‘壹’ 六年级下册数学知识点总结
六年级下册数学知识点总结
基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。下面我整理了一些关于六年级下册数学知识点总结,欢迎大家参考!
第一单元分数乘法
一、分数乘法
(一)分数乘法的意义:
1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。
例如:65×5表示求5个65的和是多少? 1/3×5表示求5个1/3的和是多少?
2、一个数乘分数的意义是求一个数的几分之几是多少。
例如:1/3×4/7表示求1/3的4/7是多少。
4×3/8表示求4的3/8是多少.
(二)、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3、为了计算简便,能约分的要先约分,再计算。(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)
4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
(三)、 乘法中比较大小的规律
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a
乘法结合律: ( a × b )×c = a × ( b × c )
乘法分配律: ( a + b )×c = a c + b c
二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)
1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。(2)部分和整体的关系:画一条线段图。
2、找单位“1”: 单位“1” 在分率句中分率的前面;
或在“占”、“是”、“比”“相当于”的后面。
3、写数量关系式的技巧:
(1)“的” 相当于 “×” ,“占”、“相当于”“是”、“比”是 “ = ”
(2)分率前是“的”字:用单位“1”的量×分率=具体量
例如:甲数是20,甲数的1/3是多少?列式是:20×1/3
4、看分率前有没有多或少的问题;分率前是“多或少”的关系式:
(比少):单位“1”的量×(1-分率)=具体量;
例如:甲数是50,乙数比甲数少1/2,乙数是多少?
列式是:50×(1-1/2)
(比多):单位“1”的量×(1+分率)=具体量
例如:小红有30元钱,小明比小红多3/5,小红有多少钱?
列式是:50×(1+3/5)
3、求一个数的几倍是多少:用 一个数×几倍;
4、求一个数的几分之几是多少: 用一个数×几分之几。
5、求几个几分之几是多少:用几分之几×个数
6、求已知一个部分量是总量的几分之几,求另一个部分量的方法:
(1)、单位“1”的量×(1-分率)=另一个部分量(建议用)
(2)、单位“1”的量-已知占单位“1”的几分之几的部分量=要求的部分量
例如:教材15页做一做和16页练习第七题(题目中有时候会有这种题的'关键字“其中”)
第二单元位置与方向(二)
一、确定物体位置的方法:1、先找观测点;2、再定方向(看方向夹角的度数);3、最后确定距离(看比例尺)
二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
三、位置关系的相对性:1、两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
四、相对位置:东--西;南--北;南偏东--北偏西。
第三单元分数除法
三、倒数
1、倒数的意义: 乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数)。
2、求倒数的方法:
(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数: 把小数化为分数,再求倒数。
3、 1的倒数是1; 因为1×1=1;0没有倒数,因为0乘任何数都得0,(分母不能为0)
4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
5、运用,a×2/3=b×1/4求a和b是多少。把a×2/3=b×1/4看成等于1,也就是求2/3的倒数和求1/4的倒数。
1、分数除法的意义:
乘法: 因数 × 因数 = 积
除法: 积 ÷ 一个因数 = 另一个因数
分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
例如:1/2÷3/5意义是:已知两个因数的积是1/2与其中一个因数3/5,求另一个因数的运算。
2、分数除法的计算法则:
除以一个不为0的数,等于乘这个数的倒数。
3、分数除法比较大小时的规律:
(1)当除数大于1,商小于被除数;
(2)当除数小于1(不等于0),商大于被除数;
(3)当除数等于1,商等于被除数。
“[ ]”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。
二、分数除法解决问题
1,解法:(1)方程: 根据数量关系式设未知量为X,用方程解答。
解:设未知量为X (一定要解设),再列方程 用 X×分率=具体量
例如:公鸡有20只,是母鸡只数的1/3,母鸡有多少只。(单位一是母鸡只数,单位一未知.)解:设母鸡有X只。列方程为:X×1/3=20
(2)算术(用除法):单位“1”的量未知用除法:
即已知单位“1”的几分之几是多少,求单位“1”的量。
分率对应量÷对应分率 = 单位“1”的量
例如:公鸡有20只,是母鸡只数的1/3,母鸡有多少只。(单位一是母鸡只数,单位一未知,)用除法,列式是:20÷1/3
2、看分率前有没有比多或比少的问题;
分率前是“多或少”的关系式:
(比少):具体量÷ (1-分率)= 单位“1”的量;
例如:桃树有50棵,比苹果树少1/6,苹果树有多少棵。
列式是:50÷(1-1/6)
(比多):具体量÷ (1+分率)= 单位“1”的量
例如:一种商品现在是80元,比原价增加了1/7,原价多少?
列式是:80÷(1+1/7)
3、求一个数是另一个数的几分之几是多少: 用一个数除以另一个数,结果写为分数形式。
例如:男生有20人,女生有15人,女生人数占男生人数的几分之几。
列式是:15÷20=15/20=3/4
4、求一个数比另一个数多几分之几的方法:
用两个数的相差量÷单位“1”的量 =分数
即①求一个数比另一个数多几分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为分数形式。
例如:5比3多几分之几?(5-3)÷3=2/3
②求一个数比另一个数少几分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为分数形式。
例如:3比5少几分之几?(5-3)÷5=2/5
说明:多几分之几不等于少几分之几,因为单位一不同。
5、工程问题:把工作总量看作单位“1”,合做多长时间完成一项工程用1÷效率和,即1÷(1/时间+1/时间),(工作效率=1/时间)
例如:一项工程甲单独做要5天完成,乙单独做要10天完成,甲单独做要3天完成,三人合做几天可以完成?列式:1÷(1/5+1/10+1/3)
第四单元比
(一)、比的意义
1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)
15 ∶ 10 = 3/2
前项 比号 后项 比值
3、比可以表示两个相同量的关系,即倍数关系。例:长是宽的几倍。
也可以表示两个不同量的比,得到一个新量。例: 路程÷速度=时间。
4、区分比和比值
比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、比和除法、分数的联系:
比 前 项 比号“:” 后 项 比值
除 法 被除数 除号“÷” 除 数 商
分 数 分 子 分数线“—” 分 母 分数值
7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
9、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
10、求比值:用前项除以后项,结果最好是写为分数(不会约分的就不约分)
例如:15∶ 10=15÷10=15/10=3/2
(二)、比的基本性质
1、根据比、除法、分数的关系:
商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:
(2)用求比值的方法。注意: 最后结果要写成比的形式。
例如: 15∶10 = 15÷10 =15/10= 3/2 = 3∶2
还可以15∶10 = 15÷10 = 3/2最简整数比是3∶2
5、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。
6.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法
1,用分率解:按比例分配通常把总量看作单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。
例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?
1+4=5 糖占1/5 用 25×1/5得到糖的数量,水占4/5 用 25×4/5得到水的数量。
2,用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。
例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?
糖和水的份数一共有1+4=5 一份就是25÷5=5糖有1份就是5×1水有4分就是5×4
第五单元圆的认识
一、认识圆形
1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O表示。它到圆上任意一点的距离都相等.
3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同一个圆内或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的1/2。用字母表示为:d=2r或r=d/2
8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线叫做对称轴。
9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。
10、只有1条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。只有2条对称轴的图形是: 长方形;只有3条对称轴的图形是: 等边三角形;只有4条对称轴的图形是: 正方形;有无数条对称轴的图形是: 圆、圆环。
11、画对称轴要用铅笔画,同时要用尺子(三角板)画出虚线,这条虚线两端要超出图形一点。
二、圆的周长
1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。
2、圆周率实验:(滚动法)在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,得到圆的周长。或者用线围绕圆形纸片一周量出线的长度就是圆的周长(测绳法)。
发现,圆周长与它直径的比值(圆周长除以直径)是一个固定数即3倍多一点,我们把它叫做圆周率用字母π表示。
3、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。用字母π(pai) 表示。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。圆周率π是一个无限不循环小数。在计算时,一般取π ≈ 3.14。
(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
4、圆的周长公式: 圆的周长等于圆周率乘直径用字母表示C= πd
(1)、已知圆的周长求直径用圆的周长除以圆周率,用字母表示
d = C ÷π或圆的周长等于2乘圆周率乘半径,用字母表示C=2πr
(2)、已知圆的周长求半径用圆的周长除以圆周率的2倍,
用字母表示 r = C ÷ 2π(r = C / 2π)
5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
6、区分周长的一半和半圆的周长:
(1)、周长的一半:等于圆的周长÷2
计算方法:2π r ÷ 2 即C半= π r
(2)半圆的周长:等于圆的周长的一半加直径。 计算方法:半圆的周长=5.14 r (推导过程C半=2π r ÷ 2+d=πr+d=πr+2r =5.14 r)
三、圆的面积
1、圆的面积:圆所占平面的大小叫做圆的面积。 用字母S表示。
2、圆面积公式的推导:(1)把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。长方形的长相当于圆的周长的一半,长方形的宽相当于圆的半径。
(2)拼出的图形与圆的周长和半径的关系。
圆的半径 = 长方形的宽
圆的周长的一半 = 长方形的长
3、圆面积的计算方法:因为:长方形面积 = 长 ×宽
所以:圆的面积 = 圆周长的一半 × 圆的半径
即S圆 = C÷2× r=πr × r=πr
圆的面积公式:S圆 =πr → r = S 圆÷ π
4、环形的面积:一个环形,外圆的半径用字母R表示,内圆的半径用字母r表示。(R=r+环的宽度.)
S环 = πR -πr 或环形的面积公式:S环 = π(R -r )(建议用这个公式)。
5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小的倍数是这倍数的平方倍。
例如:在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大3的平方倍得到9倍。
6、两个圆: 半径比 = 直径比 = 周长比;而面积比等于这比的平方。
例如:两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9
7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π
8、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆的周长最短。
9、常用各π值结果:π = 3.14;2π = 6.28 ;5π=15.7
10、外方内圆(内切圆)公式S=0.86r 推导过程:S=S正-S圆=d -πr =2r×2r-πr =4r -πr =r ×(4-π)=0.86r
11、外圆内方(外切圆)公式S=1.14r 推导过程:S=S圆-S正=πr -dr/2×2=2r×r/2×r=πr -2r =r ×(π-2)=1.14r (把正方形看成两个面积相等的三角形,三角形的底就是直径,高是半径)
12、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。扇形的面积与圆心角大小和半径长短有关。
13、S扇=S圆×n/360;S扇环=S环×n/360
14、扇形也是轴对称图形,有一条对称轴。
15、常见半径与直径的周长和面积的结果。
半径 半径的平方 直径 周长 面积
1 1 2 6.28 3.14
2 4 4 12.56 12.56
3 9 6 18.84 28.26
4 16 8 25.12 50.24
5 25 10 31.4 78.5
6 36 12 37.68 113.04
7 49 14 43.96 153.86
8 64 16 50.24 200.96
9 81 18 56.52 254.34
10 100 20 62.8 314
1.5 2.25 3 9.42 7.065
2.5 6.25 5 15.7 19.625
3.5 12.25 7 21.98 38.465
4.5 20.35 9 28.26 63.585
5.5 30.25 11 34.54 94.985
7.5 56.25 15 47.1 176.625
;‘贰’ 小学六年级上册人教版数学重要知识点
六年级上册数学知识点
第一单元 位置
1、什么是数对?
——数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位置。经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)
( 列 , 行 )
↓ ↓
竖排叫列 横排叫行
(从左往右看)(从下往上看)
(从前往后看)
2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
第二单元 分数乘法
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如: ×7表示: 求7个 的和是多少? 或表示: 的7倍是多少?
2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
例如: × 表示: 求 的 是多少?
9 × 表示: 求9的 是多少?
A × 表示: 求a的 是多少?
(二)分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)
(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)
注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a.
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b <1时,c<a (b≠0).
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b =1时,c=a .
注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
附:形如 的分数可折成( )×
(四)分数乘法混合运算
1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)
2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。
例如:a×b=1则a、b互为倒数。
3、求倒数的方法:
①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=1
0没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、任意数a(a≠0),它的倒数为 ;非零整数a的倒数为 ;分数 的倒数是 。
6、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。
带分数的倒数小于1。
(六)分数乘法应用题 ——用分数乘法解决问题
1、求一个数的几分之几是多少?(用乘法)
“1”× =
例如:求25的 是多少? 列式:25× =15
甲数的 等于乙数,已知甲数是25,求乙数是多少? 列式:25× =15
注:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、( 什么)是(什么 )的 。
( )= ( “1” ) ×
例1: 已知甲数是乙数的 ,乙数是25,求甲数是多少?
甲数=乙数× 即25× =15
注:(1)“是”“的”字中间的量“乙数”是 的单位“1”的量,即 是把乙数看作单位“1”,把乙数平均分成5份,甲数是其中的3份。
(2)“是”“占”“比”这三个字都相当于“=”号,“的”字相当于“×”。
(3)单位“1”的量×分率=分率对应的量
例2:甲数比乙数多(少) ,乙数是25,求甲数是多少?
甲数=乙数±乙数× 即25±25× =25×(1± )=40(或10)
3、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
4、什么是速度?
——速度是单位时间内行驶的路程。速度=路程÷时间 时间=路程÷速度 路程=速度×时间
——单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。
5、求甲比乙多(少)几分之几?
多:(甲-乙)÷乙
少:(乙-甲)÷乙
第三单元 分数除法
一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。例 ÷3= × = 3÷ =3× =5
2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:
①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c<a (a≠0)
②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0 b≠0)
③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a
三、分数除法混合运算
1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:
①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
注:(a±b)÷c=a÷c±b÷c
四、比:两个数相除也叫两个数的比
1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5读作:3比4比5
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= =12÷20= =0.6 12∶20读作:12比20
注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
3、化简比:化简之后结果还是一个比,不是一个数。
(1)、 用比的前项和后项同时除以它们的最大公约数。
(2)、 两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。
(3)、 两个小数的比,向右移动小数点的位置,也是先化成整数比。
4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
5、比和除法、分数的区别:
除法 被除数 除号(÷) 除数(不能为0) 商不变性质 除法是一种运算
分数 分子 分数线(——) 分母(不能为0) 分数的基本性质 分数是一个数
比 前项 比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系
附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
五、分数除法和比的应用
1、已知单位“1”的量用乘法。例:甲是乙的 ,乙是25,求甲是多少?即:甲=乙× (15× =9)
2、未知单位“1”的量用除法。例: 甲是乙的 ,甲是15,求乙是多少?即:甲=乙× (15÷ =25)(建议列方程答)
3、分数应用题基本数量关系(把分数看成比)
(1)甲是乙的几分之几?
甲=乙×几分之几 (例:甲是15的 ,求甲是多少?15× =9)
乙=甲÷几分之几 (例:9是乙的 ,求乙是多少?9÷ =15)
几分之几=甲÷乙 (例:9是15的几分之几?9÷15= )(“是”字相当“÷”号,乙是单位“1”)
(2)甲比乙多(少)几分之几?
A 差÷乙= (“比”字后面的量是单位“1”的量)(例:9比15少几分之几?(15-9)÷15= = = )
B 多几分之几是: –1 (例: 15比9少几分之几?15÷9= -1= –1= )
C 少几分之几是:1– (例:9比15少几分之几?1-9÷15=1– =1– = )
D 甲=乙±差=乙±乙× =乙±乙× =乙(1± ) (例:甲比15少 ,求甲是多少?15–15× =15×(1– )=9(多是“+”少是“–”)
E 乙=甲÷(1± )(例:9比乙少 ,求乙是多少?9÷(1- )=9 ÷ =15)(多是“+”少是“–”)
(例:15比乙多 ,求乙是多少?15÷(1+ )=15 ÷ =9)(多是“+”少是“–”)
4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分别是多少?
方法一:56÷(3+5)=7 甲:3×7=21 乙:5×7=35
方法二:甲:56× =21 乙:56× =35
例如:已知甲是21,甲、乙的比3∶5,求乙是多少?
方法一:21÷3=7 乙:5×7=35
方法二:甲乙的和21÷ =56 乙:56× =35
方法二:甲÷乙= 乙=甲÷ =21÷ =35
5、画线段图:
(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。
(2)分析数量关系。
(3)找等量关系。
(4)列方程。
注:两个量的关系画两条线段图,部分和整体的关系画一条线段图。
第四单元 圆
一、.圆的特征
1、圆是平面内封闭曲线围成的平面图形,.
2、圆的特征:外形美观,易滚动。
3、圆心o:圆中心的点叫做圆心.圆心一般用字母O表示.圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。
直径d: 通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r 或 r=d÷2= d=
4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。
同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角
有二条对称轴的图形:长方形
有三条对称轴的图形:等边三角形
有四条对称轴的图形:正方形
有无条对称轴的图形:圆,圆环
6、画圆
(1)圆规两脚间的距离是圆的半径。
(2)画圆步骤:定半径、定圆心、旋转一周。
二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
即:圆周率π= =周长÷直径≈3.14
所以,圆的周长(c)=直径(d)×圆周率(π) ——周长公式: c=πd, c=2πr
注:圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
如果r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3
4、半圆周长=圆周长一半+直径= ×2πr=πr+d
三、圆的面积s
1、圆面积公式的推导
如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。
圆的半径 = 长方形的宽
圆的周长的一半 = 长方形的长
长方形面积 = 长 ×宽
所以:圆的面积 = 长方形的面积 = 长 ×宽 = 圆的周长的一半(πr)×圆的半径(r)
S圆 = πr × r
S圆 = πr×r = πr2
2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
3、圆面积的变化的规律:半径扩大多少倍直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
如果: r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3=2∶3∶4
则:S1∶S2∶S3=4∶9∶16
4、环形面积 = 大圆 – 小圆=πr大2 - πr小2=π(r大2 - r小2)
扇形面积 = πr2× (n表示扇形圆心角的度数)
5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。
注:一个圆的半径增加a厘米,周长就增加2πa厘米
一个圆的直径增加b厘米,周长就增加πb 厘米
6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π
7、常用数据
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
第五单元、百分数
一、百分数的意义:表示一个数是另一个数的百分之几。
注:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比,所以,百分数又叫百分比或百分率,百分数不能带单位。
1、百分数和分数的区别和联系:
(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。
百分数的分子可以是小数,分数的分子只以是整数。
注:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70、80%,出油率在30、40%。
2、小数、分数、百分数之间的互化
(1)百分数化小数:小数点向左移动两位,去掉“%”。
(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数 化 分数:把小数成分母是10、100、1000等的分数再化简。
(6)分数 化 小数:分子除以分母。
二、百分数应用题
1、 求常见的百分率 如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几
2、 求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几 (甲-乙)÷乙
求乙比甲少百分之几 (甲-乙)÷甲
3、 求一个数的百分之几是多少 一个数(单位“1”) ×百分率
4、 已知一个数的百分之几是多少,求这个数 部分量÷百分率=一个数(单位“1”)
5、 折扣 折扣、打折的意义:几折就是十分之几也就是百分之几十
折扣 成数 几分之几 百分之几 小数 通用
八折 八成 十分之八 百分之八十 0.8
八五折 八成五 十分之八点五 百分之八十五 0.85
五折 五成 十分之五 百分之五十 0.5 半价
6、 纳税 缴纳的税款叫做应纳税额。
(应纳税额)÷(总收入)=(税率)
(应纳税额)=(总收入)×(税率)
7、 利率
(1)存入银行的钱叫做本金。
(2)取款时银行多支付的钱叫做利息。
(3)利息与本金的比值叫做利率。
利息=本金×利率×时间
税后利息=利息-利息的应纳税额=利息-利息×5%
注:国债和教育储蓄的利息不纳税
8、百分数应用题型分类
(1)求甲是乙的百分之几——(甲÷乙)×100% = ×100% = 百分之几
(2)求甲比乙多(少)百分之几—— ×100% = ×100%
例
① 甲是50,乙是40,甲是乙的百分之几?(50是40的百分之几?)50÷40=125%
② 甲是50,乙是40,乙是甲的百分之几?(40是50的百分之几?)40÷50=80%
③ 乙是40,甲是乙的125%,甲数是多少?(40的125%是多少?)40×125%=50
④ 甲是50,乙是甲的80%,乙数是多少?(50的80%是多少?)50×80%=40
⑤ 乙是40,乙是甲的80%,甲数是多少?(一个数的80%是40,这个数是多少?)40÷80%=50
⑥ 甲是50,甲是乙的125%,乙数是多少?(一个数的125%是50,这个数是多少?)50÷125%=40
⑦ 甲是50,乙是40,甲比乙多百分之几?(50比40多百分之几?)(50-40)÷40×100%=25%
⑧ 甲是50,乙是40,乙比甲少百分之几?(40比50少百分之几?)(50-40)÷50×100%=20%
⑨ 甲比乙多25%,多10,乙是多少?10÷25%=40
⑩ 甲比乙多25%,多10,甲是多少?10÷25%+10=50
⑪ 乙比甲少20%,少10,甲是多少?10÷20%=50
⑫ 乙比甲少20%,少10,乙是多少?10÷20%-10=40
⑬ 乙是40,甲比乙多25%,甲数是多少?(什么数比40多25%?)40×(1+25%)=50
⑭ 甲是50,乙比甲少20%,乙数是多少?(什么数比50多25%?)50×(1-20%)=40
⑮ 乙是40,比甲少20%,甲数是多少?(40比什么数少20%?)40÷(1-20%)=50
⑯ 甲是50,比乙多25%,乙数是多少?(50比什么数多25%?)40÷(1+25%)=40
第六单元、统计
1、 扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
2、 常用统计图的优点:
(1)、条形统计图直观显示每个数量的多少。
(2)、折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。
(3)、扇形统计图直观显示部分和总量的关系。
第七单元、数学广角
一、研究中国古代的鸡兔同笼问题。
1、 用表格方式解决有局限性,数目必须小,例:
头数 鸡(只)兔(只) 腿数
35 1 34
35 2 33
35 3 32
……
(逐一列表法、腿数少,小幅度跳跃;腿数多,大幅度跳跃。跳跃逐一相结合、取中列表)
2、 用假设法解决
(1) 假如都是兔
(2) 假如都是鸡
(3) 假如它们各抬起一条腿
(4) 假如兔子抬起两条前腿
3、 用代数方法解(一般规律)
注释:这个问题,是我国古代着名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?
二、和尚分馒头
100个和尚吃100个馒头,大和尚一人吃3个,小和尚三人吃一个。大小和尚各多少人?
国明代珠算家程大位的名着《直指算法统宗》里有一道着名算题:
一百馒头一百僧,
大僧三个更无争,
小僧三人分一个,
大小和尚各几丁?"
如果译成白话文,其意思是:有100个和尚分100只馒头,正好分完。如果大和尚一人分3只,小和尚3人分一只,试问大、小和尚各有几人?
方法一,用方程解:
解:设大和尚有x人,则小和尚有(100-x)人,根据题意列得方程:
3x + (100-x)=100
x=25
100-25=75人
方法二,鸡兔同笼法:
(1)假设100人全是大和尚,应吃馒头多少个?
3×100=300(个).
(2)这样多吃了几个呢?
300-100=200(个).
(3)为什么多吃了200个呢?这是因为把小和尚当成大和尚。那么把小和尚当成大和尚时,每个小和尚多算了几个馒头?
3- = (个)
(4)每个小和尚多算了8/3个馒头,一共多算了200个,所以小和尚有:
小和尚:200÷ =75(人)
大和尚:100-75=25(人)
方法三,分组法:
由于大和尚一人分3只馒头,小和尚3人分一只馒头。我们可以把3个小和尚与1个大和尚编为一组,这样每组4个和尚刚好分4个馒头,那么100个和尚总共分为100÷(3+1)=25组,因为每组有1个大和尚,所以有25个大和尚;又因为每组有3个小和尚,所以有25×3=75个小和尚。
这是《直指算法统宗》里的解法,原话是:"置僧一百为实,以三一并得四为法除之,得大僧二十五个。"所谓"实"便是"被除数","法"便是"除数"。列式就是:
100÷(3+1)=25(组)
大和尚:25×1=25(人)
小和尚:100-25=75(人)或25×3=75(人)
我国古代劳动人民的智慧由此可见一斑。
三、整数、分数、百分数应用题结构类型
(一)求甲是乙的几倍(或几分之几或百分之几)的应用题。
解法:甲数除以乙数
例:校园里有杨树40棵,柳树有50棵,杨树的棵树占柳树的百分之几?(或几分之几?)
(二)求甲数的几倍(或几分之几或百分之几)是多少的应用题。
解答分数应用题,首先要确定单位“1”,在单位“1”确定以后,一个具体数量总与一个具体分数(分率)相对应,这种关系叫“量率对应”,这是解答分数应用题的关键。
求一个数的几倍(几分之几或百分之几)是多少用乘法,单位“1”×分率=对应数量
例:六年级有学生180人,五年级的学生人数是六年级人数的56 。五年级有学生多少人?
180×56 =150
(三)已知甲数的几倍(或几分之几或百分之几)是多少,求甲数(即求标准量或单位“1”)的应用题。
解法:对应数量÷对应分率=单位“1”
例:育红小学六年级男生有120人,占参加兴趣活动小组人数的35 . 六年级参加兴趣活动小组人数共有学生多少人?
120÷35 =200(人)
请采纳,谢谢
‘叁’ 六年级数学上册知识点
圆的认识(一)
1.圆中心的一点叫圆心,用O表示。一端在圆心,另一端在圆上的线段叫半径,用r表示。
两端都在圆上,并过圆心的线段叫直径,用d表示。
2.圆有无数条半径,有无数条直径。
3.圆心决定圆的位置,半径决定圆的大小。
4.把圆对折,再对折就能找到圆心。
5.圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。
6.在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2.
圆的周长
8.圆的周长除以直径的商是一个固定的数,叫做圆周率,用字母π表示,计算时通常取3.14.
9.C=πd或C=πr. 半圆的周长
10. 1π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7 6π=18.84
7π=21.98 8π=25.12 9π=28.26 10π=31.4
圆的面积
11.用S表示圆的面积, r表示圆的半径,那么S=πr^2 S环=π(R^2-r^2)
12. 11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256
17^2=289 18^2=324 19^2=361 20^2=400
13.周长相等时,圆的面积最大。面积相等时,圆的周长最小。
面积相同时,长方形的周长最长,正方形居中,圆周长最短。
周长相同时,圆面积最大,正方形居中,长方形面积最小。
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
第四单元:比的认识
15.两个数相除,又叫做这两个数的比。比的后项不能为0.
16.比的前项和后项同时乘上或除以一个相同的数(0除外)。比值不变,这叫做比的基本性质。由于在平面直角坐标系中,先画X轴,而X轴上的坐标表示列。先用小括号将两个数括起来,再用逗号将两个数隔开。括号里面的数由左至右为列数和行数。
列数与行数必须是具体的数,而不能用字母如(X,5)表示,它表述一条横线,(5,Y)它表示一条竖线,都不能确定一个点。
二、分数乘法
分数乘法意义:1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。
2、分数乘分数是求一个数的几分之几是多少。
分数的化简:分子、分母同时除以它们的最大公因数。
关于分数乘法的计算:可在乘的过程中约分,提倡在计算过程中约分,这样简便。
分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。
倒数的意义:乘积为1的两个数互为倒数。
特别强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
求倒数的方法:1、求分数的倒数是交换分子分母的位置。
2、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。
1的倒数是它本身。因为1*1=1
0没有倒数。0乘任何数都得0=0*1,1/0(分母不能为0)
三、分数除法
分数除法是分数乘法的逆运算,就是已知两个数的积与其中一个因数,求另一个因数的运算。
除以一个数是乘这个数的倒数,除以几就是乘这个数的几分之一。
分数除法的基本性质:强调0除外
比:两个数相除也叫两个数的比。比表示两个数的关系,可以写成比的形式,也可以用分数表示,但仍读几比几。比值是一个数,可以是整数,分数,也可以是小数。比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:路程/速度=时间。
化简比:
1、用比的前项和后项同时除以它们的最大公约数。
2、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
3、两个小数的比,向右移动小数点的位置。也是先化成整数比。
比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
常用来做判断的:
一个数除以小于1的数,商大于被除数。
一个数除以1,商等于被除数。
一个数除以大于1的数,商小于被除数。
五、百分数
百分数的约分:百分数化成分数,写成分数形式,再约分。
分数表是一个数,也可以表示两个数的关系,百分数只表示两个数的关系,没有单位。
百分数的意义:表示一个数是另一个数的百分之几,也叫百分率或者百分比。
一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70、80%,出油率在30、40%。
六、统计
条形统计图可以知道每个数量的多少。
折现统计图可以知数量的增减,
扇形统计图可以知道部分和总量的关系。
‘肆’ 将小学的六年数学知识整理与七年级的知识进行对比、联系
数学是基础教育的重要学科之一。第三学段的数学内容与第二学段的数学内容既有必然的内在联系,又在的二学段数学的基础上不断深化,发展产生飞跃。因此,七年级的数学老师应瞻前顾后,找出这些联系和区别,使六年级的学生平稳过渡到七年级的学习环境中。对六七年级数学的衔接问题个人谈一点粗浅看法:
一 、 送
六年级下册数学将课程标准提出的四个领域的内容分六快,即数和数的运算,代数初步知识,应用题,量的计量,几何初步知识和简单的统计进行整理和复习。教师要引领学生将小学阶段分散在各年级中所学到的知识,按照知识间的内在联系,利用表格式、括线图、集合图等形式,进行必要的梳理、分类、整理,弄清它们之间的来龙去脉,沟通知识的内在联系,从整体上把握知识的结构。这样不但有利于加深理解所学知识,而且有利于提高综合运用知识的能力,切实为升入七年级打好数学基础。
二 、迎
学生升入七年级,课程增多,内容加深,任课老师与学生接触少,学生一时很难适应。有的学生因学习环境发生了变化学习松懈而掉队。总会有七年级老师责怪学生小学基础差,脑子笨,不会学习等缺点。这就迫使七年级的老师尽快了解每个学生的基础知识、学习方法、性格特点和心理活动等多方面的情况,使学生很快适宜于七年级的学习生活。作为七年级的教师应在中、小学数学知识间架起衔接的桥梁,让学生顺利的过渡。
1、再现知识结构图。
七年级的数学老师,尽可能的把分布于小学里的知识内容,利用图表等形式张贴于教室内,或与学生一起重新绘制知识结构图,采用多种方法与形式,使同学们在脑子里再现小学阶段学过的知识,加深对小学数学知识的巩固。
2、数与代数方面。
〈1〉负数的引进。负数的引进是学生对“数”认识的一次飞跃。教师要引导学生加深理解“具有相反意义的量”,多举一些实例,从发现中把负数引进。使学生从心理上接受有理数的分类。
〈2〉对乘方的理解。教师可引导学生从正方形的面积公式S=a 与正方体的体积公式V=a 出发,再次理解 a 与a 的意义。在此基础上研究乘方。
〈3〉一元一次方程的应用。方程是含有未知数的等式。在小学见过的是一些简单方程,像2x=50 、 3x+1=4等。探究一元一次方程,学生要打好用字母表示数、式的基础,实现从具体数到抽象数,从数及其运算在转入式及其运算的飞跃。在具体教学中,即要注意引导学生掌握好用字母表示数和表示数量关系的方法,又要注意挖掘中、小学数学教学内容本身的内在联系。如,对整数与整式、分数与分式、有理数与有理式、等式与方程、方程与不等式等等,引导学生进行比较,并找出它们之间的内在联系以及区别,在知识间架起衔接的桥梁,从而抓好知识间的过渡。由于引进了用字母表示数和式,同学们的一般思维比较顺畅,可以使未知数与已知数共同组成一个等式(即方程)。所要区别的是方程的应用:小学里列式(或解方程)解题的思考是以综合为主,即从已知出发推得未知,而七年级列方程应用题则是抓住等量关系,以分析为主,教师要通过比较它们的差异,使学生体会到新方程的长处。在这一过程中,教师应该充分利用小学数学中学生已经获得的有关知识和能力,搭好新旧知识之间的桥,帮助学生渡过从解简易方程到解一元一次方程。
3、空间与图形方面。
认知立体图形和平面图形,要从生活中的物体入手。七年级的教师在讲有关内容时,尽量指导学生巩固小学阶段所学的平面图形和立体图形的概念与特征,平面图形和立体图形的分类。在此基础上继续探索一些简单的平面图形——直线、射线、线段和角。最后在适时地进行概念分类、归纳、揭示相近或同类概念的异同,使学生条理清楚,概念清晰,逐步形成较完整的概念体系,为以后学习平面几何奠定学习基础。
三、衔接
以上所论述六年级的“送”与七年级的“迎”侧重于知识与技能方面的衔接,在此将情感、态度与价值观方面的衔接略作简述。
1、暑假作业的布置。
小学毕业后往往没有暑假作业。部分小学毕业班的老师存有解脱的心理倾向,对学生暑假的学习生活也不作过多的要求,加上小学生的自觉性低,自学能力差,部分学生暑假虚度了光阴,再加上同学们对文化知识的遗忘,暑假开学升入七年级时文化水平就会有不同程度的降低。所以六年级毕业班的老师如果能邀请七年级的老师来给学生布置语文、数学、英语等作业(包括复习与预习、课内与课外),来充实学生的暑假学习生活,以引起学生对暑假学习的重视,为升入七年级做好准备。
2、培养学生的良好习惯、教给他们科学的学习方法。
从小学到中学,随着课程的增多,老师授课艺术的不同,七年级的老师首先要指导学生如何听课做笔记,如何搞知识小结,习题归类,以及作业的书写格式,做题规范等等。其次要引导学生学会读数学书,大家都知道,课前读书能使学生找出疑点,抓注重点;课后读书能弥补课堂上探索知识时的不足,还能深化所学知识。再次要教会学生如何订正错题,怎样写单元小结,逐步在较高的层次上会知识概括等等。使七年级学生对数学的学习有个良好的开端。
3、重视思维能力的培养。
刚刚踏入七年级门槛的学生,同小学生一样,“自制力差”,行动易受情绪支配,“有意注意”时间短,“无意注意”占优势,课堂上老师的教学基点不要太高。教师要充分的让学生眼、耳、手、脑、都得到合理的使用,增强学习的目的性,分段式的将“无意注意”向“有意注意转化”,这样才能充分发挥学生的积极主动性,有利于思维能力的培养。
以上仅仅谈了对六七年级数学衔接的一些想法,仅是个人观点,不够完善。事实上,数学的衔接问题 ,存在于每个学段,每个单元,每个章节的教学中。研究数学知识的“衔接”,是为使每个知识“点”知识“段”成为整个“知识链”。为学生下一步的学习奠定好基础。
‘伍’ 六年级数学上册知识点总结
考博士并不难,但两三年内被一专题束缚住,就没有时间学其他知识了。只要能学到知识,有无学位并不重要。下面给大家分享一些关于 六年级数学 上册知识点 总结 ,希望对大家有所帮助。
六年级数学上册知识点1
比的意义
1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 15÷10= (比值通常用分数表示,也可以用小数或整数表示)
∶ ∶ ∶ ∶
前项 比号 后项 比值
3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例: 路程÷速度=时间。
4、区分比和比值
比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、比和除法、分数的联系:
比 前 项 比号“:” 后 项 比值
除 法 被除数 除号“÷” 除 数 商
分 数 分 子 分数线 “—” 分 母 分数值
7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
六年级数学上册知识点2
比的基本性质
1、根据比、除法、分数的关系:
商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:
①用比的前项和后项同时除以它们的最大公因数。
(1) ②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的 方法 来化简。
③两个小数的比:向右移动小数点的位置,先化成整数比再化简。
(2)用求比值的方法。注意: 最后结果要写成比的形式。
如: 15∶10 = 15÷10 = = 3∶2
5.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。
如: 已知两个量之比为 ,则设这两个量分别为 。
6、 路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)
工作总量一定,工作效率和工作时间成反比。
(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)
六年级数学上册知识点3
认识圆
1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。它到圆上任意一点的距离都相等.
3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的 。
用字母表示为:d=2r或r =
8、轴对称图形:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。(经过圆心的任意一条直线或直径所在的直线)
9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。
10、只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是: 长方形
只有3条对称轴的图形是: 等边三角形
只有4条对称轴的图形是: 正方形;
有无数条对称轴的图形是: 圆、圆环。
六年级数学上册知识点4
圆的周长
1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。
2、圆周率实验:
在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai) 表示。
(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。在计算时,一般取π ≈ 3.14。
(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
4、圆的周长公式: C= πd d = C ÷π
或C=2π r r = C ÷ 2π
5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
6、区分周长的一半和半圆的周长:
(1) 周长的一半:等于圆的周长÷2 计算方法:2π r ÷ 2 即 π r
(2)半圆的周长:等于圆的周长的一半加直径。 计算方法:πr+2r
六年级数学上册知识点5
圆的面积
1、圆的面积:圆所占平面的大小叫做圆的面积。 用字母S表示。
2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。
3、圆面积公式的推导:
(1)、用逐渐逼近的转化思想: 体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。
(2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。
(3)、拼出的图形与圆的周长和半径的关系。
圆的半径 = 长方形的宽
圆的周长的一半 = 长方形的长
因为: 长方形面积 = 长 × 宽
所以: 圆的面积 = 圆周长的一半 × 圆的半径
S圆 = πr × r
圆的面积公式: S圆 = πr2
4、环形的面积:
一个环形,外圆的半径是R,内圆的半径是r。(R=r+环的宽度.)
S环 = πR?-πr? 或
环形的面积公式: S环 = π(R?-r?)。
5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。
而面积扩大或缩小的倍数是这倍数的平方倍。 例如:
在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。
6、两个圆: 半径比 = 直径比 = 周长比;而面积比等于这比的平方。 例如:
两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9
7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π
8、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。
9、确定起跑线:
(1)、每条跑道的长度 = 两个半圆形跑道合成的圆的周长 + 两个直道的长度。
(2)、每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。(因此起跑线不同)
(3)、每相邻两个跑道相隔的距离是: 2×π×跑道的宽度
(4)、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。
11、常用各π值结果:
π = 3.14
2π = 6.28
3π = 9.42
5π = 15.7
6π = 18.84
7π = 21.98
9π = 28.26
10π = 31.4
16π = 50.24
36π = 113.04
64π = 200.96
96π = 301.44
4π = 12.56
六年级数学上册知识点总结相关 文章 :
★ 六年级上册数学知识点整理归纳
★ 六年级数学上册知识点复习
★ 六年级数学上册《百分数》知识点总结
★ 六年级数学期末复习知识点汇总
★ 六年级数学上册复习知识:圆柱和圆锥
★ 小学六年级数学知识点总结
★ 六年级上册知识点汇总
★ 小学六年级数学学习方法指导与总结
★ 六年级数学的重难点知识总结
★ 小学六年级数学知识点、难点及学习方法
‘陆’ 六年级数学基础知识点总结
学习从来无捷径,循序渐进登高峰。如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。学习需要勤奋,做任何事情都需要勤奋。下面是我给大家整理的一些 六年级数学 的知识点,希望对大家有所帮助。
小学六年级数学总复习知识点:数的互化
1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
六年级数学知识点:图形计算公式
1、正方形 (C:周长 S:面积 a:边长)
周长=边长×4 C=4a 面积=边长×边长 S=a×a
2、正方体 (V:体积 a:棱长 )
表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a
3、长方形( C:周长 S:面积 a:边长)
周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab
4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5、三角形 (s:面积 a:底 h:高)
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6、平行四边形 (s:面积 a:底 h:高)
面积=底×高 s=ah
7、梯形 (s:面积 a:上底 b:下底 h:高)
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圆形 (S:面积 C:周长 л d=直径 r=半径)
(1)周长=直径×л=2×л×半径 C=лd=2лr
(2)面积=半径×半径×л
9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)
(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2
(3)体积=底面积×高 (4)体积=侧面积÷2×半径
圆锥体 (v:体积 h:高 s:底面积 r:底面半径)
体积=底面积×高÷3
11、总数÷总份数=平均数
12、和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
13、和倍问题
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
数学 学习 方法 技巧
一、明确教学目标,制订复习计划
小学 毕业 班数学总复习知识容量多、时间跨度大,所学知识的遗忘率高,复习之前教师必须再次钻研教材,进一步了解教材的知识内容和编排特点,还要重新学习《数学课程标准》,把握好教学要点和数学知识重点,并对学生掌握知识的情况全面摸底,然后确定复习目标,制定复习计划,主要包括:复习的内容要点,分几节课完成,设计好每节课的内容和目标。例如,制订“数的运算”这一单元复习计划:第一节复习四则运算计算方法及其关系,第二节复习运算定律,第三节复习整数小数分数四则混合运算。这样才能使复习工作有计划、有步骤地进行,这种逻辑递进的 复习方法 可以从根本上克服复习的盲目性、随意性还有简单地以教材上的复习题为内容,让学生照书做完了事的思想。
二、了解学情,制定复习方法
俗话说:“知己知彼,百战不殆”。这句话虽是用于指挥行军打仗,但细斟此言,笔者认为它同样适用于指导教学。作为一名有 经验 的教师,首先要掌握学生一举一动,一言一行,及时对教学工作作出调整,以减少无效劳动,确保教学活动不偏离预定的教学目标。了解学情的途径很多,诸如“教学观察”、“师生谈心法”、“开展第二课堂法”等等,老师可在教学实践中,多留心观察,多 总结 经验,多开动脑筋,把多种的方法灵活运用,以期达到对学生的行为,思想情感,学习情况等做到心中有数,从而进行有的放矢的教学工作,提高课堂教学质量。
三、梳理知识,形成知识网络
小学毕业生通过六年的数学学习,大多都掌握了比较可观的知识点,如果没有一个清晰的思路来帮助学生,就好比是一堆货物,品种繁多,堆放零乱,要想记住特别困难。只有加以整理,有序分类,才能清清楚楚,一目了然。因此,在复习时应根据知识的重点、学习的难点和学生的薄弱环节,引导学生把已经学的知识进行梳理、分类、整合,弄清它们的来龙去脉,沟通其纵横联系,从整体上把握知识结构。引导学生自主整理,促进知识系统化的目的不仅要构建完整的知识网络,还要在构建知识网络的的同时,使学生对以前所学的知识有新的认识、提高。同时,要重视在复习整理过程中培养学生自主整理的意识,发展学生自主学习的能力。复习时,引导学生将知识分块,系统整理,按块复习,一块一块复习记忆。如果再将每一小类找出共性,规律,记忆效果就会大大加强。将知识分成大类,以表格形式呈现,细化到每一个知识点,逐一复习,巩固强化达到熟练,运用时,从块状知识记忆中调用,速度也可加快。例如空间与图形部分,笔者给学生搭建了这样的框架:点、线、面、体。点有:端点、顶点、起点、垂足等;线有直线、射线、线段等;面有长方形、正方形、三角形、平行四边形、梯形、圆等;体有长方体、正方体、圆柱、圆锥等。每一点知识都有其自身意义和特点,通过这样的逻辑顺利建构了一种复合学生思维规律的知识脉络,点是构成线的基础,点可以连成线,线可构成面,面可围成体,垂线实际就是面和体的高等等。这些知识即单独存在,也相互联系,形成一个体系,易于学生系统掌握。
六年级数学基础知识点总结相关 文章 :
★ 六年级数学期末复习知识点汇总
★ 小学六年级数学知识点总结
★ 小学六年级数学学习方法和技巧大全
★ 六年级上册数学知识点整理归纳
★ 六年级数学上册知识点总结
★ 六年级数学几何的初步知识知识点总结
★ 六年级上册数学知识点总结
★ 六年级数学上册知识点复习
★ 小学数学基础知识点整理
★ 六年级数学的重难点知识总结
‘柒’ 人教版六年级数学的知识点总结
知识是一座宝库,而实践就是开启宝库的钥匙。学习任何学科,不仅需要大量的记忆,还需要大量的练习,从而达到巩固知识的效果。下面是我给大家整理的一些 六年级数学 的知识点,希望对大家有所帮助。
小学六年级数学下册知识点:比例
1.理解比例的意义和基本性质,会解比例。
2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙 教育 。
7.比例的意义:表示两个比相等的式子叫做比例。如:2:1=6:
8.组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。
9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1。5=y×1。2可知x:y=1.2:1.5。
10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。
11.正比例和反比例:
(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定)
例如:
①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。
②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。
③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。
④y=5x,y和x成正比例,因为:y÷x=5(一定)。
⑤每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。
(2)成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
用字母表示x×y=k(一定)
例如:①、路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。
②总价一定,单价和数量成反比例,因为:单价×数量=总价(一定)。
③长方形面积一定,它的长和宽成反比例,因为:长×宽=长方形的面积(一定)。
④40÷x=y,x和y成反比例,因为:x×y=40(一定)。
⑤煤的总量一定,每天的烧煤量和烧的天数成反比例,因为:每天烧煤量×天数=煤的总量(一定)。
12.图上距离:实际距离=比例尺;
例如:图上距离2cm,实际距离4km,则比例尺为2cm:4km,最后求得比例尺是1:200000。
13.实际距离=图上距离÷比例尺;
例如:已知图上距离2cm和比例尺,则实际距离为:2÷1/200000=400000cm=4km。
14.图上距离=实际距离×比例尺;
例如:已知实际距离4km和比例尺1:200000,则图上距离为:400000×1/200000=2(cm)
数学知识点六年级
运算法则
1. 整数加法计算法则:
相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
2. 整数减法计算法则:
相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
3. 整数乘法计算法则:
先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。
4. 整数除法计算法则:
先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。
5. 小数乘法法则:
先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。
6. 除数是整数的小数除法计算法则:
先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
7. 除数是小数的除法计算法则:
先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
8. 同分母分数加减法计算 方法 :
同分母分数相加减,只把分子相加减,分母不变。
9. 异分母分数加减法计算方法:
先通分,然后按照同分母分数加减法的的法则进行计算。
10. 带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来
小学六年级 数学 学习方法
1、利用生活中的数学体现,激发孩子内在的学习动机
数学贯穿与日常生活,家长可在与孩子的日常生活接触中观察孩子的喜好,融入数学思维引导孩子主动学习。并有意识地进行思考、猜想、讨论与动手动脑等,利用孩子感兴趣喜欢的元素作为数学思维的承担载体,激发孩子内在的学习动机,使孩子感受到相互学的重要和有趣,使他们对数学学习更加主动积极。
2、抓住数学敏感期,循序渐进,发展数学思维
研究证明, 儿童 在4岁前后会出现一个“数学敏感期”。他们会对数字概念,比如数、数字、数量关系、排列顺序、数运算、形体特征等突然发生极大兴趣,对它们的种种变化有着强烈的求知欲,这标志着孩子的数学敏感期到来了。错过了这个“数学敏感期”,有的人一生都害怕数学,一提数学就头疼。
而在面对“数学”这种纯抽象概念的知识时,让孩子觉得容易的学习方法,也只有以具体、简单的实物为起始。由感官的训练,从“量”的实际体验,到“数”的抽象认识。自少到多,进入加、减、乘、除的计算,逐渐培养孩子的数学心智和分析整合的逻辑概念。让孩子在亲自动手中,先由对实物的多与少、大和小,求得了解,在自然而然地联想具体与抽象间的关系。
3、讨论合作,共同发散数学思维
每个孩子都有其独特的天马行空的思维能力,在学校学习中,就可以借助这种思维的差异性,让孩子参与到团队合作中来,共同堆一座积木或进行 折纸 游戏,共同探讨知识交流合作,利用空间思维与多彩丰富的具象结合,在互助交流中动手动脑、 发散思维 的同时建构自己的 经验 和知识,参与到团队合作中来,有助于语言能力的增强,形成自己的认知结构和思维系统。
孩子在小时候以形象思维为主,喜欢把一切抽象问题都形象化,但这不利于 抽象思维 的培养,那么培养孩子良好的思维习惯就很重要,具体到数学思维,就是要培养孩子及时 总结 分析问题和解决问题的方法,按步思维,有意识的逐步培养孩子的抽象思维能力和思维品质,加强训练。
人教版六年级数学的知识点总结相关 文章 :
★ 六年级数学期末复习知识点汇总
★ 小学六年级数学知识点总结
★ 六年级数学上册知识点总结
★ 小学六年级数学学习方法和技巧大全
★ 六年级上册数学人教版知识点
★ 六年级上册数学知识点整理归纳
★ 人教版六年级数学下册知识要点
★ 六年级上册数学课本知识点归纳
★ 六年级上册数学知识点总结
★ 六年级数学上册知识点复习
‘捌’ 六年级上册数学知识点
六年级数学上册期末复习要点(人教版)
第1单元 分数乘法
(二)分数乘法的意义
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
(二)分数乘法计算法则
1、分数乘整数的运算法则是:分子与整数相乘,分母不变.
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母(分子乘分子,分母乘分母)。
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c<a(b<0)。
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算
1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=bXa乘法结合律:(a×b)Xc=a×(b×c)
乘法分配律:a×(b±c)=a×b土a×c
(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)
2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。例如:a×b=1则a、b互为倒数。
3、求倒数的方法:
①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
内容比较多,完整打印版请见网络文库:人教版六年级上册数学期末知识要点
‘玖’ 六年级 上 数学 知识点梳理
第一单元位置
(1)用数据表示位置的方法:
先横着数,看在第几行,这个数就是数据中的第一个数;再竖着数,看在第几列,这个数就是数据中的第二个数。 (第几行,第几列)
第二单元分数乘法
(1)分数乘以整数:
整数与分子的乘积作分子,分母不变。(能约分的可以先约分,再计算)
(2)分数乘以分数:
用分子乘以分子的积作分子,分母乘以分母的积做分子。(能约分的可以先约分,再计算)
(3)分数乘加、乘减混合运算顺序:
Ⅰ、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
Ⅱ、在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法后算加、减法。
Ⅲ、在有括号的算式里,要先算括号里面的,再算括号外面的。
(4)分数乘法运算定律
⒈ 交换两个因数的位置,积不变,这叫做乘法交换律。
a×b=b×a
⒉ 先乘前两个数,再乘第三个数;或者先乘后两个数,再乘第一个数,这叫做乘法结合律。
(a×b)×c=a×( b×c)
⒊ 两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。 (a+b)×c=a×c+b×c
⒋ 两个数的差与一个数相乘,可以先把它们与这个数分别相乘,再相减,这叫做乘法分配律。 (a-b)×c=a×c-b×c
5.. 25×4=100 125×8=1000 25×8=200 125×4=500
(5) 规律(比较大小要用到):
1、一个数(0除外)乘以大于1的数,积大于这个数;
2、一个数(0除外)乘以小于1的数(0除外),积小于这个数;
3、一个数(0除外)乘以1,积等于这个数。 第一个数
(6)谁是谁的几分之几,就用第一个数除以第二个数,用分数表示就是 第二个数 。
(7)求一个数的几倍,一个数×几倍;
求一个数的几分之几是多少,一个数×几分之几。
(8)倒数
概念:乘积是1的两个数互为倒数。
强调:①乘积必须是1。
②只能是两个数。
③倒数是表示两个数的关系,他不是一个数。
第三单元分数除法
(1)乘法:因数×因数=积
除法:积÷一个因数=另一个因数
(2)分数除法的意义:
分数除法与整数除法一样,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
(3)分数除法的方法:
甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
(4)规律(比较大小要用到):
1、当除数大于1,商小于被除数;
2、当除数小于1(不等于0),商大于被除数;
3、当除数等于1,商等于被除数。
(5)“【 】”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的。
(6)解决"已知一个数的几分之几是多少,求这个数"的问题:
1》列方程的方法
用方程解应用题格式:
1、解。(写“解”字,打冒号。)
1、设。(设未知数,根据题目设未知数,问什么设什么。)
2、找。(找等量关系)
3、列。(根据等量关系列方程,并解方程)
4、答。
2》列除法算式
①分析数量关系。
一个数 × 几/几 = 具体量
单位”1“的量 × 几/几 = 具体量
单位”1“的量 = 具体量 ÷ 几/几
②列式计算。
(7)比的概念:两个数相除又叫做两个数的比。
(8)在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
例如 15 : 10 = 15÷10= 3/2 (比值通常用分数表示,也可以用小数或整数表示)
∶ ∶ ∶
前项 比号 后项 比值
注意:1、根据比与除法、分数的关系,可以理解比的后项不能为0;
2、在体育比赛中出现两队的分是2:0.,1:0等,这只是一种记分的形式,不表示两个数相除的关系。
(9)比的基本性质:比的前项和后项同事乘以或除以相同的数(0除外),比值不变。
(10) 根据比的性质可以把比值化成最简整数比。当一个比的前后项不是整数时,把比的前后项扩大成整数在化成最简整数比。
(11)比的应用:前项+后项=总共的份数
总共的具体量 × 前项/总共的份数 = 前项的物体数
总共的具体量 × 后项/总共的份数 = 后项的物体数
前项的物体数 ÷ 前项/总共的份数 = 总共的具体量
后项的物体数 ÷ 后项/总共的物体量 = 总共的具体量
第四单元圆
(1)把一个圆重合对折几次就会出现一些折痕,这些折痕相交于圆中心的一点,这点叫做圆心(固定的点)。一般用字母O表示。连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。
(2)在同一个圆里,所有的半径的长度都相等,所有的直径的长度都相等。
(3)在同一个圆里,直径的长度是半径的2倍,半径长度是直径的一半。d=2r r=1/2d
(4)圆是轴对称图形。直径所在的直线是圆的对称轴,圆的对称轴有无数条。
(5)任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率,用字母
(pai)表示。它是一个无限不循环小数, =3.1415926535------但在实际应用中一般只取它的近似值,即 =3.14 。
如果用C表示圆的周长,就有 C= d 或 C=2 r
(6)圆的面积公式:圆的面积 = r×r
= r2
强调:①r2 表示r×r 。
②长度单位与面积单位的统一 。
③计算时,可以不写面积公式。
(7)环形面积:大圆面积 — 小圆面积( 或 外圆面积 — 内圆面积)
(8)圆心角:顶点在圆心的角叫做圆心角。圆周角360°。
第五单元百分数
(1)概念:像上面这样的数,如18%、50%、64.2%-----叫做百分数。
百分数表示一个数是另一个数的百分之几。百分数也叫做百分率后百分比。
百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。如:
百分之九十 写作:90%
(2)百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
(3)百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
(4)百分数和分数的区别:百分数只能表示两个数的比的关系,而分数不仅可以表示数的关系,还可以表示成一个具体的量,可以带上单位名称。
(5)百分数和小数及分数的互化
小数化成百分数:把小数点向右移动两位再在数的后面加上百分号。
百分数化成小数:把百分号去掉,同时把小数点向左移动两位。
百分数化成分数:化成分母是100的分数,能约分的要约分。如果百分数分子是小数,要先根据分数的基本性质,把百分数改写成分数是整数的分数,再约分。
分数化成百分数有两种方法:一种是根据分数的基本性质,把分数的分母化成为100的分数, 另一种是先把分数化成小数,在利用小数化百分数的方法。(利用第二种时,除不尽,通常保留三位小数)
(6)用百分数解决问题:
什么的百分率 = 什么的数量 / 总共的数量 × 100%
(7)解答百分数应用题时,要注意弄清楚谁和谁比,比的标准不同,单位“1”也不同,解题时要注意找准把谁看单位“1”。
(8)由于比的标准不同,甲比乙多百分之几,已并不比甲少相同的百分数。
(9)在实际生活中,人们常用“增加百分之几”、“减少百分之几”、“节约百分之几”----来表示增加、减少的幅度。(占谁的把谁看成单位“1”)
增加百分之几表示增加的占原来的百分之几。
减少的百分之几表示减少的占计划的百分之几。
节约百分之几表示节约的占原来的百分之几。
(9)税收主要分为消费税、增值税、营业税和个人所得税等几类。缴纳的税款叫做应纳税额,应纳税额与各种收入(销售额、营业额----)的比率叫做税率。
(10)在银行存款的方式有多种,如活期、整存整取、零存整取等。存入银行的钱叫做本金;取款时银行多付的钱叫做利息,利息与本金的比值叫做利率。
(11)国家规定,存款所得的利息要按20%的税率纳税,这个税叫‘利息税”。我们从银行取款时得到的利息都是税后利息。国债的利息不纳税。
(12)利息=本金×利率×时间
(13)利率由银行决定,在我国我由中国人民银行统一规定,利率的高低反映一个时期经济发展状况和消费状况。根据国家的经济发展的变化,银行存款的利率有时也会有所调整。
第六单元统计
(1)条形统计图的的特点:条形统计图可以清楚地看出数量的多少。
折线统计图的特点:折线统计图不仅可以看出数量的多少而且可以看出数量的增减变化情况。
(2)用整个圆的面积表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数,这样的统计图我们称为扇形统计图。特点:通过扇形统计图我们可以很清楚地表示出各部分数量同总数之间的关系。
第七单元数学广角
这里解决问题可以用方程的方法来解。(设的那个未知数尽量是少的)
用方程解应用题格式:
1、解。(写“解”字,打冒号。)
5、设。(设未知数,根据题目设未知数,问什么设什么。)
6、找。(找等量关系)
7、列。(根据等量关系列方程,并解方程)
8、答。
‘拾’ 六年级下册数学知识点归纳
知识是人生旅途中的资粮。从而,只要我们有了更多的知识,哪怕是最可怕,最艰难的任何事,我们多有了力量去克服,有了知识我们就有了向前走的勇气,勇往直前。下面我给大家分享一些六年级下册数学知识点,希望能够帮助大家,欢迎阅读!
六年级下册数学知识点1
第一单元 负数
1、负数的由来:
为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0 1 3.4 2/5……是远远不够的。所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负
2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。
若一个数小于0,则称它是一个负数。
负数有无数个,其中有(负整数,负分数和负小数)
负数的写法:
数字前面加负号“-”号,不可以省略
例如:-2,-5.33,-45,-2/5
正数:
大于0的数叫正数(不包括0),数轴上0右边的数叫做正数
若一个数大于0,则称它是一个正数。正数有无数个,其中有(正整数,正分数和正小数)
正数的写法:数字前面可以加正号“+”号,也可以省略不写。
例如:+2,5.33,+45,2/5
4、0 既不是正数,也不是负数,它是正、负数的分界限
6、比较两数的大小:
①利用数轴:
负数<0<正数 或 左边<右边
②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。负数之间比较大小,数字大的反而小,数字小的反而大
六年级下册数学知识点2
第二单元 百分数二
(一)、折扣和成数
1、折扣:用于商品,现价是原价的百分之几,叫做折扣。通称“打折”。
几折就是十分之几,也就是百分之几十。
解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题 方法 进行解答。
商品现在打八折:现在的售价是原价的80﹪
商品现在打六折五:现在的售价是原价的65﹪
2、成数:
几成就是十分之几,也就是百分之几十。
解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪
今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪
(二)、税率和利率
1、税率
(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
(2)纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、 教育 、 文化 和国防安全等事业。
(3)应纳税额:缴纳的税款叫做应纳税额。
(4)税率:应纳税额与各种收入的比率叫做税率。
(5)应纳税额的计算方法:
应纳税额=总收入×税率
收入额=应纳税额÷税率
2、利率
(1)存款分为活期、整存整取和零存整取等方法。
(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
(3)本金:存入银行的钱叫做本金。
(4)利息:取款时银行多支付的钱叫做利息。
(5)利率:利息与本金的比值叫做利率。
(6)利息的计算公式:
利息=本金×利率×时间
利率=利息÷时间÷本金×100%
(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:
税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)
税后利息=本金×利率×时间×(1-利息税率)
购物策略:
估计费用:根据实际的问题,选择合理的估算策略,进行估算。
购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案
学后 反思 :做事情运用策略的好处
六年级下册数学知识点3
第三单元 圆柱和圆锥
一、圆柱
1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。
圆柱也可以由长方形卷曲而得到。
两种方式:
1.以长方形的长为底面周长,宽为高;
2.以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的
3、圆柱的特征:
(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征 :圆柱有无数条高
4、圆柱的切割:
①横切:切面是圆,表面积增加2倍底面积,即S 增 =2πr?
②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh
5、圆柱的侧面展开图:
①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形
②不沿着高展开,展开图形是平行四边形或不规则图形
③无论怎么展开都得不到梯形
6、圆柱的相关计算公式:
底面积 :S底=πr?
底面周长:C底=πd=2πr
侧面积 :S侧=2πrh
表面积 :S表=2S底+S侧=2πr?+2πrh
体积 :V柱=πr?h
考试常见题型:
①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长
②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积
③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积
④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积
⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积
以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算
无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积
烟囱通风管的表面积=侧面积
只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装
侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、 游泳 池
侧面积+两个底面积:油桶、米桶、罐桶类
二、圆锥
1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。
2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高
3、圆锥的特征:
(1)底面的特征:圆锥的底面一个圆。
(2)侧面的特征:圆锥的侧面是一个曲面。
(3)高的特征:圆锥有一条高。
4、圆锥的切割:
①横切:切面是圆
②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,
即S增=2rh
5、圆锥的相关计算公式:
底面积:S底=πr?
底面周长:C底=πd=2πr
体积:V锥=1/3πr?h
考试常见题型:
①已知圆锥的底面积和高,求体积,底面周长
②已知圆锥的底面周长和高,求圆锥的体积,底面积
③已知圆锥的底面周长和体积,求圆锥的高,底面积
以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算
三、圆柱和圆锥的关系
1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。
2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。
3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。
4、圆柱与圆锥等底等高 ,体积相差2/3Sh
题型 总结
①直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积
分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化
分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比
②圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)
③横截面的问题
④浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体
⑤等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的 问题,注意不要乘以1/3
六年级下册数学知识点4
第四单元 比例
1、比的意义(1)两个数相除又叫做两个数的比
(2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。
(5)比的后项不能是零。
(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
3、求比值和化简比:
求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。
4、按比例分配:
在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
5、比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。这叫做比例的基本性质。
7、比和比例的区别
(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。
(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。
8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示x/y=k(一定)
9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
用字母表示x×y=k(一定)
10、判断两种量成正比例还是成反比例的方法:
关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。
11、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
12、比例尺的分类
(1)数值比例尺和线段比例尺 (2)缩小比例尺和放大比例尺
13、图上距离:
图上距离/实际距离=比例尺
实际距离×比例尺=图上距离
图上距离÷比例尺=实际距离
14、应用比例尺画图的步骤:
(1)写出图的名称、
(2)确定比例尺;
(3)根据比例尺求出图上距离;
(4)画图(画出单位长度)
(5)标出实际距离,写清地点名称
(6)标出比例尺
15、图形的放大与缩小:形状相同,大小不同。
16、用比例解决问题:
根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。
17、常见的数量关系式:(成正比例或成反比例)
单价×数量=总价
单产量×数量=总产量
速度×时间=路程
工效×工作时间=工作总量
18、
已知图上距离和实际距离可以求比例尺。
已知比例尺和图上距离可以求实际距离。
已知比例尺和实际距离可以求图上距离。
计算时图距和实距单位必须统一。
19、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?
答:每天播种的公顷数×天数=播种的总公顷数
已知播种的总公顷数一定,就是每天播种的公顷数和要用的天数的积是一定的,所以每天播种的公顷数和要用的天数成反比例。
六年级下册数学知识点5
第五单元 数学广角-鸽巢问题
1、鸽巣原理是一个重要而又基本的组合原理, 在解决数学问题时有非常重要的作用
②利用公式进行解题:
物体个数÷鸽巣个数=商……余数
至少个数=商+1
2、摸2个同色球计算方法。
①要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。
物体数=颜色数×(至少数-1)+1
②极端思想: 用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。
③公式:
两种颜色:2+1=3(个)
三种颜色:3+1=4(个)
四种颜色:4+1=5(个)
六年级下册数学知识点归纳相关 文章 :
★ 六年级数学期末复习知识点汇总
★ 人教版六年级数学(下册)期末知识要点
★ 六年级数学下册必背知识点总结
★ 六年级上册数学知识点整理归纳
★ 六年级数学几何的初步知识知识点总结
★ 小学六年级数学知识点总结
★ 小升初考试必备数学一到六年级的知识点
★ 小升初一至六年级数学知识点整理
★ 小学六年级数学学习方法和技巧大全
★ 小学六年级数学知识点盘点