① 小学六年级上册数学单元总结(苏教版)
苏教版六年级数学上册知识点归纳总结
第一单元 略
第二单元 长方体和正方体
1、两个面相交的线叫做棱,三条棱相交的点叫做顶点。
2、长方体相交于同一顶点的三条棱的长度,分别叫做它的长、宽、高。
3、长方体的特征:面——有六个面,都是长方形(特殊情况下有两个相对的面是正方形),相对的面完全相同;棱——有12条棱,相对的棱长度相等;顶点——有8个顶点。
4、正方体的特征:面——有六个面,都是正方形,所有的面完全相同;棱——有12条棱,所有的棱长度相等;顶点——有8个顶点。
5、正方体也是一种特殊的长方体。
6、把一个长方体或正方体纸盒展开,至少要剪开7条棱。
7、长方体(或正方体)的六个面的总面积,叫做它的表面积。
8、长方体的表面积=(长×宽+宽×高+高×长)×2
正方体的表面积=棱长×棱长×6。
9、物体所占空间的大小叫做物体的体积。
10、容器所能容纳物体的体积,叫做这个容器的容积。
11、常用的体积单位有立方厘米、立方分米、立方米。1立方米=1000立方分米,1立方分米=1000立方厘米。
12、计量液体的体积,常用升和毫升作单位。1立方分米=1升,1立方厘米=1毫升, 1升=1000毫升。
13、长方体的体积=长×宽×高 V =abh
14、正方体的体积=棱长×棱长×棱长 V =a×a×a
15、长方体(或正方体)的体积=底面积×高=横截面×长 V=Sh
16、1 =1 2 =8 3 =27 4 =64 5 =125 6 =216
7 =343 8 =512 9 =729 10 =1000
17、每相邻两个长度单位(除千米外)的进率都是10,每相邻两个面积单位之间的进率都是100,每相邻两个体积单位之间的进率都是1000。
18、正方体的棱长扩大n倍,表面积会扩大n 的平方倍,体积会扩大n 的立方倍。
第三单元 分数乘法
1、分数乘整数的意义与整数乘法的意义相同,是求几个相同加数的和的简便运算。
2、一个数乘分数表示求这个数的几分之几是多少,求一个数的几分之几是多少用乘法计算。
3、分数和分数相乘,用分子相乘的积作分子,分母相乘的积作分母。
4、乘积是1的两个数互为倒数。
5、1的倒数是1,0没有倒数。
6、一个数乘真分数(比1小的数)积比原数小;一个数乘比1大的假分数(比1大的数)积比原数大。
7、真分数的倒数都是假分数,都比1大;假分数的倒数是真分数或1,比1小或等于1。
第四单元 分数除法
比较量=单位“1”的量×分率;
单位“1”的量=比较量÷对应分率;
分率=比较量÷单位“1”的量
3、甲数除以乙数(0除外),等于甲数乘乙数的倒数(变号变倒数)。
4、一个数除以比1大的数商会比原数小,一个数除以比1小的数商会比原数大。
第五单元 认识比
1、两个数相除又叫做这两个数的比。
2、比号前面的数叫做比的前项,比号后面的数叫做比的后项。
3、比的前项相当于除式的被除数,相当于分数的分子;比号相当于除号相当于分数线:比的后项相当于除式的除数相当于分数的分母;比值相当于除式的商相当于分数的值。
4、两个数的比可以用比号连接也可以写成分数形式。
5、比的前项和后项同时乘或除以相同的数(0除外),比值不变,这是比的基本性质。
第八单元 可能性
概率=获胜的情况数除以所有可能出现的情况数。
第九单元 认识百分数
1、表示一个数是另一个数的百分之几的数叫做百分数,百分数又叫做百分比或百分率。
2、分数可以表示分率和数量,但百分数只能表示分率不能表示数量,所以百分数不能跟单位。
3、我们不能说分母是100的分数叫做百分数,因为它有可能是表示数量的分数。
4、把小数化成百分数:先把小数的小数点向右移动两位,再添上“%”。把百分数化成小数:先去掉“%”,再把小数点向左移动两位。
5、把分数化成百分数,除不尽时要先除到第四位小数,保留三位小数再化成百分数。把百分数化成分数先化成分母是100的分数,再约成最简分数。
② 六年级上册数学书一,二单元内容
六年级上册数学书
第一单元:圆
第一课时是圆的认识(一),第二课时是圆的认识(二),第三课时是欣赏与设计。第四课时圆的周长,第五课时圆的面积(一),第六课时圆的面积(二),第七课时练习一。
第二单元:分数混合运算 第一课时分数混合运算(一),第二课时分数混合运算(二);
第三课时分数混合运算(三);第四课时练习二;第五课时单元测评
③ 六年级上册数学书第一课圆的知识点有哪些
圆的认识,圆的周长,圆,圆环,扇形的面积,
④ 六年级数学上册第一单元《分数乘法》的知识点整理
一、分数乘法
(一)、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)、规律:(乘法中比较大小时)
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)、分数混合运算的运算顺序和整数的运算顺序相同。
(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a b = b a
乘法结合律: ( a b )c = a ( b c )
乘法分配律: ( a + b )c = a c + b c a c + b c = ( a + b )c
二、分数乘法的解决问题
(已知单位1的量(用乘法),求单位1的几分之几是多少)
1、找单位1: 在分率句中分率的前面; 或 占、是、比的后面
2、求一个数的几倍: 一个数几倍; 求一个数的几分之几是多少: 一个数 。
3、写数量关系式技巧:
(1)的 相当于 占、是、比相当于 =
(2)分率前是的: 单位1的量分率=分率对应量
(3)分率前是多或少的意思: 单位1的量(1 分率)=分率对应量
三、倒数
1、倒数的意义: 乘积是1的'两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:
(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数: 把小数化为分数,再求倒数。
3、1的倒数是1; 0没有倒数。 因为10乘任何数都得0, (分母不能为0)
4、 对于任意数 ,它的倒数为 ;非零整数 的倒数为 ;分数 的倒数是 ;
5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
⑤ 六年级数学上册知识点
圆的认识(一)
1.圆中心的一点叫圆心,用O表示。一端在圆心,另一端在圆上的线段叫半径,用r表示。
两端都在圆上,并过圆心的线段叫直径,用d表示。
2.圆有无数条半径,有无数条直径。
3.圆心决定圆的位置,半径决定圆的大小。
4.把圆对折,再对折就能找到圆心。
5.圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。
6.在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2.
圆的周长
8.圆的周长除以直径的商是一个固定的数,叫做圆周率,用字母π表示,计算时通常取3.14.
9.C=πd或C=πr. 半圆的周长
10. 1π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7 6π=18.84
7π=21.98 8π=25.12 9π=28.26 10π=31.4
圆的面积
11.用S表示圆的面积, r表示圆的半径,那么S=πr^2 S环=π(R^2-r^2)
12. 11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256
17^2=289 18^2=324 19^2=361 20^2=400
13.周长相等时,圆的面积最大。面积相等时,圆的周长最小。
面积相同时,长方形的周长最长,正方形居中,圆周长最短。
周长相同时,圆面积最大,正方形居中,长方形面积最小。
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
第四单元:比的认识
15.两个数相除,又叫做这两个数的比。比的后项不能为0.
16.比的前项和后项同时乘上或除以一个相同的数(0除外)。比值不变,这叫做比的基本性质。由于在平面直角坐标系中,先画X轴,而X轴上的坐标表示列。先用小括号将两个数括起来,再用逗号将两个数隔开。括号里面的数由左至右为列数和行数。
列数与行数必须是具体的数,而不能用字母如(X,5)表示,它表述一条横线,(5,Y)它表示一条竖线,都不能确定一个点。
二、分数乘法
分数乘法意义:1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。
2、分数乘分数是求一个数的几分之几是多少。
分数的化简:分子、分母同时除以它们的最大公因数。
关于分数乘法的计算:可在乘的过程中约分,提倡在计算过程中约分,这样简便。
分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。
倒数的意义:乘积为1的两个数互为倒数。
特别强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
求倒数的方法:1、求分数的倒数是交换分子分母的位置。
2、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。
1的倒数是它本身。因为1*1=1
0没有倒数。0乘任何数都得0=0*1,1/0(分母不能为0)
三、分数除法
分数除法是分数乘法的逆运算,就是已知两个数的积与其中一个因数,求另一个因数的运算。
除以一个数是乘这个数的倒数,除以几就是乘这个数的几分之一。
分数除法的基本性质:强调0除外
比:两个数相除也叫两个数的比。比表示两个数的关系,可以写成比的形式,也可以用分数表示,但仍读几比几。比值是一个数,可以是整数,分数,也可以是小数。比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:路程/速度=时间。
化简比:
1、用比的前项和后项同时除以它们的最大公约数。
2、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
3、两个小数的比,向右移动小数点的位置。也是先化成整数比。
比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
常用来做判断的:
一个数除以小于1的数,商大于被除数。
一个数除以1,商等于被除数。
一个数除以大于1的数,商小于被除数。
五、百分数
百分数的约分:百分数化成分数,写成分数形式,再约分。
分数表是一个数,也可以表示两个数的关系,百分数只表示两个数的关系,没有单位。
百分数的意义:表示一个数是另一个数的百分之几,也叫百分率或者百分比。
一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70、80%,出油率在30、40%。
六、统计
条形统计图可以知道每个数量的多少。
折现统计图可以知数量的增减,
扇形统计图可以知道部分和总量的关系。