当前位置:首页 » 基础知识 » 数学八下知识点总结及重点
扩展阅读
异形1和2哪个经典 2024-11-08 02:56:27
菏泽继续教育多少分算过 2024-11-08 02:55:41

数学八下知识点总结及重点

发布时间: 2022-12-09 22:31:01

❶ 八年级下册数学知识点总结

数学是一门很重要的学科,下面是八年级下册数学重点知识点的总结,希望能在数学的学习上给大家带来帮助。

四边形

1.平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

2.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分。

3.平行四边形的判定:两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形; 两组对角分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。

4.三角形的中位线平行于三角形的第三边,且等于第三边的一半。

5.直角三角形斜边上的中线等于斜边的一半。

6.矩形的定义:有一个角是直角的平行四边形。

7.矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。AC=BD

8.矩形判定定理:有一个角是直角的平行四边形叫做矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形。

9.菱形的定义 :邻边相等的平行四边形。

10.菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

11.菱形的判定定理:一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边相等的四边形是菱形。

S菱形=1/2×ab(a、b为两条对角线)

12.正方形定义:一个角是直角的菱形或邻边相等的矩形。

13.正方形的性质:四条边都相等,四个角都是直角。 正方形既是矩形,又是菱形。

14.正方形判定定理:1.邻边相等的矩形是正方形。2.有一个角是直角的菱形是正方形。

15.梯形的定义: 一组对边平行,另一组对边不平行的四边形叫做梯形。

16.直角梯形的定义:有一个角是直角的梯形

17.等腰梯形的定义:两腰相等的梯形。

18.等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

19.等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

分式的运算

乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。

加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。

分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。

一元一次方程根的情况

利用根的判别式去了解,根的判别式可在书面上可以写为“△”。

一元一次方程

1.在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

2.等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程

含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的方法:代入消元法/加减消元法。

❷ 八年级下册数学重点知识点

数学是一门很重要的学科,下面是八年级下册数学重点知识点的总结,希望能在数学的学习上给大家带来帮助。

轴对称

1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

3.角平分线上的点到角两边距离相等。

4.线段垂直平分线上的任意一点到线段两个端点的距离相等。

5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

6.轴对称图形上对应线段相等、对应角相等。

7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

8.点(x,y)关于x轴对称的点的坐标为(x,-y)

点(x,y)关于y轴对称的点的坐标为(-x,y)

点(x,y)关于原点轴对称的点的坐标为(-x,-y)

四边形

1.平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

2.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分。

3.平行四边形的判定:两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形; 两组对角分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。

4.三角形的中位线平行于三角形的第三边,且等于第三边的一半。

5.直角三角形斜边上的中线等于斜边的一半。

6.矩形的定义:有一个角是直角的平行四边形。

7.矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。AC=BD

8.矩形判定定理:有一个角是直角的平行四边形叫做矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形。

9.菱形的定义 :邻边相等的平行四边形。

10.菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

11.菱形的判定定理:一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边相等的四边形是菱形。

S菱形=1/2×ab(a、b为两条对角线)

12.正方形定义:一个角是直角的菱形或邻边相等的矩形。

13.正方形的性质:四条边都相等,四个角都是直角。 正方形既是矩形,又是菱形。

14.正方形判定定理:1.邻边相等的矩形是正方形。2.有一个角是直角的菱形是正方形。

15.梯形的定义: 一组对边平行,另一组对边不平行的四边形叫做梯形。

16.直角梯形的定义:有一个角是直角的梯形

17.等腰梯形的定义:两腰相等的梯形。

18.等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

19.等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

分解因式

一、公式:1、ma+mb+mc=m(a+b+c);

2、a2-b2=(a+b)(a-b);

3、a22ab+b2=(ab)2。

二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

1、把几个整式的积化成一个多项式的形式,是乘法运算。

2、把一个多项式化成几个整式的积的形式,是因式分解。

3、ma+mb+mcm(a+b+c)4、因式分解与整式乘法是相反方向的变形。

三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式。

四、分解因式的一般步骤为:(1)若有-先提取-,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止。

五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式。

分解因式的方法:1、提公因式法.2、运用公式法。

数据的分析

1.加权平均数:加权平均数的计算公式。权的理解:反映了某个数据在整个数据中的重要程度。而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。

2.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

3.一组数据中出现次数最多的数据就是这组数据的众数。

4.一组数据中的最大数据与最小数据的差叫做这组数据的极差。

5.方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

❸ 初二数学下册重要知识点总结

知识是一座宝库,而实践就是开启宝库的钥匙。学习任何学科,不仅需要大量的记忆,还需要大量的练习,从而达到巩固知识的效果。下面是我给大家整理的一些初二数学的知识点,希望对大家有所帮助。

初二上学期数学知识点归纳

分式方程

一、理解定义

1、分式方程:含分式,并且分母中含未知数的方程——分式方程。

2、解分式方程的思路是:

(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。

(2)解这个整式方程。

(3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。

(4)写出原方程的根。

“一化二解三检验四 总结 ”

3、增根:分式方程的增根必须满足两个条件:

(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根。

4、分式方程的解法:

(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;

(3)解整式方程;(4)验根;

注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

分式方程检验 方法 :将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

5、分式方程解实际问题

步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。

八年级 数学课文知识点

整式的乘除与分解因式

一.知识概念

1.同底数幂的乘法法则:(m,n都是正数)

2..幂的乘方法则:(m,n都是正数)

3.整式的乘法

(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

(3).多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

4.平方差公式:

5.完全平方公式:

6.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n).

在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

②任何不等于0的数的0次幂等于1,即,如,(-2.50=1),则00无意义.

③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;当a<0时,a-p的值可能是正也可能是负的,如,

④运算要注意运算顺序.

7.整式的除法

单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.

8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.

分解因式的一般方法:1.提公共因式法2.运用公式法3.十字相乘法

分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;

(2)再看能否使用公式法;

(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;

(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;

(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.

整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。在学习本章内容时,应多准备些小组合作与交流活动,培养学生推理能力、计算能力。在做题中体验数学法则、公式的简洁美、和谐美,提高做题效率。

初二数学 复习方法

按部就班

数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。

强调理解

概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。

基本训练

学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉高考的题型,训练要做到有的放矢。

重视错误

订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。

数学的学习有一个循序渐进的过程,妄想一步登天是不现实的。熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。


初二数学下册重要知识点总结相关 文章 :

★ 初二数学下册知识点总结

★ 初二数学下册知识点归纳与数学学习方法

★ 八年级下册数学知识点整理

★ 初二数学下册知识点总结归纳

★ 八年级下册数学知识点总结归纳

★ 初二下册数学必考知识点总结归纳

★ 初二下册数学知识点归纳总结

★ 八年级下册数学知识点归纳

★ 初二下学期数学知识点总结

★ 初二下册数学知识点

❹ 八年级数学下册知识点总结

八年级数学下册知识点总结

数学(mathematics或maths),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。下面是我整理的关于八年级数学下册知识点总结,欢迎大家参考!

第十六章 分式

一.知识框架

二.知识概念

1.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。

2.分式有意义的条件:分母不等于0

3.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。

4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。

分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。用式子表示为:A/B=A*C/B*C A/B=A÷C/B÷C (A,B,C为整式,且C≠0)

5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.

6.分式的四则运算:1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a/c±b/c=a±b/c

2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad±cb/bd

3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a/b * c/d=ac/bd

4.分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc

(2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c

7.分式方程的意义:分母中含有未知数的方程叫做分式方程.

8.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).

分式和分数有着许多相似点。教师在讲授本章内容时,可以对比分数的特点及性质,让学生自主学习。重点在于分式方程解实际应用问题。

第十七章 反比例函数

一.知识框架

二.知识概念

1.反比例函数:形如y= (k为常数,k≠0)的函数称为反比例函数。其他形式xy=k

2.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和 y=-x。对称中心是:原点

3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;

当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。

在学习反比例函数时,教师可让学生对比之前所学习的一次函数启发学生进行对比性学习。在做题时,培养和养成数形结合的思想。

第十八章 勾股定理

一.知识框架

二 知识概念

1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。

2.定理:经过证明被确认正确的命题叫做定理。

3.我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)

勾股定理是直角三角形具备的重要性质。本章要求学生在理解勾股定理的前提下,学会利用这个定理解决实际问题。可以通过自主学习的发展体验获取数学知识的感受

第十九章 四边形

一.知识框架

二.知识概念

1.平行四边形定义: 有两组对边分别平行的四边形叫做平行四边形。

2.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。

3.平行四边形的判定 1.两组对边分别相等的四边形是平行四边形

2.对角线互相平分的四边形是平行四边形;

3.两组对角分别相等的四边形是平行四边形;

4.一组对边平行且相等的四边形是平行四边形。

4.三角形的中位线平行于三角形的第三边,且等于第三边的一半。

5.直角三角形斜边上的中线等于斜边的一半。

6.矩形的定义:有一个角是直角的平行四边形。

7.矩形的性质: 矩形的四个角都是直角;矩形的对角线平分且相等。AC=BD

8.矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。

2.对角线相等的平行四边形是矩形。

3.有三个角是直角的四边形是矩形。

9.菱形的定义 :邻边相等的平行四边形。

10.菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

11.菱形的判定定理:1.一组邻边相等的平行四边形是菱形。

2.对角线互相垂直的平行四边形是菱形。

3.四条边相等的四边形是菱形。

12.S菱形=1/2×ab(a、b为两条对角线)

13.正方形定义:一个角是直角的菱形或邻边相等的矩形。

14.正方形的性质:四条边都相等,四个角都是直角。 正方形既是矩形,又是菱形。

15.正方形判定定理: 1.邻边相等的矩形是正方形。 2.有一个角是直角的菱形是正方形。

16.梯形的'定义: 一组对边平行,另一组对边不平行的四边形叫做梯形。

17.直角梯形的定义:有一个角是直角的梯形

18.等腰梯形的定义:两腰相等的梯形。

19.等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

20.等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

本章内容是对平面上四边形的分类及性质上的研究,要求学生在学习过程中多动手多动脑,把自己的发现和知识带入做题中。因此教师在教学时可以多鼓励学生自己总结四边形的特点,这样有利于学生对知识的把握。

第二十章 数据的分析

一.知识框架

二.知识概念

1.加权平均数:加权平均数的计算公式。 权的理解:反映了某个数据在整个数据中的重要程度。

2.中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

3. 众数:一组数据中出现次数最多的数据就是这组数据的众数(mode)。

4. 极差:组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。

5.方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

本章内容要求学生在经历数据的收集、整理、分析过程中发展学生的统计意识和数据处理的方法与能力。在教学过程中,以生活实例为主,让学生体会到数据在生活中的重要性。

;

❺ 八年级下册数学知识点总结归纳

八年级数学下册主要有分式、二次根式、轴对称、函数等重要章节,我整理了一些重要知识点。

分式

一、分式的概念

1、分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

2、对于分式概念的理解,应把握以下几点:

(1)分式是两个整式相除的商。其中分子是被除式,分母是除式,分数线起除号和括号的作用;

(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;

(3)分母不能为零。

3、分式有意义、无意义的条件

(1)分式有意义的条件:分式的分母不等于0;

(2)分式无意义的条件:分式的分母等于0。

二、分式的基本性质

1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。

通分的关键是:确定几个分式的最简公分母。确定最简公分母的一般方法是:

(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不同字母及指数的积。

(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。

3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

在约分时要注意:

(1)如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,即约去分子、分母系数的最大公约数,相同字母的最低次幂;

(2)如果分子、分母中至少有一个多项式就应先分解因式,然后找出它们的公因式再约分;

(3)约分一定要把公因式约完。

二次根式

一般地,式子√a,(a≥0)叫做二次根式。

注意:(1)若a<0这个条件不成立,则 a不是二次根式;(2)a是一个重要的非负数,即a ≥0。

1、二次根式的乘法法则:√a X√b=√ab

2、二次根式比较大小的方法

(1)利用近似值比大小;

(2)把二次根式的系数移入二次根号内,然后比大小;

(3)分别平方,然后比大小。

3、二次根式的除法法则:

(1)商的算术平方根等于被除式的算术平方根除以除式的算术。

(2)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。

4、最简二次根式

(1)满足下列两个条件的二次根式,叫做最简二次根式。

① 被开方数的因数是整数,因式是整式;② 被开方数中不含能开的尽的因数或因式。

(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母。

(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式。

(4)二次根式计算的最后结果必须化为最简二次根式。

轴对称

1、如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。这条直线就是它的对称轴。我们也说这个图形关于这条直线成轴对称。

2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。这条直线叫做对称轴,折叠后重合的点是对应点,叫做对应点。

3、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

函数及其图象

一、一次函数

如果函数的关系式都是用自变量的一次整式表示的,我们称它们为一次函数,一次函数通常可以表示为y=kx+b的形式,其中k,b为常数且k≠0。形如y=kx(常数k≠0)的函数叫做正比例函数,它是特殊的一次函数。

1、一次函数的图象

(1)一次函数y=kx+b(k≠0)的图象是一条直线。特别地,当b=0时,该函数图象经过原点。

(2)当k>0,b>0时,直线y=kx+b经过第一、二、三象限;

当k>0,b<0时,直线y=kx+b经过第一、三、四象限;

当k<0,b<0时,直线y=kx+b经过第一、二、四象限;

当k<0,b<0时,直线y=kx+b经过第二、三、四象限;

2、一次函数的性质

一次函数y=kx+b(k≠0)中,当k>0时,y随x的增大而增大;当k<0时,y随着x的增大而减小。

3、求一次函数的表达式

(1)先设待求函数表达式,再根据条件列出方程或方程组,求出待定系数,从而得到所求结果的方法,叫做待定系数法。

(2)用待定系数法求一次函数的解析式:可以先设出一次函数解析式为y=kx+b(k≠0),然后利用题中给出的两个条件,代入所设的解析式。列出关于k、b的二元一次方程组,求出k,b的值即可。

二、反比例函数

一般地,形如(k是常数,k≠0)的函数叫做反比例函数,自变量x的取值范围是x≠0,函数值y的取值范围是y≠0。

1、反比例函数的图象:双曲线

2、反比例函数的性质:对于反比例函数,当k>0时,图象在一、三象限,在每隔象限内,y随着x的增大而减小;当k<0时,图象在第二、四象限,在每个象限内,y随着x的增大而增大。

以上是我整理的八年级下册数学知识点,希望能帮到你。

❻ 初二数学下册基础知识点总结

失败乃成功之母,重复是学习之母。学习,需要不断的重复重复,重复学过的知识,加深印象,其实任何科目的 学习 方法 都是不断重复学习。下面是我给大家整理的一些初二数学的知识点,希望对大家有所帮助。

初二下册数学知识点归纳北师大版

第一章一元一次不等式和一元一次不等式组

一、不等关系

1、一般地,用符号"<"(或"≤"),">"(或"≥")连接的式子叫做不等式.

2、要区别方程与不等式:方程表示的是相等的关系;不等式表示的是不相等的关系.

3、准确"翻译"不等式,正确理解"非负数"、"不小于"等数学术语.

非负数<===>大于等于0(≥0)<===>0和正数<===>不小于0

非正数<===>小于等于0(≤0)<===>0和负数<===>不大于0

二、不等式的基本性质

1、掌握不等式的基本性质,并会灵活运用:

(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:

如果a>b,那么a+c>b+c,a-c>b-c.

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即

如果a>b,并且c>0,那么ac>bc,.

(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:

如果a>b,并且c<0,那么ac

2、比较大小:(a、b分别表示两个实数或整式)

一般地:

如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;

如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;

如果a

即:

a>b<===>a-b>0

a=b<===>a-b=0

aa-b<0

(由此可见,要比较两个实数的大小,只要考察它们的差就可以了.

初二数学重要知识点

【相似、全等三角形】

1、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

2、相似三角形判定定理1两角对应相等,两三角形相似(ASA)

3、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

4、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)

5、判定定理3三边对应成比例,两三角形相似(SSS)

6、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

7、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

8、性质定理2相似三角形周长的比等于相似比

9、性质定理3相似三角形面积的比等于相似比的平方

10、边角边公理有两边和它们的夹角对应相等的两个三角形全等

11、角边角公理有两角和它们的夹边对应相等的两个三角形全等

12、推论有两角和其中一角的对边对应相等的两个三角形全等

13、边边边公理有三边对应相等的两个三角形全等

14、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等

15、全等三角形的对应边、对应角相等

八年级 下册数学期中知识点 总结

1.平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

2.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分。

3.平行四边形的判定:两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。

4.三角形的中位线平行于三角形的第三边,且等于第三边的一半。

5.直角三角形斜边上的中线等于斜边的一半。

6.矩形的定义:有一个角是直角的平行四边形。

7.矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。AC=BD

8.矩形判定定理:有一个角是直角的平行四边形叫做矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形。

9.菱形的定义:邻边相等的平行四边形。

10.菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

11.菱形的判定定理:一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边相等的四边形是菱形。S菱形=1/2×ab(a、b为两条对角线)

12.正方形定义:一个角是直角的菱形或邻边相等的矩形。

13.正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。

14.正方形判定定理:1.邻边相等的矩形是正方形。2.有一个角是直角的菱形是正方形。

15.梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。

16.直角梯形的定义:有一个角是直角的梯形

17.等腰梯形的定义:两腰相等的梯形。

18.等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

19.等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

初二数学 学习 经验 心得

1学好初中数学课前要预习

初中生想要学好数学,那么就要利用课前的时间将课上老师要讲的内容预习一下。初中数学课前的预习是要明白老师在课上大致所讲的内容,这样有利于和方便初中生整理知识结构。

初中生 课前预习 数学还能够知道自己有哪些不明白的知识点,这样在课上就会集中注意力去听,不会出现溜号和走神的情况。同时课前预习还可以将知识点形成体系,可以帮助初中生建立完整的知识结构。

2学习初中数学课上是关键

初中生想要学好学生,在课上就是一个字:跟。上初中数学课时跟住老师,老师讲到哪里一定要跟上,仔细看老师的板书,随时知道老师讲的是哪里,涉及到的知识点是什么。有的初中生喜欢记笔记,这里提醒大家,初中数学课上的时候尽量不要记笔记。

你的主要目的是跟着老师,而不是一味的记笔记,即使有不会的地方也要快速简短的记下来,可以在课后完善。跟上老师的思维是最重要的,这就意味着你明白了老师的分析和解题过程。

3课后可以适当做一些初中数学基础题

在每学完一课后,初中生可以在课后做一些初中数学的基础题型,在做这样的题时,建议大家是,不要出现错误的情况,做完题后要学会思考和整理。当你的初中数学基础题没问题的时候,就可以做一些有点难度的提升题了,如果做不出来可以根据解析看题。

但是记住千万不要大量的做这类题,初中生偶尔做一次有难度的题还是对数学的学习有帮助的,但是如果将重点放在这上面,没有什么好处。同时要学会整理,将自己错题归纳并总结,

数学是由简单明了的事项一步一步地发展而来,所以,只要学习数学的人老老实实地、一步一步地去理解,并同时记住其要点,以备以后之需用,就一定能理解其全部内容.就是说,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.这好比梯子的阶级,在登梯子时,一级一级地往上登,无论多小的人,只要他的腿长足以跨过一级阶梯,就一定能从第一级登上第二级,从第二级登上第三级、第四级,…….这时,只不过是反复地做同一件事,故不管谁都应该会做.

初二数学下册基础知识点总结相关 文章 :

★ 八年级下册数学知识点归纳

★ 初二数学知识点归纳整理

★ 八年级下册数学知识点

★ 初中数学基础知识点归纳总结

★ 八年级数学知识点整理归纳

★ 初中数学基础知识整理归纳

★ 初二数学基本知识汇总

★ 初中数学基础知识点总结

★ 初二数学基本知识汇总(2)

★ 人教版八年级下册数学复习提纲

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

❼ 八下数学知识点总结

八下数学知识点总结

八年级下册数学开始涉及到函数知识,那么相关的知识点又有什么呢?以下是我为大家精心整理的八下数学知识点总结,欢迎大家阅读。

八下数学知识点总结

第十六章 分式

分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零

2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。 ()3.分式的通分和约分:关键先是分解因式

4.分式的运算:

分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 分式乘方法则: 分式乘方要把分子、分母分别乘方。

分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减

混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。

5. 任何一个不等于零的数的零次幂等于1, 即;当n为正整数时, (

6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n是整数)

(1)同底数的幂的乘法:;

(2)幂的乘方:;

(3)积的乘方:;

(4)同底数的幂的除法:( a≠0);

(5)商的乘方:();(b≠0)

7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

解分式方程的步骤 :

(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.

增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的`整式方程的根。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答.

应用题有几种类型;基本公式是什么?基本上有五种: (1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题. (2)数字问题 在数字问题中要掌握十进制数的表示法. (3)工程问题 基本公式:工作量=工时×工效. (4)顺水逆水问题 v顺水=v静水+v水. v逆水=v静水-v水.

8.科学记数法:把一个数表示成的形式(其中,n是整数)的记数方法叫做科学记数法.

用科学记数法表示绝对值大于10的n位整数时,其中10的指数是

用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)

第十七章 反比例函数

1.定义:形如y=(k为常数,k≠0)的函数称为反比例函数。其他形式xy=k

2.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和 y=-x。对称中心是:原点

;

❽ 初二下册数学知识点总结

天才就是勤奋曾经有人这样说过。如果这话不完全正确,那至少在很大程度上是正确的。学习,就算是天才,也是需要不断练习与记忆的。下面是我给大家整理的一些初二数学的知识点,希望对大家有所帮助。

初二下册数学知识点 总结

解一元一次方程

1.等式与等量:用"="号连接而成的式子叫等式.注意:"等量就能代入"!

2.等式的性质:

等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;

等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.

3.方程:含未知数的等式,叫方程.

4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:"方程的解就能代入"!

5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.

6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).

8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).

9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).

10.列一元一次方程解应用题:

(1)读题分析法:…………多用于"和,差,倍,分问题"

仔细读题,找出表示相等关系的关键字,例如:"大,小,多,少,是,共,合,为,完成,增加,减少,配套-----",利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.

(2)画图分析法:…………多用于"行程问题"

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。

初二下册数学知识点

1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零.

2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

3.分式的通分和约分:关键先是分解因式

4.分式的运算:

分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘 方法 则:分式乘方要把分子、分母分别乘方。

分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减

混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。

5.任何一个不等于零的数的零次幂等于1,即;当n为正整数时,

6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n是整数)

(1)同底数的幂的乘法:;

(2)幂的乘方:;

(3)积的乘方:;

(4)同底数的幂的除法:(a≠0);

(5)商的乘方:;(b≠0)

7.分式方程:含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

解分式方程的步骤:(1)能化简的先化简;(2)方程两边同乘以最简公分母,化为整式方程;

(3)解整式方程;(4)验根.

增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答.

应用题有几种类型;基本公式是什么?基本上有四种:

(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.

(2)数字问题在数字问题中要掌握十进制数的表示法.

(3)工程问题基本公式:工作量=工时×工效.

(4)顺水逆水问题v顺水=v静水+v水.v逆水=v静水-v水.

8.科学记数法:把一个数表示成的形式(其中,n是整数)的记数方法叫做科学记数法.用科学记数法表示绝对值大于10的n位整数时,其中10的指数是

用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)

数学 学习方法 技巧

一、克服心理疲劳

第一,要有明确的学习目的。学习就像从河里抽水,动力越足,水流量越大。动力来源于目的,只有树立正确的学习目的,才会产生强大的学习动力;第二,要培养浓厚的学习兴趣。兴趣的形成与大脑皮层的兴奋中心相联系,并伴有愉快、喜悦、积极的情绪体验。而心理疲劳的产生正是大脑皮层抵制的消极情绪引起的。因此,培养自己的学习兴趣,是克服心理疲劳的关键所在。有了兴趣,学习才会有积极性、自觉性、主动性,才能使心理处于一种良好的竞技状态;第三,要注意学习的多样化,书本学习本身就是枯燥单调的,如果多次重复学习某门课程或章节内容,易使大脑皮层产生抑制,出现心理饱和,产生厌倦情绪。所以考生不妨将各门课程交替起来进行复习。

二、战胜高原现象

复习中的高原现象,是指在复习到一定时期时,往往停滞不前,不仅复习不见进步,反而有退步的现象。在高原期内,并非学习毫无进步,而是某部分进步,另外一些部分则退步,两者相抵,致使复习成效未从根本上发生变化,因而使人灰心失望。当考生在复习迎考过程中遭遇高原期时,切忌急躁或丧失信心,应找出学习方法、学习积极性等方面的原因。及时调整复习进度,在科学用脑、提高复习效率上多下功夫。

三、重视复习“错误”

如果在复习中不善于从错误中走出来,缺陷和漏洞就会越来越多,任其下去,最终就会蚁穴溃堤。在备考期间,要想降低错误率,除了及时订正、全面扎实复习之外,非常关键的问题就是找出原因,不断复习错误。即定期翻阅错题,回想错误的原因,并对各种错题及错误原因进行分类整理。对其中那些反复错误的问题还可考虑再做一遍,以绝“后患”。错误原因大致有:概念理解上的问题、粗心大意带来的问题以及书写潦草凌乱给自己带来的错觉问题等,从而有效地避免在考试时再犯同一类型的错误。

四、把握心理特点搞好考前复习

实践证明,一个人在气质、性格、心理稳定程度等因素也会影响考前复习。考生在复习迎考过程中,应根据自己的心理特点来制订复习迎考计划,根据自己的心态来调整复习的进度,选择与运用的复习方式方法,使自己的考前复习达到预期的效果。

1、课本不容忽视

对于初二的学生来说,都在学习新课,课本是大家都容易忽视的一个重要的复习资料。平时在学校的课堂上大家都会随堂记笔记,课本基本不会翻看,建议同学们在翻看笔记的同时,对照课本,把学过的知识点反复阅读、理解,并对照课后练习里的习题进行反复思考、琢磨、融会贯通,加深对知识点的理解。对于课本上的重点内容、重点例题也要着重记忆。

2、错题本

相信学习习惯好的学生都应该有一本错题本,把每次习题、作业、测试中的错题抄录下来,明确答案,找到错误原因,发现自己知识和能力上的薄弱点,经常拿出来翻看,遇到反复做错的题目,要主动和同学商量,向老师请教,彻底把题目弄懂、弄透,以免再犯同类错误。


初二下册数学知识点总结相关 文章 :

★ 八年级下册数学知识点整理

★ 初二下册数学知识点归纳总结

★ 初二数学下册知识点归纳与数学学习方法

★ 八年级下册数学知识点总结归纳

★ 八年级下册数学知识点

★ 初二数学下册知识点总结

★ 初二下册数学知识点

★ 初二下册数学必考知识点总结归纳

★ 初二数学下册知识点总结归纳

★ 八年级下册数学知识点归纳

❾ 初二下册数学知识点

初二下册数学知识点有哪些你知道吗?初二是学习数学的一个关键时期,想要学好数学需要有一个好的 学习 方法 ,其实最简单又有效的学习方法就是对知识点进行归纳 总结 了。一起来看看初二下册数学知识点,欢迎查阅!

初二下册数学总结

第一章分式

1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

2分式的运算

(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减

3整数指数幂的加减乘除法

4分式方程及其解法

第二章反比例函数

1反比例函数的表达式、图像、性质

图像:双曲线

表达式:y=k/x(k不为0)

性质:两支的增减性相同;

2反比例函数在实际问题中的应用

第三章勾股定理

1勾股定理:直角三角形的`两个直角边的平方和等于斜边的平方

2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形

第四章四边形

1平行四边形

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2特殊的平行四边形:矩形、菱形、正方形

(1)矩形

性质:矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的所有性质

判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;

推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质

判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

第五章数据的分析

加权平均数、中位数、众数、极差、方差

初二必备数学知识

位置与坐标

1、确定位置

在平面内,确定物体的位置一般需要两个数据。

2、平面直角坐标系及有关概念

①平面直角坐标系

在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

②坐标轴和象限

为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

③点的坐标的概念

对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标。

平面内点的与有序实数对是一一对应的。

④不同位置的点的坐标的特征

a、各象限内点的坐标的特征

点P(x,y)在第一象限→ x>0,y>0

点P(x,y)在第二象限 → x<0,y>0

点P(x,y)在第三象限 → x<0,y<0

点P(x,y)在第四象限 → x>0,y<0

b、坐标轴上的点的特征

点P(x,y)在x轴上 → y=0,x为任意实数

点P(x,y)在y轴上 → x=0,y为任意实数

点P(x,y)既在x轴上,又在y轴上→ x,y同时为零,即点P坐标为(0,0)即原点

c、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线(直线y=x)上 → x与y相等

点P(x,y)在第二、四象限夹角平分线上 → x与y互为相反数

d、和坐标轴平行的.直线上点的坐标的特征

位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

e、关于x轴、y轴或原点对称的点的坐标的特征

点P与点p’关于x轴对称 横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)

点P与点p’关于y轴对称 纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)

点P与点p’关于原点对称,横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)

f、点到坐标轴及原点的距离

点P(x,y)到坐标轴及原点的距离:

点P(x,y)到x轴的距离等于 ?y?

点P(x,y)到y轴的距离等于 ?x?

点P(x,y)到原点的距离等于 √x2+y2

初二数学常考知识

一次函数

1、函数

一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

2、自变量取值范围

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

3、函数的三种表示法及其优缺点

关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

图象法用图象表示函数关系的方法叫做图象法。

4、由函数关系式画其图像的一般步骤

列表:列表给出自变量与函数的一些对应值。

描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。

连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

5、正比例函数和一次函数

①正比例函数和一次函数的概念

一般地,若两个变量x,y间的关系可以表示成y=kx+b (k,b为常数,k不等于 0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数y=kx+b中的b=0时(k为常数,k 不等于0),称y是x的正比例函数。②一次函数的图像:

所有一次函数的图像都是一条直线。

③一次函数、正比例函数图像的主要特征

一次函数y=kx+b的图像是经过点(0,b)的直线;


初二下册数学知识点相关 文章 :

★ 八年级下册数学知识点整理

★ 初二数学下册知识点归纳与数学学习方法

★ 八年级下册数学知识点总结归纳

★ 初二数学知识点整理归纳

★ 八年级数学知识点整理归纳

★ 八年级数学知识点总结

★ 初二数学知识点复习整理

★ 初二数学知识点小结

★ 初中数学八年级重点

★ 初二数学知识点归纳上册人教版

❿ 八年级下册数学知识点整理

学习 八年级 下册数学要整理好重要的知识点。下面是我为大家整编的 八年级数学 下册知识点整理,大家快来看看吧。
八年级下册数学知识点整理:第一章 分式
1 分式及其基本性质

分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变 2 分式的运算

(1)分式的乘除

乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母 除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2) 分式的加减

加减法法则:同分母分式相加减,分母不变,把分子相加减;

异分母分式相加减,先通分,变为同分母的分式,再加减 3 整数指数幂的加减乘除法

4 分式方程及其解法
八年级下册数学知识点整理:第二章 反比例函数
1 反比例函数的表达式、图像、性质

图像:双曲线

表达式:y=k/x(k不为0)

性质:两支的增减性相同;

2 反比例函数在实际问题中的应用
八年级下册数学知识点整理:第三章 勾股定理
1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
八年级下册数学知识点整理:第四章 四边形
1 平行四边形

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2 特殊的平行四边形:矩形、菱形、正方形

(1) 矩形

性质:矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的所有性质

判定: 有一个角是直角的平行四边形是矩形;

对角线相等的平行四边形是矩形;

推论: 直角三角形斜边的中线等于斜边的一半。

(2) 菱形

性质:菱形的四条边都相等;

菱形的对角线互相垂直,并且每一条对角线平分一组对角;

菱形具有平行四边形的一切性质

判定:有一组邻边相等的平行四边形是菱形;

对角线互相垂直的平行四边形是菱形;

四边相等的四边形是菱形。

(3) 正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3 梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底边上的两个角相等;

等腰梯形的两条对角线相等;

同一个底上的两个角相等的梯形是等腰梯形。
八年级下册数学知识点整理:第五章 数据的分析
加权平均数、中位数、众数、极差、方差

1.定义:形如y=k1(k为常数,k≠0)的函数称为反比例函数。

2.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和 y=-x。对称中心是:原点

3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;

当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。