当前位置:首页 » 基础知识 » 考研数学边角知识总结
扩展阅读
幼儿园开学前防疫小知识 2024-11-07 09:31:18
轩逸经典三元催化怎么拆 2024-11-07 09:29:44
夏季健康饮食小知识 2024-11-07 09:28:37

考研数学边角知识总结

发布时间: 2022-12-07 14:49:39

❶ 考研数学每年必考的知识点有哪些

数学一、三、四的高等数学占50%,线性代数和概率论与数理统计各占25%。
数学二高等数学占80%,线代20%。
数学一考察的知识点主要是向量代数、三重积分等
二,三,四,没有具体要求

❷ 学习考研数学时,必备的“基本功”都有哪些

考研数学,可以说是很多人的噩梦,包括我。我的数学很不好,自从高中以来就很不好,只能考一百多分,而考研我只考了不到一百分,可以说是一门非常弱势的科目。虽然说我考得不好,但是我觉得对于基本功来说,我还是有了解的。

第一,初等数学必须要会

考研数学考的是高等数学,也就是微积分,线性代数和概率论这三门课,这是属于高等数学的知识。而高等数学是不会对初等数学那些知识点进行讲解的,而是拿来直接就开始使用了。

基础题目,就是那种稳固基础的题目,这种题目一定要会做还要做得快做得对。我认为基础题目在考研中至少要站到75%的分数,只要把基础题目刷好了,难题也会变得简单。

学数学努力非常重要,但是有时候也看方法。如果说把方法把握正确了,只要足够努力,肯定就可以考出来好的成绩。我想我知道方法,但是我努力程度不够。希望大家有足够的恒心和毅力!

❸ 2022考研数学复习易错知识点

一、几个易混淆的考研数学概念


连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系是怎么样的?存在极 限,导函数连续,左连续,右连续,左极 限,右极 限,左导数,右导数,导函数的左极 限,导函数的右极 限。


二、罗尔定理


设函数f(x)在闭区间[a,b]上连续(其中a不等于b),在开区间(a,b)上可导,且f(a)=f(b),那么至少存在一点ξ∈(a、b),使得f‘(ξ)=0。罗尔定理是以法国数学家罗尔的名字命名的。罗尔定理的三个已知条件的意义,①f(x)在[a,b]上连续表明曲线连通端点在内是无缝隙的曲线;②f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在;③f(a)=f(b)表明曲线的割线(直线AB)平行于x轴;罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点ξ,使f’(ξ)=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线AB,与x轴平行。


三、泰勒公式展开的应用专题


相信很多同学看到泰勒公式就哆嗦,因为乍一看很长很恐怖,瞬间大脑空白,身体失重的感觉。其实在搞明白以下几点后,这样的症状就能够消失了。1.什么情况下要进行泰勒展开;2.以哪一点为中心进行展开;3.把谁展开;4.展开到几阶?


四、应用多次中值定理的专题


大部分的考研数学题,一般要考察你应用多次中值定理,最重要的就是要培养自己对这种题目的敏感度,要很快反映老师出这题考哪几个中值定理,敏感性是靠自己多练习综合题培养出来的。比如经常去复习,那样对中值定理的题目早已没有那种刚学高数时的害怕之极。


五、对称性,轮换性,奇偶性在积分(重积分,线,面积分)中的综合应用


这类考研数学题型几乎每年必考,要么小题中考,要么大题中要用,这是必须掌握的知识,但是往往不是那么容易就靠做3,4个题目就能了解这知识点的应用到底有多广泛。我们做积分题,尤其多重积分和线面积分,死算也许能算出结果,但是要是能用以上性质,那可真是三下五除二搞定,这方面的感觉相信大家有过,可是或许仅仅是昙花一现,因为你做出来了以为以后就一定会在相似的题目中用,其实不然,因为仅仅靠几道题目很大程度上不能给你留下太深刻的印象,下次轮到的时候或许就是考场上了,你可能顿时苦思冥想,最终还是选择了最傻的办法,浪费了宝贵时间。说这些其实就是说明,考场上的正常或超常发挥是建立在平时踏实做,见识广,严要求的基础上。


2022考研数学复习易错知识点小编就说到这里了,更多关于考研报名入口,报名时间,考研成绩查询,报名费用,考研准考证打印入口及时间等问题,小编会及时更新。希望各位考生都能进入自己的理想院校。大家一定要掌握备考技巧。

❹ 考研数学备考时如何通过做题总结知识点

首先对考研所要求的考试大纲进行分析,对考试知识点想我。然后,你可以对高数知识进行梳理。最后,你可以通过做题巩固成绩。

❺ 考研数学高数重要知识点总结

考研数学高数重要知识点总结

1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数、讨论函数连续性和判断间断点类型、无穷小阶的比较、讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。

2.一元函数微分学:主要考查导数与微分的定义、各种函数导数与微分的计算、利用洛比达法则求不定式极限、函数极值、方程的的个数、证明函数不等式、与中值定理相关的证明、最大值、最小值在物理、经济等方面实际应用、用导数研究函数性态和描绘函数图形、求曲线渐近线。

3.一元函数积分学:主要考查不定积分、定积分及广义积分的'计算、变上限积分的求导、极限等、积分中值定理和积分性质的证明、定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。

4.多元函数微分学:主要考查偏导数存在、可微、连续的判断、多元函数和隐函数的一阶、二阶偏导数、多元函数极值或条件极值在与经济上的应用、二元连续函数在有界平面区域上的最大值和最小值。此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。

5.多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序。数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。

6.微分方程及差分方程:主要考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。差分方程的基本概念与一介常系数线形方程求解方法

希望同学们在准备考研数学高数的复习过程中能够适当结合真题与模拟题,通过具体的题型来记忆高数相关知识点,在记忆理论基础知识的同时将具体解题技巧也收入囊中。同时建议条件允许的同学报一个辅导班,利用里面的师资来确保复习效率。最后,衷心祝愿同学们都能够成功考取自己理想中的大学。

;

❻ 考研数学一的知识点归纳

高数部分
考研数学一高数各部分常见题型和知识点。
一. 函数、极限与连续
1 求分段函数的复合函数;
2 求极限或已知极限确定原式中的常数;
3讨论函数的连续性,判断间断点的类型;
4 无穷小阶的比较;
5讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实 根。

二.一元函数微分学
1 求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;
2利用洛比达法则求不定式极限;
3 讨论函数极值,方程的根,证明函数不等式;
4 利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足......”,此类问题证明经常需要构造辅助函数;
5 几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;
6 利用导数研究函数性态和描绘函数图形,求曲线渐近线。
三.一元函数积分学
1 计算题:计算不定积分、定积分及广义积分;
2关于变上限积分的题:如求导、求极限等
3 有关积分中值定理和积分性质的证明题;
4定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,
压力,引力,变力作功等;
5 综合性试题.
四.向量代数和空间解析几何
1计算题:求向量的数量积,向量积及混合积;
2 求直线方程,平面方程;
3判定平面与直线间平行、垂直的关系,求夹角;
4 建立旋转面的方程;
5 与多元函数微分学在几何上的应用或与线性代数相关联的题目。
五.多元函数的微分学
1 判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;
2 求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;
3 求二元、三元函数的方向导数和梯度;
4 求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;
5多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,考生在复习时要引起注意。
六.多元函数的积分学
1二重、三重积分在各种坐标下的计算,累次积分交换次序;
2第一型曲线积分、曲面积分计算;
3 第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;
4第二型(对坐标)曲面积分的计算,高斯公式及其应用;
5 梯度、散度、旋度的综合计算;
6 重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。数学一考生对这部分内容和题型要引起足够的重视。
七.无穷级数
1 判定数项级数的收敛、发散、绝对收敛、条件收敛;
2 求幂级数的收敛半径,收敛域;
3 求幂级数的和函数或求数项级数的和;
4将函数展开为幂级数(包括写出收敛域);
5 将函数展开为傅立叶级数,或已给出傅立叶级数,要确定其在某点的和(通常要用狄里克雷定理);
6综合证明题。
八.微分方程
1 求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,当然,有些方程不直接属于我们学过的类型,此时常用的方法是将x与y对调或作适当的变量代换,把原方程化为我们学过的类型;
2 求解可降阶方程;
3 求线性常系数齐次和非齐次方程的特解或通解;
4 根据实际问题或给定的条件建立微分方程并求解;
5 综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。

❼ 2022考研数学命题趋势

2022考研数学命题趋势及应对策略
我们把命题组整体换人视为一代,现在的考研数学命题组已经是第三代了,是从2015考研开始正式掌勺。总体上,这七年的数学是一年容易一年难,如同过山车。
2015考研
易:难度是很温和的,有许多回归基础的东西,甚至考了教材上的求导商法则证明这样的题。
2016考研
难,几乎是史上最难:给了相当多考生当头一棒,完全不同的题风和较大的计算量让许多考生在考后直接崩溃。
2017考研
易:总体难度又回归平和,只有少量题体现数学思维水平,以供体现区分度。
2018考研
难:又是相当惨淡尤其是数学二和数学三,很多考生叫苦不迭,不过难度要低于2016考研,因为2016考研出了许多新套路,是往年找不到的套路,而且有各种陷阱,但是2018考研几乎没有什么新套路,很多题第一眼看上去相当熟悉。
2019考研
易:总体难度适中偏易,较2018考研难度明显降低,特别是数学三难度有较大幅度的降低。
2020考研
难:全卷没有一个超纲或冷门考点,也没有刻意堆积计算量从线代出二阶来有意降低全卷计算量可见。但是,高数和概率部分的不少主观题对熟悉考点的命题角度进行了改装,使得很多考生有一种既熟悉又陌生的感觉,就是找不到解题方向,或者做不到一上来就能找准解题方向,需要多次试错,因此浪费大量时间。这就是2020考研数学难的主要体现。
/2021考研
易:是新大纲变化后的首次考试,概念性的题目考了很多,没有偏题、怪题,只有个别难题,试卷整体难度与2020考研比下降不少。
偶数年比奇数年难,按照这个趋势,2022考研数学难度必然会有较大幅度的提升。难度的提升主要体现在以下四个方面:
第一,较新颖的非常规题型会多一些。
第二,计算量会增大。
第三,会考多年没考过的边角知识点。
第四,会考应用题,比如微积分学的应用,数一数二的物理应用,数三的经济应用等。
那么,如何应对呢?主要有三点:
1.高度重视计算能力的训练,包括计算准确度和计算速度两个方面。快而准的计算是基本功,每天都要练
每天不需要花大把时间练,每天练个10来道题就可以,要贯穿整个复习过程始终,一刻也不能放松。练到条件反射,几乎不需要思考就知道怎么处理,就比较理想了。
2.完全独立做题,而且要规范做
以实考为标准,有条理,不跳步,不潦草,对错题和做不出的题要归纳总结,包括分析错因或做不出的原因,写出题目的关键突破点
关键步骤,分析出题角度,尝试寻找更简洁明了的做题方法,等等。
3.熟练掌握多年没考过的边角知识点,确保不遗漏。
另外,还要注意,2021考研大纲新增内容在2021考研中体现得不充分,2022考研必考。

❽ 考研数学2知识点总结

考研数学2知识点总结

在我们上学期间,不管我们学什么,都需要掌握一些知识点,知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。你知道哪些知识点是真正对我们有帮助的吗?下面是我帮大家整理的考研数学2知识点总结,欢迎大家分享。

考研数学2知识点总结1

1、起步阶段

了解数学考研内容、考试形式和试卷结构,对自我进行评测并对测评结果认真分析,找出弱点与不足,制定科学合理的 个性 化学习计划,准备资料进入复习状态。

2、基础阶段

学习目标:全面整理考研数学的知识点,掌握基本概念、定理、公式并能进行基本应用,经典教材基础知识掌握熟练,课后习题能够独立解决,基础试题测试正确率达到90%以上。

学习形式:参加基础班视频教学学习和教师辅导答疑相结合。其中视频教学80课时,答疑辅导及知识补充约80课时。

学习时间:从20xx年12月——6月,约6——7个月时间,每天3~4小时。基础较差或要考高分(125分以上)的学员时间最好提前开始复习。

学习方法:根据去年考研数学大纲要求结合教材对应章节系统复习,打好基础,特别是对大纲中要求的基本概念、基本理论、基本方法要系统理解和掌握,完成数学考研备战的基础准备。大家在基础阶段花大力气把基础夯实是很值得的,并且近几年的数学考研试题越来越偏基础。在这个阶段,建议大家分为两步来复习:

第一步,教材精学:集中精力把教材好好地梳理,按照大纲要求结合教材相应章节全面复习,按章节顺序独立完成教材的练习题,通过练习知识点进行巩固。不懂一定要随时提问。建议每天学习新内容前复习前面学过的内容,因为教材的编写是环环相扣,易难递进的编排,所以我们也要按照规律来复习,经过必要的重复会起到事半功倍的效果。这个阶段约需要4~5个月的时间。

第二步,基础知识巩固和提高:通过考研基础试题的练习和测试,对考研的知识点进行巩固和加深理解,并能进行基本应用。建议大家使用与教材配套的复习指导书或习题集,通过做题巩固知识。在练习过程中遇上不懂或似懂非懂的题目要认真思考,不要直接看参考答案,应当先温习教材相关章节再尝试解题。按要求完成练习测试后,要留一些时间对教材的内容进行梳理,对重点、难点做好笔记,以便于后面复习把它消化掉。这个阶段约需要2个月的时间。

此阶段可以结合同学们自己的实际学习情况,比如有些同学某部分内容不熟悉或没学过,可以到理学院咨询相关教师,去随堂听课。

3、强化阶段

学习目标:按照20xx年考研最新大纲要求,进一步巩固和强化考研数学的重点、热点和难点,从知识结构上进行系统训练,能够按照考试要求解题,能够独立完成一定难度的试题,要求测试成绩正确率达到80%以上。

学习形式:暑期强化班视频教学和教师辅导答疑相结合。其中视频100课时,答疑辅导约60课时。学习时间:从7月~9月,约3个月时间,每天4小时。

学习方法:通过对考研数学辅导材料(考研复习全书)的研读和试题精解,在巩固第一阶段学习成果的基础上系统掌握知识脉络,提高解题的速度和正确率。本阶段是考研复习的关键,大体可以分两轮学习:第一轮:7月到8月,按照20xx年考研最新大纲要求全面掌握考试内容。参加强化班学习,根据老师课堂讲解和讲义学习,熟悉考研数学的.重点题型,将知识点系统化和脉络化。在学习过程中对重点、难点做好记号,适当的做些笔记,便于下一轮复习。

第二轮:9月到10月,通过考研辅导资料与专项习题的试题训练,对考试重点题型和自己薄弱的内容进行强化和提高,并能举一反三,提高解题的速度和正确率。

4、提高阶段

学习目标:通过真题训练提高知识综合运用的能力,把握考试难度、解题技巧及命题趋势,筛理出自己的薄弱环节并进行专项突破,测试成绩正确率要求达到80%以上。

学习形式:冲刺串讲班视频教学20课时和真题模拟演练,每星期考一张往年真题,辅导老师收上来,批改后进行讲解,辅导讲解约30课时。

学习时间:从11月~12月,约2两个月,每天3小时。

学习方法:

第一步,通过对近几年的真题全景测试把握考试难度,通过真题剖析洞悉解题技巧及,通过失分题筛理出自己的薄弱环节。

第二步,专项强化弥补自己的薄弱知识点。

第三步,真题全景训练和深度剖析:用一个月的时间把近十年真题搞熟搞透。

第四步,通过真题和模拟题试卷进行高强度解题训练,全面提高解题的速度和正确率,高度重视做错的题目。

5、冲刺阶段

学习目标:对所学知识系统总结,把握考试热点重点,调整好状态。

学习形式:参加视频模考班和模拟试卷考核,辅导教师讲解和答疑。

学习时间:从12月中旬到考前,约一个月。

学习方法:这一阶段的目标是保住自己在前几个阶段的成果,我们要做到:

1、通过对以往学习笔记和所做试题的复习查漏补缺;

2、对教材和笔记中的基本概念、基本公式、基本定理加强记忆,尤其是平时不常用的、记忆模糊的公式,经常出错的要重点记忆;

3、进行适量冲刺题训练,保持做题感觉并调整考试状态,轻松应考。

考研数学2知识点总结2

数学单科复习计划

考研数学分数学一、数学二、数学三三种。其中:数学一是对数学要求较高的理工类的;数学二是对于数学要求要低一些的农、林、地、矿、油等等专业的;数学三是针对经济等方向的。

试卷满分为150分,考试时间为180分钟。

试卷题型结构

单选题8小题,每题4分,共32分

填空题6小题,每题4分,共24分

解答题(包括证明题)9小题,共94分,其中5个10分,4个11分。

试题内容

其中数一和数三考试科目:高等数学、线性代数、概率论与数理统计,其中高等教学56%,线性代数22%,概率论与数理统计22%。但数学三属于经济类,总体比数一要简单一些,还有空间解析几何、曲线积分、曲面积分等不作要求。数学二考高数和线性代数,不考概率与数理统计。其中高等教学78%,线性代数22%。

推荐教材:

1 、《高等数学》(上下册)第五版或第六版,同济大学应用数学系,高等教育出版社。

2 、《线性代数》第四版,同济大学应用数学系,高等教育出版社

3 、《概率论与数理统计》第三版,浙江大学盛骤等,高等教育出版社

数学总分150分,所以在考研中起决定作用。

考研数学2知识点总结3

要善于改变计划

计划是死的,人是活的。由于当时这样那样的原因,我看完第一遍复习全书已经到了十一月初,这时又加入政治和专业课复习。之前我的美好计划肯定是实现不了,我就稍稍改变了一下,在进行第二遍复习全书的时候,我只看了知识总结和典型的几个例题,全书的课后习题我只在暑假做了三章,之后的我一道都没做(这个不要学我,最后是自己都能做一遍),同时这个时候,我又加入了暑假就买的660题,惭愧!当作是对知识点的熟悉和巩固,这样我差不多用了不到20天把知识点看了第二遍,同时基本上完成了660的题目(个人感觉这本书非常好,推荐一下)。

要有毅力和勇气

在做数学的过程受的打击是最多的,一定要坚持住。首先,每天都要做一点数学题,这个东西很忌讳手生和思维的间隔。其次,在遇到困难的时候要坚持住,这个我主要体现在做李永乐经典400题上。我在完成第二遍复习的时候,就着手做400题,总共十套,我给自己订的计划是10天完成,我满怀信心的开始,结果从第一套到最后一套把我打击的彻彻底底一塌糊涂,平均也就100分,最低的有80多,最好的也就110多,这个时候看到网上的400题各种130+,我直接趋于崩溃。

但我觉得难能可贵的是要迎难而上,十天把十套题做完了,每天晚上从六点到十一点,我都在做这个,然后总结,消化,吸收。最后,当你遇到困难和挫折的时候一定要保持信心和冷静的头脑,并能够及时采取策略。在十二月份的时候我开始做真题。我总共做了大概十二套的真题,感觉不错,信心有点膨胀。后来一月份在做合工大5套题的时候又是把我打击一番,我只做了三套就做不下去了,有尝试了做以前做过的题还有做错的和不会的,这时候距离考试只有5、6天了,于是我决定放弃合工大和一切模拟题,把最近的两年真题在规定的时间内又重新做了一遍,都能在140以上,信心才慢慢回来。

数学题要做不能只是看

尤其是在做套题的时候。我在做模拟试卷和真题的时候,专门找了一个本子,从十一月中下旬开始雷打不动每天固定三小时,把一份试卷从头做到尾,大题每一题都认真写出过程并算出最后结果,期间过程,不管遇到什么不会的,我都不看答案或是去翻书,三个小时结束后也不管自己做的怎么样立即停笔,然后进行批改分析和总结。我觉的在没人监督的情况下,通过这种方式对于模拟考场环境和处理问题是很有好处的。

考试时要淡定

在考试的时候,说不紧张那是骗人的,但需要把紧张控制在一定的程度内。我由于第一天英语自我感觉非常不好,导致一夜没睡着,第二天早上喝了两瓶红牛就去考了。非常紧张,第一道题就让我非常棘手,5分钟后

没有点头绪,于是放弃,后来概率两道题也让我不知所措,过了半个多小时,我还是有三道选择题没做。我深呼吸了一下,等了一分多钟才开始做填空题,好在填空题还是中规中距的,大题除了二重积分那道比较有新意外,其他的也都是传统的题目,一路跌跌撞撞,但也没遇到什么大坎,做完后还剩20分钟。开始集中解决三道选择题,我通过各种方法,试凑,举例,分析,综合,蒙猜,总算在规定的时间内做完了,第一道选择题我是二蒙一,事实证明我是幸运的。

;