大,当a>0且X≦(X1+X2)/2时Y随X的增大而减小
初三下册数学复习资料
知识点1:一元二次方程的基本概念
1.一元二次方程3x2+5x-2=0的常数项是-2.
2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.
3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.
4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.
知识点2:直角坐标系与点的位置
1.直角坐标系中,点A(3,0)在y轴上。
2.直角坐标系中,x轴上的任意点的横坐标为0.
3.直角坐标系中,点A(1,1)在第一象限.
4.直角坐标系中,点A(-2,3)在第四象限.
5.直角坐标系中,点A(-2,1)在第二象限.
知识点3:已知自变量的值求函数值
1.当x=2时,函数y=的值为1.
2.当x=3时,函数y=的值为1.
3.当x=-1时,函数y=的值为1.
知识点4:基本函数的概念及性质
1.函数y=-8x是一次函数.
2.函数y=4x+1是正比例函数.
3.函数是反比例函数.
4.抛物线y=-3(x-2)2-5的开口向下.
5.抛物线y=4(x-3)2-10的对称轴是x=3.
6.抛物线的顶点坐标是(1,2).
7.反比例函数的图象在第一、三象限.
人教版初三数学知识点归纳相关 文章 :
★ 初三数学知识点归纳人教版
★ 人教版九年级数学知识点归纳
★ 九年级人教版数学知识点整理
★ 最新初三数学知识点总结大全
★ 人教版九年级数学知识点
★ 人教版九年级下册数学复习提纲
★ 九年级数学知识点归纳总结
★ 九年级数学知识点人教版
★ 九年级人教版数学知识点
★ 初三物理知识点总结归纳(完整版)
‘拾’ 初三数学上册知识点
初三数学上册知识点1
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c
a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大,则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]
交点式:y=a(x-x)(x-x ) [仅限于与x轴有交点A(x ,0)和 B(x,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
初三数学上册知识点2
1、必然事件、不可能事件、随机事件的区别
2、概率
一般地,在大量重复试验中,如果事件A发生的频率
会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)=p.
注意:(1)概率是随机事件发生的可能性的大小的数量反映。
(2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同。
3、求概率的方法
(1)用列举法求概率(列表法、画树形图法)
(2)用频率估计概率:一大面,可用大量重复试验中事件发生频率来估计事件发生的概率。另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.
初三数学上册知识点3
第1章 二次根式
学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。二次根式 一章就来认识这种式子,探索它的性质,掌握它的运算。
在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:
注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。二次根式的乘除一节的内容有两条发展的线索。一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到
并运用它们进行二次根式的化简。
二次根式的加减一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。这些处理有助于学生掌握本节内容。
第2章 一元二次方程
学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程 一元二次方程。一元二次方程一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。
本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,
22.2降次解一元二次方程一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。
(1)在介绍配方法时,首先通过实际问题引出形如 的方程。这样的方程可以化为更为简单的形如 的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如 的方程。然后举例说明一元二次方程可以化为形如 的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了公式法以后,学生对这个内容会有进一步的理解。
(2)在介绍公式法时,首先借助配方法讨论方程 的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。
(3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。
22.3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。
初三数学上册知识点4
第21章二次根式
1、二次根式:一般地,式子叫做二次根式。
注意:
(1)若这个条件不成立,则不是二次根式;
(2)是一个重要的非负数,即; ≥0。
2、重要公式:
3、积的算术平方根:
积的算术平方根等于积中各因式的算术平方根的积;
4、二次根式的乘法法则:。
5、二次根式比较大小的方法:
(1)利用近似值比大小;
(2)把二次根式的系数移入二次根号内,然后比大小;
(3)分别平方,然后比大小。
6、商的算术平方根:,
商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
7、二次根式的除法法则:
分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。
8、最简二次根式:
(1)满足下列两个条件的二次根式,叫做最简二次根式,
①被开方数的因数是整数,因式是整式,
②被开方数中不含能开的尽的因数或因式;
(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;
(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;
(4)二次根式计算的最后结果必须化为最简二次根式。
9、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。
10、二次根式的混合运算:
(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;
(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。
第22章一元二次方程
1、一元二次方程的一般形式:
a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。
2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。
3。一元二次方程根的判别式:当ax2+bx+c=0
(a≠0)时,Δ=b2—4ac叫一元二次方程根的判别式。请注意以下等价命题:
Δ>0 有两个不等的实根;
Δ=0 有两个相等的.实根;Δ<0 无实根;
4。平均增长率问题————————应用题的类型题之一(设增长率为x):
(1)第一年为a ,第二年为a(1+x) ,第三年为a(1+x)2。
(2)常利用以下相等关系列方程:第三年=第三年或第一年+第二年+第三年=总和。
第23章旋转
1、概念:
把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。
旋转三要素:旋转中心、旋转方面、旋转角
2、旋转的性质:
(1)旋转前后的两个图形是全等形;
(2)两个对应点到旋转中心的距离相等
(3)两个对应点与旋转中心的连线段的夹角等于旋转角
3、中心对称:
把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。
这两个图形中的对应点叫做关于中心的对称点。
4、中心对称的性质:
(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。
(2)关于中心对称的两个图形是全等图形。
5、中心对称图形:
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
初三数学上册知识点5
1.数的分类及概念 数系表:
说明:分类的原则:1)相称(不重、不漏) 2)有标准
2.非负数:正实数与零的统称。(表为:x0)
性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数: ①定义及表示法
②性质:A.a1/a(a1);B.1/a中,aC.0
4.相反数: ①定义及表示法
②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(三要素)
②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数自然数)
定义及表示:
奇数:2n-1
偶数:2n(n为自然数)
7.绝对值:①定义(两种):
代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│0,符号││是非负数的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。
初三数学上册知识点6
不等式的概念
1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法。
不等式基本性质
1、不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以或除以同一个正数,不等号的方向不变。
3、不等式两边都乘以或除以同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
一元一次不等式
1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:1去分母2去括号3移项4合并同类项5将x项的系数化为1。
一元一次不等式组
1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法
1分别求出不等式组中各个不等式的解集。
2利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组
不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。
7、不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
初三数学上册知识点7
1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是( ).其中( )叫做二次项,( )叫做一次项,( )叫做常数项;( )叫做二次项的系数,( )叫做一次项的系数.
2.易错知识辨析:
(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中 .
(2)用公式法和因式分解的方法解方程时要先化成一般形式.
(3)用配方法时二次项系数要化1.
(4)用直接开平方的方法时要记得取正、负.
初三数学上册知识点8
一、圆周角定理
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
①定理有三方面的意义:
a.圆心角和圆周角在同一个圆或等圆中;(相关知识点 如何证明四点共圆 )
b.它们对着同一条弧或者对的两条弧是等弧
c.具备a、b两个条件的圆周角都是相等的,且等于圆心角的一半.
②因为圆心角的度数与它所对的弧的度数相等,所以圆周角的度数等于它所对的弧的度数的一半.
二、圆周角定理的推论
推论1:同弧或等弧所对的圆周角相等,同圆或等圆中,相等的圆周角所对的弧也相等
推论2:半圆(或直径)所对的圆周角等于90°;90°的圆周角所对的弦是直径
推论3:如果三角形一边的中线等于这边的一半,那么这个三角形是直角三角形
三、推论解释说明
圆周角定理在九年级数学知识点中属于几何部分的重要内容。
①推论1是圆中证明角相等最常用的方法,若将推论1中的“同弧或等弧”改为“同弦或等弦”结论就不成立.因为一条弦所对的圆周角有两个.
②推论2中“相等的圆周角所对的弧也相等”的前提条件是“在同圆或等圆中”
③圆周角定理的推论2的应用非常广泛,要把直径与90°圆周角联系起来,一般来说,当条件中有直径时,通常会作出直径所对的圆周角,从而得到直角三角形,为进一步解题创造条件
④推论3实质是直角三角形的斜边上的中线等于斜边的一半的逆定理.
初三数学上册知识点9
单项式与多项式
仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。
当一个单项式的系数是1或—1时,“1”通常省略不写。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。
1、多项式
有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例
把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值
任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的恒等
对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。
性质1如果fx==gx,那么,对于任一个数值a,都有fa=ga。
性质2如果fx==gx,那么,这两个多项式的个同类项系数就一定对应相等。
4、一元多项式的根
一般地,能够使多项式fx的值等于0的未知数x的值,叫做多项式fx的根。
多项式的加、减法,乘法
1、多项式的加、减法
2、多项式的乘法
单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。
3、多项式的乘法
多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。
常用乘法公式
公式I平方差公式
a+ba—b=a^2—b^2
两个数的和与这两个数的差的积等于这两个数的平方差。
初三数学上册知识点10
1.定义:两组对边分别平行的四边形叫平行四边形
2.平行四边形的性质
(1)平行四边形的对边平行且相等;
(2)平行四边形的邻角互补,对角相等;
(3)平行四边形的对角线互相平分;
3.平行四边形的判定
平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:
第一类:与四边形的对边有关
(1)两组对边分别平行的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
第二类:与四边形的对角有关
(4)两组对角分别相等的四边形是平行四边形;
第三类:与四边形的对角线有关
(5)对角线互相平分的四边形是平行四边形
初三数学上册知识点11
直角三角形的判定方法:
判定1:定义,有一个角为90°的三角形是直角三角形。
判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)
初三数学上册知识点12
1、 必然事件、不可能事件、随机事件的区别
2、概率
一般地,在大量重复试验中,如果事件A发生的频率 会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)= p.
注意:(1)概率是随机事件发生的可能性的大小的数量反映.
(2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.
3、求概率的方法
(1)用列举法求概率(列表法、画树形图法)
(2)用频率估计概率:一大面,可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.
初三数学上册知识点13
首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb
我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
所以,sina*cosb=(sin(a+b)+sin(a-b))/2
同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
这样,我们就得到了积化和差的四个公式:
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
初三数学上册知识点14
1、 二次函数的一般形式:y=ax2+bx+c。(a0)
2、 关于二次函数的几个概念:二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c叫二次函数在y轴上的截距, 即二次函数图象必过(0,c)点。
3、 y=ax2 (a0)的特性:当y=ax2+bx+c (a0)中的b=0且c=0时二次函数为y=ax2 (a这个二次函数是一个特殊的二次函数,有下列特性:(1)图象关于y轴对称;(2)顶点(0,0);
4、求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax2+bx+c,并把这三点的坐标代入,解关于a、b、c的三元一次方程组,求出a、b、c的值, 从而求出解析式———————待定系数法。
5、二次函数的顶点式: y=a(x—h)2+k (a 由顶点式可直接得出二次函数的顶点坐标(h, k),对称轴方程 x=h 和函数的最值 y最值= k。
初三数学上册知识点15
三角形的外心定义:
外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。
外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。
三角形的外心的性质:
1、三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心;
2、三角形的外接圆有且只有一个,即对于给定的三角形,其外心是的,但一个圆的内接三角形却有无数个,这些三角形的外心重合;
3、锐角三角形的外心在三角形内;
钝角三角形的外心在三角形外;
直角三角形的外心与斜边的中点重合。
在△ABC中
4、OA=OB=OC=R
5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA
6、S△ABC=abc/4R