当前位置:首页 » 基础知识 » 初一数学平方根知识点书面学习
扩展阅读
怎么登录温江教育网 2024-11-07 03:27:36
后厨经典语录有哪些 2024-11-07 03:20:13

初一数学平方根知识点书面学习

发布时间: 2022-12-06 18:12:10

Ⅰ 初一数学下册知识点梳理

没有加倍的勤奋,就没有才能,也没有天才。天才其实就是可以持之以恒的人。勤能补拙是良训,一分辛苦一分才,勤奋一直都是学习通向成功的最好捷径。下面是我给大家整理的一些初一数学的知识点,希望对大家有所帮助。

初一下学期数学知识点 总结

【知识点一】实数的分类

1、按定义分类: 2.按性质符号分类:

注:0既不是正数也不是负数.

【知识点二】实数的相关概念

1.相反数

(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.

(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.

(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.

2.绝对值 |a|≥0.

3.倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数 .

4.平方根

(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.

(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作 .

5.立方根

如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.

【知识点三】实数与数轴

数轴定义: 规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.

【知识点四】实数大小的比较

1.对于数轴上的任意两个点,靠右边的点所表示的数较大.

2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.

3.无理数的比较大小:

初一下册数学复习资料

1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次方程,一般形式是ax+by=c(a≠0,b≠0)。

如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。

2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。

3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。

5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。

归纳:基本思路:“消元”——把“二元”变为“一元”。

6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种 方法 叫做代入消元法,简称代入法。

7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。

初中 七年级数学 算术平方根教案

一、教学目标

1.理解一个数平方根和算术平方根的意义;

2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;

3.通过本节的训练,提高学生的 逻辑思维 能力;

4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣.

二、教学重点和难点

教学重点:平方根和算术平方根的概念及求法.

教学难点:平方根与算术平方根联系与区别.

三、 教学方法

讲练结合.

四、教学手段

多媒体

五、教学过程

(一)提问

1.已知一正方形面积为50平方米,那么它的边长应为多少?

2.已知一个数的平方等于1000,那么这个数是多少?

3.一只容积为0.125立方米的正方体容器,它的棱长应为多少?

这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的.下面作一个小练习:填空

1.()2=9;2.()2 =0.25;

5.()2=0.0081.

学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正.

由练习引出平方根的概念.

(二)平方根概念

如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根).

用数学语言表达即为:若x2=a,则x叫做a的平方根.

由练习知:±3是9的平方根;

±0.5是0.25的平方根;

0的平方根是0;

±0.09是0.0081的平方根.

由此我们看到 3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:

()2=-4

学生思考后,得到结论此题无答案.反问学生为什么?因为正数、0、负数的平方为非负数.由此我们可以得到结论,负数是没有平方根的.下面总结一下平方根的性质(可由学生总结,教师整理).

(三)平方根性质

1.一个正数有两个平方根,它们互为相反数.

2.0有一个平方根,它是0本身.

3.负数没有平方根.

(四)开平方

求一个数a的平方根的运算,叫做开平方的运算.

由练习我们看到 3与-3的平方是9,9的平方根是 3和-3,可见平方运算与开平方运算互为逆运算.根据这种关系,我们可以通过平方运算来求一个数的平方根.与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。

(五)平方根的表示方法

一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“- ”表示,a的平方根合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”.根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”.

练习:1.用正确的符号表示下列各数的平方根:

①26②247③0.2④3⑤

解:①26 的平方根是

②247的平方根是

③0.2的平方根是

④3的平方根是

⑤ 的平方根是


初一数学上册知识点梳理相关 文章 :

★ 初一数学上册知识点归纳

★ 初一数学上册知识点汇总归纳

★ 初一数学上册知识点总结

★ 初一上册数学知识点归纳整理

★ 初一数学上册知识点

★ 初一数学上册重点知识整理

★ 初一人教版数学上册知识点总结归纳

★ 初一数学上册知识点大全

★ 初一数学上册知识点思维导图

★ 七年级数学上册知识归纳

Ⅱ 初一数学知识点整理

学数学要在理解的基础上去做题,学会数学关键在于个人的悟性,除了上课认真听讲、课后做匹配练习外,还需要练就独立解题能力与 总结 反思 能力,学会以不变应万变。这次我给大家整理了初一数学知识点整理,供大家阅读参考。

初一数学知识点整理

一:角的种类

角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

锐角:大于0°,小于90°的角叫做锐角。

直角:等于90°的角叫做直角。

钝角:大于90°而小于180°的角叫做钝角。

平角:等于180°的角叫做平角。

优角:大于180°小于360°叫优角。

劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

周角:等于360°的角叫做周角。

负角:按照顺时针方向旋转而成的角叫做负角。

正角:逆时针旋转的角为正角。

0角:等于零度的角。

余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。

对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

初一数学必考知识点:一元一次方程组的解法

一般步骤:

第一步:去分母,在方程两边同乘以所有分母的最小公倍数.注意:分子要加括号,不要漏乘不含有分母的项;

第二步:去括号,先去小括号,再去中括号,最后去大括号.注意:不要漏乘括号内各项,若括号前面是“ - ”,去括号后括号内各项都要变号;

第三步:移项,把含有未知数的项移到方程的一边,其他项移到另一边.注意:移项要变号,不移的项不变号,移项时不要漏项;

第四步:合并同类项,把方程化为 ax=b(a≠0)的形式.注意:系数相加,字母部分不变;

第五步:系数化为 1,把方程两边同除以未知数的系数 a,得到方程的解 x={frac{b}{a}}(a≠0).注意:不要把分子、分母位置颠倒.

二:整式的加减

1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。

2.系数:单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1.

3.多项式:几个单项式的和叫多项式。

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

5.常数项:不含字母的项叫做常数项。

6.多项式的排列

(1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。

(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

7.多项式的排列时注意:

(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。

(2)有两个或两个以上字母的多项式,排列时,要注意:

a.先确认按照哪个字母的指数来排列。

b.确定按这个字母向里排列,还是向外排列。

(3)整式:

单项式和多项式统称为整式。

8. 多项式的加法:

多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。

9.同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。

10.合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。

初一数学知识点

第一章 有理数

1.1 正数与负数

在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

1.2 有理数

正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

整数和分数统称有理数(rational number)。

通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

数轴三要素:原点、正方向、单位长度。

在直线上任取一个点表示数0,这个点叫做原点(origin)。

只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3 有理数的加减法

有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法

有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì

求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。

负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

把一个大于10的数表示成a×10的n次方的形式,用的就是科学计数法。

从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

第二章 一元一次方程

2.1 从算式到方程

方程是含有未知数的等式。

方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。 解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。

等式的性质:

1.等式两边加(或减)同一个数(或式子),结果仍相等。

2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2 从古老的代数书说起——一元一次方程的讨论(1)

把等式一边的某项变号后移到另一边,叫做移项。

第三章 图形认识初步

3.1 多姿多彩的图形

几何体也简称体(solid)。包围着体的是面(surface)。

3.2 直线、射线、线段

线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。

连接两点间的线段的长度,叫做这两点的距离。

3.3 角的度量

1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比较与运算

如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。

如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。

等角(同角)的补角相等。

等角(同角)的余角相等。

初一数学知识点整理4-6章

第四章 数据的收集与整理

收集、整理、描述和分析数据是数据处理的基本过程。

第五章 相交线与平行线

5.1 相交线

对顶角(vertical angles)相等。

过一点有且只有一条直线与已知直线垂直(perpendicular)。

连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。

5.2 平行线

经过直线外一点,有且只有一条直线与这条直线平行(parallel)。

如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

直线平行的条件:

两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

5.3 平行线的性质

两条平行线被第三条直线所截,同位角相等。

两条平行线被第三条直线所截,内错角相等。

两条平行线被第三条直线所截,同旁内角互补。

判断一件事情的语句,叫做命题(proposition)。

第六章 平面直角坐标系

6.1 平面直角坐标系

含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a和b组成的数对,叫做有序数对(ordered pair)。

初一数学知识点整理7-10章

第七章 三角形

7.1 与三角形有关的线段

三角形(triangle)具有稳定性。

7.2 与三角形有关的角

三角形的内角和等于180度。

三角形的一个外角等于与它不相邻的两个内角的和。

三角形的一个外角大于与它不相邻的任何一个内角

7.3 多边形及其内角和

n边形内角和等于:(n-2)?180度

多边形(polygon)的外角和等于360度。

第八章 二元一次方程组

8.1 二元一次方程组

方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程(linear equations of two unknowns) 。

把两个二元一次方程合在一起,就组成了一个二元一次方程组(system of linear equations of two unknowns)。

使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

8.2 消元

将未知数的个数由多化少、逐一解决的想法,叫做消元思想。

第九章 不等式与不等式组

9.1 不等式

用小于号或大于号表示大小关系的式子,叫做不等式(inequality)。

使不等式成立的未知数的值叫做不等式的解。

能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集(solution set)。

含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。

不等式的性质:

不等式两边加(或减)同一个数(或式子),不等号的方向不变。

不等式两边乘(或除以)同一个正数,不等号的方向不变。

不等式两边乘(或除以)同一个负数,不等号的方向改变。

三角形中任意两边之差小于第三边。

三角形中任意两边之和大于第三边。

9.3 一元一次不等式组

把两个一元一次不等式合在起来,就组成了一个一元一次不等式组(linear inequalities of one unknown)。

第十章 实数

10.1 平方根

如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根(arithmetic square root),2是根指数。

a的算术平方根读作“根号a”,a叫做被开方数(radicand)。

0的算术平方根是0。

如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root) 。

求一个数a的平方根的运算,叫做开平方(extraction of square root)。

10.2 立方根

如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root)。

求一个数的立方根的运算,叫做开立方(extraction of cube root)。

10.3 实数

无限不循环小数又叫做无理数(irrational number)。

有理数和无理数统称实数(real number)。

数学的 学习 方法

1、养成良好的学习数学习惯。 建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

2、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

3、逐步形成 “以我为主”的学习模式 数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。

4、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。


初一数学知识点整理相关 文章 :

★ 初一数学重要知识点归纳

★ 初一数学重要知识点

★ 初一数学课堂知识点

★ 初一数学知识点归纳

★ 初一数学学习方法总结

★ 七年级数学知识点整理大全

★ 初一数学重要知识点总结

★ 非常实用的初一数学知识点

★ 初一上学期数学知识点归纳

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

Ⅲ 初一数学重要知识点

初一数学重要知识点1

不等式:

①用符号>,=,号连接的式子叫不等式。

②不等式的两边都加上或减去同一个整式,不等号的方向不变。

③不等式的两边都乘以或者除以一个正数,不等号方向不变。

④不等式的两边都乘以或除以同一个负数,不等号方向相反。

不等式的解集:

①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。

一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

一元一次不等式组:

①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

③求不等式组解集的过程,叫做解不等式组。

初一数学重要知识点2

1、平方与平方根

2、面积与平方

(1)任意两个正数的和的平方,等于这两个数的平方和

(2)任意两个正数的差的平方,等于这两个数的平方和,再减去这两个数乘积的2倍

任意两个有理数的和(或差)的平方,等于这两个数的平方和,再加上(或减去)这两个数乘积的2倍

3、平方根

(1)正数有两个平方根,这两个平方根互为相反数;

(2)零只有一个平方根,它就是零本身;

(3)负数没有平方根

4、实数

无限不循环小数叫做无理数

有理数和无理数统称为实数

5、平方根的运算

6、算术平方根的性质

性质1一个非负数的算术平方根的平方等于这个数本身

性质2一个数的平方的算术平方根等于这个数的绝对值

7、算术平方根的乘、除运算

1)算术平方根的乘法

sqrt(a)sqrt(b)=sqrt(ab)(a>=0,b>=0)

2算)术平方根的除法

sqrt(a)/sqrt(b)=sqrt(a/b)(a>=0,b>0)

通过分子、分母同乘以一个式子把分母中的根号化去火把根号中的分母化去,叫做分母有理化

3)被开方数的每个因数的指数都小于2;(2)被开方数不含有字母我们把符合这两个条件的平方根叫做最简平方根

8‘算术平方根的加、减运算

如果几个平方根化成最简平方根以后,被开方数相同,那么这几个平方根就叫做同类平方根

9、一元二次方程及其解法

1)一元二次方程

只含有一个未知数,且未知数的最高次数是2的方程,叫做一元二次方程

2)特殊的一元二次方程的解法

3)一般的一元二次方程的解法——配方法

用配方法解一元二次方程的一般步骤是:

1、化二次项系数为1用二次项系数去除方程两边,将方程化为x^2+px+q=0的形式

2、移项把常数项移至方程右边,将方程化为x^2+px=—q的形式

3、配方方程两边同时加上“一次项系数一半的平方”,是方程左边成为含有未知数的完全平方形式,右边是一个常数

4、有平方根的定义,可知

(1)当p^2/4—q>0时,原方程有两个实数根;

(2)当p^2/4—q=0,原方程有两个相等的实数根(二重根)

初一数学重要知识点3

1、单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。

2、单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。

3、多项式:几个单项式的和叫多项式。

4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

通过本章学习,应使学生达到以下学习目标:

1、理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。

2、理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。

3、理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。

4、能够分析实际问题中的数量关系,并用还有字母的式子表示出来。

初一数学重要知识点4

初一数学重要知识点总结

1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变

初一数学重要知识点归纳

整式的加减

1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.

2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的.和,叫单项式的次数.

3.多项式:几个单项式的和叫多项式.

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.

5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.

6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.

7.合并同类项法则:系数相加,字母与字母的指数不变.

8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.

9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.

10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.

初一数学重要知识点整理

⒈绝对值的几何定义

一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。

2.绝对值的代数定义

⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0.

可用字母表示为:

①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。

可归纳为①:a≥0,|a|=a(非负数的绝对值等于本身;绝对值等于本身的数是非负数。)②a≤0,|a|=-a(非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)经典考题

如数轴所示,化简下列各数

|a|,|b|,|c|,|a-b|,|a-c|,|b+c|

解:由题知道,因为a>0,b<0,c0,a-c>0,b+c<0,

所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c

3.绝对值的性质

任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即⑴0的绝对值是0;绝对值是0的数是0.即:a=0|a|=0;

⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;

⑶任何数的绝对值都不小于原数。即:|a|≥a;

⑷绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a;

⑸互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;

⑹绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;

⑺若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。

(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)

经典考题

已知|a+3|+|2b-2|+|c-1|=0,求a+b+c的值

解:因为|a+3|≥0,|2b-2|≥0,|c-1|≥0,且|a+3|+|2b-2|+|c-1|=0

所以|a+3|=0,|2b-2|=0,|c-1|=0

即a=-3,b=1,c=1

所以a+b+c=-3+1+1=-1

4.有理数大小的比较

⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;

⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数

Ⅳ 初一数学知识点

初一数学知识点精选1

1.同类项——所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。同类项与系数无关,与字母排列的顺序也无关。

2.合并同类项:把多项式中的同类项合并成一项叫做合并同类项。即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

3.整式的加减:有括号的先算括号里面的,然后再合并同类项。

4.幂的运算:

5.整式的乘法:

1)单项式与单项式相乘法则:把它们的系数、同底数幂分别相乘,其余只在一个单项式里含有的字母连同它的指数作为积的因式。

2)单项式与多项式相乘法则:用单项式去乘多项式的每一项,再把所得的积相加。

3)多项式与多项式相乘法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

6.整式的除法

1)单项式除以单项式:把系数与同底数幂分别相除作为上的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

2)多项式除以单项式:把这个多项式的每一项除以单项式,再把所得的商相加。

四、因式分解——把一个多项式化成几个整式的积的形式

1)提公因式法:(公因式——多项式各项都含有的公共因式)吧公因式提到括号外面,将多项式写成因式乘积的形式。取各项系数的最大公约数作为因式的系数,取相同字母最低次幂的积。公因式可以是单项式,也可以是多项式。

2)公式法:A.平方差公式;B.完全平方公式

初一数学知识点精选2

一、目标与要求

1.了解正数与负数是从实际需要中产生的。

2.能正确判断一个数是正数还是负数,明确0既不是正数也不是负数。

3.理解有理数除法的意义,熟练掌握有理数除法法则,会进行有理数的除法运算;

4.了解倒数概念,会求给定有理数的倒数;

5.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过有理数的除法

二、重点

正、负数的概念;

正确理解数轴的概念和用数轴上的点表示有理数;

有理数的加法法则;

除法法则和除法运算。

三、难点

负数的概念、正确区分两种不同意义的量;

数轴的概念和用数轴上的点表示有理数;

异号两数相加的法则;

根据除法是乘法的逆运算,归纳出除法法则及商的符号的确定。

知识点、概念总结

1.正数:比0大的数叫正数。

2.负数:比0小的数叫负数。

3.有理数:

(1)凡能写成q/p(p,q为整数且p不等于0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

初一数学知识点精选3

(一)多姿多彩的图形

立体图形:棱柱、棱锥、圆柱、圆锥、球等.

1、几何图形

平面图形:三角形、四边形、圆等.

主(正)视图---------从正面看

2、几何体的三视图 侧(左、右)视图-----从左(右)边看

俯视图---------------从上面看

(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.

(2)能根据三视图描述基本几何体或实物原型.

3、立体图形的平面展开图

(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.

(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.

4、点、线、面、体

(1)几何图形的组成

点:线和线相交的地方是点,它是几何图形最基本的图形.

线:面和面相交的地方是线,分为直线和曲线.

面:包围着体的是面,分为平面和曲面.

体:几何体也简称体.

(2)点动成线,线动成面,面动成体.

(二)直线、射线、线段

1、基本概念

图形 直线 射线 线段

端点个数 无 一个 两个

表示法 直线a

直线AB(BA) 射线AB 线段a

线段AB(BA)

作法叙述 作直线AB;

作直线a 作射线AB 作线段a;

作线段AB;

连接AB

延长叙述 不能延长 反向延长射线AB 延长线段AB;

反向延长线段BA

2、直线的性质

经过两点有一条直线,并且只有一条直线.

简单地:两点确定一条直线.

3、画一条线段等于已知线段

(1)度量法

(2)用尺规作图法

4、线段的大小比较方法

(1)度量法

(2)叠合法

5、线段的中点(二等分点)、三等分点、四等分点等

定义:把一条线段平均分成两条相等线段的点.

图形:

A M B

符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.

6、线段的性质

两点的所有连线中,线段最短.简单地:两点之间,线段最短.

7、两点的距离

连接两点的线段长度叫做两点的距离.

8、点与直线的位置关系

(1)点在直线上 (2)点在直线外.

(三)角

1、角:由公共端点的两条射线所组成的图形叫做角.

2、角的表示法(四种):

3、角的度量单位及换算

4、角的分类

∠β 锐角 直角 钝角 平角 周角

范围 0<∠β<90° ∠β=90° 90°<∠β<180° ∠β=180° ∠β=360°

5、角的比较方法

(1)度量法

(2)叠合法

6、角的和、差、倍、分及其近似值

7、画一个角等于已知角

(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.

(2)借助量角器能画出给定度数的角.

(3)用尺规作图法.

8、角的平线线

定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.

图形:

符号:

9、互余、互补

(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.

(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.

(3)余(补)角的性质:等角的补(余)角相等.

10、方向角

(1)正方向

(2)北(南)偏东(西)方向

(3)东(

初一数学知识点精选4

1.单项式 :在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。

2.系数 :单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1.

3.多项式 :几个单项式的和叫多项式。

4.多项式的项数与次数 :多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

5.常数项 :不含字母的项叫做常数项。

6.多项式的排列

(1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。

(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

7.多项式的排列时注意

(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。

(2)有两个或两个以上字母的多项式,排列时,要注意:

a.先确认按照哪个字母的指数来排列。

b.确定按这个字母向里排列,还是向外排列。

(3)整式:

单项式和多项式统称为整式。

8.多项式的加法:

多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。

9.同类项: 所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。

10.合并同类项 :多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。

11.掌握同类项的概念时注意:

(1)判断几个单项式或项,是否是同类项,就要掌握两个条件:

①所含字母相同。

②相同字母的次数也相同。

(2)同类项与系数无关,与字母排列的顺序也无关。

(3)所有常数项都是同类项。

初一数学知识点精选5

使方程左右两边相等的未知数的值叫做方程的解。

一般解法:

(1)去分母:在方程两边都乘以各分母的最小公倍数;

(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)

(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号

(4)合并同类项:把方程化成ax=b(a≠0)的形式;

(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.

初一数学知识点精选6

一.直线、射线、线段三者的区别与联系:

二.线段的中点:把一条线段分成两条相等的线段的点,叫做线段的中点。

三.直线的基本性质:

1.两条直线相交,只有一个交点;

2.经过两点有且只有一条直线,即:两点确定一条直线。

四.线段的性质:

所有连结两点的线中,线段最短,即:两点之间线段最短。

初一数学知识点精选7

三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

初一数学知识点精选8

单项式和多项式统称整式。

a)由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。

b)单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数,系数为1或-1。

c)一个单项式中,所有字母的指数和叫做这个单项式的.次数(注意:常数项的单项式次数为0)

a)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数最高项的次数,叫做这个多项式的次数.

b)单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.

a)整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.

b)括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。

初一数学知识点精选9

实数:—有理数与无理数统称为实数。

有理数:整数和分数统称为有理数。

无理数:无理数是指无限不循环小数。

自然数:表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。

数轴:规定了圆点、正方向和单位长度的直线叫做数轴。

相反数:符号不同的两个数互为相反数。

倒数:乘积是1的两个数互为倒数。

绝对值:数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。

初一数学知识点精选10

1、平方根 如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根。a的算术平方根记为,读作“根号a”,a叫做被开方数。如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。求一个数a的平方根的运算,叫做开平方。

2、立方根 如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根。求一个数的立方根的运算,叫做开立方。

3、实数 无限不循环小数又叫做无理数。有理数和无理数统称实数。一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0。

初一数学知识点精选11

1、数轴:规定了原点、正方向和单位长度的直线叫数轴。

2、画数轴的步骤:

⑴画一条直线。

⑵选取原点、正方向。

⑶规定单位长度。

⑷数轴上用短竖标出刻度。

⑸数轴下用标出数值。

3、数轴三要素:原点、正方向和单位长度

4、数轴特点:一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

5、数轴上点与有理数关系:每一个有理数都可以用数轴上的一个点来表示;但数轴上的点不都表示有理数。

Ⅳ 初一下学期数学知识点总结归纳

初一下册数学中,实数,相交线与平行线,不等式是重点,我整理了一些重要的知识点。

实数的相关概念

1、相反数

(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.

(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.

(3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.

2、绝对值|a|≥0.

3、倒数

(1)0没有倒数

(2)乘积是1的两个数互为倒数

4、平方根

(1)如果一个数的平方等于a,这个数就叫做a的平方根,一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。

(2)一个正数a的正的平方根,叫做a的算术平方根。

5、立方根

如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.

相交线

对顶角相等。

过一点有且只有一条直线与已知直线垂直。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

平行线

1、经过直线外一点,有且只有一条直线与这条直线平行。

2、 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

3、直线平行的条件:

4、两条直线被第三条直线所截,如果同位角相等,那么两直线平行 两条直线被第三条直线所截,如果内错角相等,那么两直线平行(内错角相等,两直线平行)。

5、两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行(同旁内角互补,两直线平行)。

平行线的性质

1、两条平行线被第三条直线所截,同位角相等(两直线平行,同位角相等)。

2、两条平行线被第三条直线所截,内错角相等(两直线平行,内错角相等)。

3、两条平行线被第三条直线所截,同旁内角互补(两直线平行,同旁内角互补)。 判断一件事情的语句,叫做命题(本考点可能会出现在填空题中命题的改写和选择题中判断命题的真假性)。

不等式

1、用小于号或大于号表示大小关系的式子,叫做不等式。

2、使不等式成立的未知数的值叫做不等式的解。

3、能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集。

4、含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

5、不等式的性质:

不等式两边加(或减)同一个数(或式子),不等号的方向不变。

不等式两边乘(或除以)同一个正数,不等号的方向不变。

不等式两边乘(或除以)同一个负数,不等号的方向改变。

三角形中任意两边之差小于第三边。

三角形中任意两边之和大于第三边。

以上是我整理的初一下册数学的知识点,希望能帮到你。

Ⅵ 初一数学知识点

第一章 有理数

1.1 正数与负数

在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

1.2 有理数

正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

整数和分数统称有理数(rational number)。

通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

数轴三要素:原点、正方向、单位长度。

在直线上任取一个点表示数0,这个点叫做原点(origin)。

只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3 有理数的加减法

有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法

有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì

求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。

负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

把一个大于10的数表示成a×10的n次方的形式,用的就是科学计数法。

从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

第二章 一元一次方程

2.1 从算式到方程

方程是含有未知数的等式。

方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。

等式的性质:

1.等式两边加(或减)同一个数(或式子),结果仍相等。

2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2 从古老的代数书说起——一元一次方程的讨论(1)

把等式一边的某项变号后移到另一边,叫做移项。

第三章 图形认识初步

3.1 多姿多彩的图形

几何体也简称体(solid)。包围着体的是面(surface)。

3.2 直线、射线、线段

线段公理:两点的所有连线中,线段最短(两点之间,线段最短)。

连接两点间的线段的长度,叫做这两点的距离。

3.3 角的度量

1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比较与运算

如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。

如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。

等角(同角)的补角相等。

等角(同角)的余角相等。

第四章 数据的收集与整理

收集、整理、描述和分析数据是数据处理的基本过程。

第五章 相交线与平行线

5.1 相交线

对顶角(vertical angles)相等。

过一点有且只有一条直线与已知直线垂直(perpendicular)。

连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。

5.2 平行线

经过直线外一点,有且只有一条直线与这条直线平行(parallel)。

如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

直线平行的条件:

两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

5.3 平行线的性质

两条平行线被第三条直线所截,同位角相等。

两条平行线被第三条直线所截,内错角相等。

两条平行线被第三条直线所截,同旁内角互补。

判断一件事情的语句,叫做命题(proposition)。

第六章 平面直角坐标系

6.1 平面直角坐标系

含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a和b组成的数对,叫做有序数对(ordered pair)。

第七章 三角形

7.1 与三角形有关的线段

三角形(triangle)具有稳定性。

7.2 与三角形有关的角

三角形的内角和等于180度。

三角形的一个外角等于与它不相邻的两个内角的和。

三角形的一个外角大于与它不相邻的任何一个内角

7.3 多边形及其内角和

n边形内角和等于:(n-2)?180度

多边形(polygon)的外角和等于360度。

第八章 二元一次方程组

8.1 二元一次方程组

方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程(linear equations of two unknowns) 。

把两个二元一次方程合在一起,就组成了一个二元一次方程组(system of linear equations of two unknowns)。

使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

8.2 消元

将未知数的个数由多化少、逐一解决的想法,叫做消元思想。

第九章 不等式与不等式组

9.1 不等式

用小于号或大于号表示大小关系的式子,叫做不等式(inequality)。

使不等式成立的未知数的值叫做不等式的解。

能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集(solution set)。

含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。

不等式的性质:

不等式两边加(或减)同一个数(或式子),不等号的方向不变。

不等式两边乘(或除以)同一个正数,不等号的方向不变。

不等式两边乘(或除以)同一个负数,不等号的方向改变。

三角形中任意两边之差小于第三边。

三角形中任意两边之和大于第三边。

9.3 一元一次不等式组

把两个一元一次不等式合在起来,就组成了一个一元一次不等式组(linear inequalities of one unknown)。

第十章 实数

10.1 平方根

如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根(arithmetic square root),2是根指数。

a的算术平方根读作“根号a”,a叫做被开方数(radicand)。

0的算术平方根是0。

如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root) 。

求一个数a的平方根的运算,叫做开平方(extraction of square root)。

10.2 立方根

如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root)。

求一个数的立方根的运算,叫做开立方(extraction of cube root)。

10.3 实数

无限不循环小数又叫做无理数(irrational number)。

有理数和无理数统称实数(real number)。

拓展: 初一语文上知识点

一、叙述人称(三种人称):

1、第一人称(“第一人称”能给人亲切自然、真实的感受。用“第一人称”写“我”,最适宜于写人物的心理活动,所见、所闻、所为、所感,都可以通过心理活动描写表现出来的。用第一人称写“他”时,最适宜写人物的外貌、语言、行动,因为用“我”的观感来写“他”的这些,较为客观。“第一人称”写“我”的外貌,写“他”的心理活动,必须加上摹拟的话,才能让读者心悦诚服。写“我”的外貌,可以这样写:“你们可以想象,我那时的脸是多么红。”写“他”的心理活动,可以这样写:“心里很轻松似的。”)

2、第二人称(作用:增强文章的抒情性和亲切感,便于感情交流。)

3、第三人称(作用:能比较直接客观地展现丰富多彩的生活,不受时间和空间限制,反映现实比较灵活自由。)

二、叙述方式(或者说“记叙的顺序”)(三种):

1、顺叙——按时间发生的先后顺序所作的叙述。顺叙型的结构模式是:总叙+分叙(分叙1+分叙2+分叙3+分叙n)+结尾。作用:条理清楚地进行记叙。

2、倒叙——把事件的结局或其发展过程中的某一重要断面提到文章前面,写完结局或断面,然后才按时间顺序写。作用:这种笔法能造成悬念,吸引读者。

3、插叙( 补叙属于插叙一种)——对全文来说,插叙仅是一个片断,插叙完后,文章仍回到原来的事件叙述上来。这种插叙不是叙述的主体部分,一般不发生在主流的时间范围内。若把这种插叙删去,虽会削弱主体的深刻性,但不明显影响主要情节的完整性。作用:使情节更加完整,结构更加严密,内容更加充实丰满。补叙作用:对上文内容加以补充解释,对下文做某些交代。

(有一种不常用的,叫“平叙”,即:俗称“花开两枝,各表一朵”,(指叙述两件或多件同时发生的事)使头绪清楚,照应得体。)

三、描写:

总体来说,描写有以下一些作用:①再现自然风光。②描绘人物的外貌及内心世界。③交代人物活动的自然及社会环境。

1、五种人物的描写方法:肖像(外貌)描写、语言描写、动作描写、心理描写、神态描写。

作用:更好展现人物的内心世界、性格特征。刻画人物性格,反映人物心理活动,促进故事情节的发展。等等。具体回答的时候要说明白是什么性格、什么心理等。

2、二种环境描写:自然环境描写——具体描写自然风光,营造一种气氛,烘托人物的情感和思想。烘托人物心情,渲染气氛等。

社会环境描写——交代人物活动的(时代)背景,写明事件发生的时间和地点,渲染气氛,更好地表现人物。

3、正面描写、侧面描写:正面直接表现人物、事物;侧面烘托突出人物、事物。

4、细节描写:刻画人物性格,反映人物心理活动,促进故事情节的发展。也可描摹人物的.语态,收到一种特殊的效果。

四、修辞:

1、比喻:使语言形象生动,增加语言色彩。化平淡为生动,化深奥为浅显,化抽象为具体形象。

2、拟人:把事物当人写,使语言形象生动。给物赋予人的形态情感(指拟人),描写生动形象,表意丰富。

3、排比:增强语言气势,加强表达效果。叙事透辟,条分缕析;长于抒情。

4、夸张:突出某一事物或强调某一感受。烘托气氛,增强感染力,增强联想;创造气氛,揭示本质,给人以启示。

5、反问:起强调作用,增强肯定(否定)语气。

6、设问:自问自答,提出问题,引发读者的注意、思考。

7、对偶:使语言简练工整、有音乐感;抒情酣畅;便于吟诵,易于记忆。

8、反复:多次强调,给人以深刻的印象;写景抒情感染力强;承上启下,分清层次。

注:上面只是简要给出各种修辞手法(方法)的作用,在回答问题的时候,一定要结合具体的内容具体来回答,避免空洞。

五、结构安排:

布局谋篇的技巧:开门见山、首尾呼应、卒章显志、伏笔照应、层层深入、过度铺垫、设置线索;结构严密,完整匀称;烘托铺垫,前后照应;设置悬念,制造波澜,起承转合,曲折有致。材料和中心的关系的处理,主次详略是否得当;材料是否典型、真实、新颖、有力。

记叙文常以时间推移、空间转换、情景变化、思维逻辑顺序等来安排层次。散文构思的线索,一般常见的有如下几种:以情为线索;以理为线索;以物为线索;以空间位置为线索。

从结构上明确不同位置的句子在文中所起的作用:

1、首句——统领全文、提纲挈领、引出下文,为后文做铺垫、埋下伏笔;

2、尾句——总结全文,深化主题,照应上文,前后呼应,言有尽而意无穷,回味深长。

3、转承句——承上启下,过渡,承接上文,引出下文;

4、中心句——点明中心、揭示主旨;

5、点睛句——点明全文中心,统领全文;句子含义深刻,耐人寻味,读后能给人以启迪。

6、情感句——抒发强烈内在情感,直抒胸臆;

7、矛盾句——从字面上看自相矛盾,但作者却寄寓了深刻的用意。揭示深刻内涵,表达深刻见解。

(1)记叙文(散文)的结构特点

①按时间顺序或事件发生、发展的顺序组织材料。

②按观察点的变换安排材料,如《我的空中楼阁》。

③按场面的安排安排材料,如《内蒙访古》。

④按材料性质归类安排结构,如《琐忆》。

⑤按作者认识的过程或感情的变化安排材料。如《荔枝蜜》。

⑥按作者的所见所闻所感所思作为行文线索安排材料。

六、表达方式入手分析句意:

五种表达方式:记叙、 描写、 说明、 抒情、 议论。

解释:用语言文字表情达意时,有一个方法或手段问题,人们习惯上将它称为表达方式。

比如:记叙文是以叙述、描写、抒情为主要表达方式,议论文是以议论为主要表达方式,而说明文则以说明为主要表达方式。

1、记叙文中的议论往往起画龙点睛、揭示记叙目的和意义的作用;

2、议论文中的记叙往往起到例证的作用;

3、说明文中描写、文艺性笔调起到点染作品使之更加生动形象的作用。

4、夹叙夹议,记叙与议论交叉运用的写法,使文章在轻松活泼之中,阐发议论,读来饶有兴味,深受教益,文章中的记叙是为议论服务的,而议论又以记叙为基础,叙为议提供了事实依据,使立论有根有据,具有很强的说服力。

七、标点符号:

1、引号的五种用法:①表引用 ②表讽刺或否定 ③表特定称谓 ④表强调或着重指出 ⑤特殊含义

2、破折号的五种用法:①表注释 ②表插说 ③表声音中断、延续 ④表话题转换 ⑤表意思递进

3、省略号的六种用法:①表内容省略 ②表语言断续 ③表因抢白话未说完 ④表心情矛盾 ⑤表思维跳跃 ⑥表思索正在进行

八、十种常用写作手法:

象征、对比、衬托、烘托、伏笔铺垫、照应(呼应)、直接(间接)描写、 扬抑(欲扬先抑、欲抑先扬)、借景抒情、借物喻人。

象征 通过某一特点的具体形象,表达某种人和某种社会现象的本质特点。例:《海燕》以海燕象征大智大勇的无产阶级革命先驱者的形象。

对比 把两种相反的事物或一种事物相对立的两个方面作比较,鲜明的突出主要事物或事物的主要方面的特征。例:《海燕》以海燕的高大形象与海鸭、海鸥、企鹅的卑怯形象作对比,突出海燕勇猛、敢于斗争的鲜明特征。

衬托 以他体从正面、反面两个角度陪衬本体,突出本体的主要特征。例:《白杨礼赞》开头描写白杨树的生长环境---西北高原的雄壮,衬托出白杨树傲然挺立的高大形象。

借景抒情 通过描写具体生动的自然景象或生活场景,表达作者真挚的思想感情。

例:《从百草园到三味书屋》文章从不同角度不同层次淋漓尽致的描摹百草园声色趣俱全的景观和三味书屋枯燥乏味的生活场景,表现作者热爱大自然,喜欢自由快乐生活和不满束缚儿童身心发展的封建教育的思想感情。

借物喻人 描写事物,突出其特点,并以此设喻,表现作者高尚的思想情操。 例:《白杨礼赞》以白杨树比喻北方军民,以白杨树正直、朴质、严肃、挺拔、力争上游的特点比喻北方军民为我国的解放事业而抗争、战斗的顽强精神。

先抑后扬 先否定或贬低事物形象,尔后深入挖掘事物特点及内在意义,再对事物予以肯定、褒扬,更突出地强调事物的特征。 例:《白杨礼赞》先说白杨树不是“好女子”,而后称颂其是“伟丈夫”,更突出的强调了白杨树的外在形象和内在神韵。

九、试卷题目常见的一些术语(问题):

1、有何作用 回答文章中某一内容的作用可从三个方面考虑,一是内容方面,如深化主题、强调感情等;二是结构方面的,如过渡、呼应等;三是语言方面,如引人入胜、生动活泼等。

2、思想内容——基本是指文章的中心思想或主旨。

3、思想感情——作者或作品中人物所表现出来的思想倾向,如善恶、好恶、褒贬等。

课外阅读 指课本(教材)之外的阅读内容。不管是课内读的还是课外读的内容。

4、感悟——多指发自内心的感受、理解、领悟等。

5、写作手法——考生要清楚,狭义的写作手法即“表达方式”,广义的是指写文章的一切手法,诸如表达方式、修辞手法,先抑后扬、象征、开门见山、托物言志等。

6、表现手法——从广义上来讲也就是作者在行文措辞和表达思想感情时所使用的特殊的语句组织方式。

分析一篇作品,具体地可以由点到面地来抓它的特殊表现方式,首先是字词、语句上的修辞技巧,种类很多,包括比喻、象征、夸张、排比、对偶、烘托、拟人、用典等等;从作品的整体上来把握它的表现手法时,就要注意不同文体的作品:抒情散文的表现手法丰富多彩,借景抒情、托物言志、抑扬结合、象征等手法;记叙文的写作手法如首尾照应、画龙点睛、巧用修辞、详略得当、叙议结合、正侧相映等;议论文写作手法如引经据典、巧譬善喻、逆向求异、正反对比、类比推理等;小说的描写手法、烘托手法、伏笔和照应、悬念和释念、实写与虚写等。

表现手法的分析是一种很泛的题目,答题时要注意完整地理解题目的答题要求,要简洁准确地答题,对有些题目如欣赏写作技巧的题,应结合上下文语境、文章题材与体裁风格等来准确把握,选取其中最主要的一种回答即可,不必面面俱到,如小说塑造人物的种种手法,如散文抒发情感的种种手法等,尽量抓到得分点。

7、注:要了解一些常用程式(句式),如体现了什么,强调了什么,强化了什么,营造了什么,表现了什么,还有深化了主题,点明了题旨等等。

十、其他:“一去二三里,烟村四五家。亭台六七座,八九十枝花。”

二种常见叙事线索:物线、情线。

二种语言类型:口语、书面语。(语言特点 一般指口语的通俗易懂,书面语的严谨典雅,文学语言的鲜明、生动、富于形象性和充满感情色彩的特点。分析时,一般从修辞上进行分析。)

二种抒情:1、直接抒情 指作者直接出面就某种事物或情况抒发感情,由于是作者直接出面,直接抒情时的语言往往有强烈的主观性色彩。 (1)为抒发感情而选择某种形象 (2)针对形象直接抒情

2、间接抒情 指作者不直接出面,通过其它方式来抒发感情,语言比较冷静客观。 (1)借人物之口来抒情。 (2)通过特定的语调来抒情。

三种感情色彩:褒义、 贬义、 中性。

语言运用三原则:简明(语句简洁、明了,一般有字数上的限制。)、 连贯、 得体(文明礼貌,人性化。)。

三种说明顺序:(1)时间顺序、 (2)空间顺序、

(3)逻辑顺序。逻辑顺序包括六种:①一般←到→个别 ②现象←→本质 ③原因←→ 结果④概括←→具体 ⑤部分←→整体 ⑥主要←→次要

四种文学体裁:小说、 诗歌、 戏剧、 散文。

小说三要素:人物(根据能否表现小说主题思想确定主要人物)情节(开端 /发展 /高潮 /结局 ) 环境(自然环境/ 社会环境。)

人物 主要掌握通过适当的描写方法、角度刻画人物形象,反映人物思想性格的阅读技巧。

情节 主要了解各部分的基本内容,以及理解、分析小说情节的方法、技巧。

小说情节四部分:开端、 发展、 高潮、 结局。

开端 交代背景,铺垫下文。

发展 刻画人物,反映性格。

高潮 表现冲突,揭示主题。

结局 深化主题,留下思考。

环境 主要理解自然环境和社会环境的作用。

自然环境 描写自然景观,渲染气氛、衬托情感、预示人物命运、揭示社会本质、推动情节发展。

社会环境 描写社会状况,交代故事背景,揭示社会本质,铺垫下文内容。

句子的四种用途:陈述句、 疑问句、 祈使句、 感叹句。

记叙文六要素:时间、 地点、 人物、 事件的起因、经过和结果。

六种病句类型:①成分残缺 ②搭配不当 ③关联词语使用不恰当 ④前后矛盾 ⑤语序不当 ⑥误用 滥用虚词(介词)

七种说明方法:举例子、 打比方、 作比较、 列数字、 分类别、 下定义、引用。

初一语文知识点大全,以供同学们学习和参考,希望同学们的语文成绩越来越棒!

Ⅶ 初一数学知识点总结归纳

数学在初中学习中是一门十分重要的科目,下面是总结的初一重点数学知识点,希望能帮助到大家。

实数

1.平方根

平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。一个正数有两个实平方根,它们互为相反数,负数没有平方根。

2.立方根

如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根。

立方根性质

①在实数范围内,任何实数的立方根只有一个

②在实数范围内,负数不能开平方,但可以开立方。

③0的立方根是0

3.实数

实数,是有理数和无理数的总称。实数具有封闭性、有序性、传递性、稠密性、完备性等。

有理数

1.定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。

2.数轴:在数学中,可以用一条直线上的点表示数,这条直线 叫做数轴。

3.相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。

4.绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

5.有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

6.有理数的乘法

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积为0. 例:0×1=0

7.有理数的除法

除以一个不为0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不为0的数,都得0。

相交线与平行线

1.平行线的性质

性质1:两直线平行,同位角相等。 性质2:两直线平行,内错角相等。 性质3:两直线平行,同旁内角互补。 平行线的判定:

判定1:同位角相等,两直线平行。 判定2:内错角相等,两直线平行。 判定3:同旁内角相等,两直线平行。

2.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

平行线:在同一平面内,不相交的两条直线叫做平行线。 同位角、内错角、同旁内角:

3.同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。 命题:判断一件事情的语句叫命题。

4.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

几何图形

(1)几何图形

将从实物中抽象出的各种图形统称为几何图形。几何图形分为立体图形和平面图形。

(2)立体图形

立体图形是各部分不在同一平面内的几何图形,由一个或多个面围成的可以存在于现实生活中的三维图形。点动成线,线动成面,面动成体。

分类:柱体、锥体、旋转体、截面体等。

(3)平面图形

平面图形是几何图形的一种,指所有点都在同一平面内的图形,如直线、三角形、平形四边形等都是基本的平面图形。

分类:圆形、多边形、弓形、多弧形。

(4)点、线、面、体

点:点是最简单的形,是几何图形最基本的组成部分。点是空间中只有位置,没有大小的图形。

线:线是由无数个点集合成的图形。

面:在空间中,到两点距离相同的点的轨迹。

体:多面体是指四个或四个以上多边形所围成的立体。

(5)直线、射线、线段

直线:直线由无数个点构成。没有端点,向两端无限延长,长度无法度量。直线是轴对称图形。

射线:是指由线段的一端无限延长所形成的直的线,射线有且仅有一个端点,无法测量长度。

线段:是指直线上两点间的有限部分(包括两个端点) ,有别于直线、射线。

(6)角:在几何学中,角是由两条有公共端点的射线组成的几何对象。这两条射线叫做角的边,它们的公共端点叫做角的顶点。

(7)余角:两角之和为90°则两角互为余角,等角的余角相等。

(8)补角:两角之和为180°则两角互为补角,等角的补角相等。

平面直角坐标系

1.定义

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称直角坐标系。

2.有序数对

在直角坐标系中,对于平面上的任意一点,都有唯一的一个有序数对(即点的坐标)与它对应;反过来,对于任意一个有序数对,都有平面上唯一的一点与它对应。