㈠ 必读小升初数学知识点梳理
必读小升初数学知识点梳理
一、关于数学命题趋势的分析
纵观各级各类考试,数学命题有以下三个方面的趋势:
(一)综合性 主要考查学生的"双基",以及知识的综合运用能力。
如:小学数学的分数、小数的四则混合运算。运算中要注意:小数的相加、相减、相除三类运算中的小数点对齐问题,乘法运算中的乘数与被乘数共有几位小数,所得的积就有几位小数,不够时要补零。分数的加减运算要注意通分(先找出分母的最小公倍数,再将分子、分母同时扩大相同的倍数。)带分数相加减,应将整数、分数部分分别相加减,然后将所得的结果进行合并,如分数部分不够减,要考虑向整数部分"借"。分数运算中"约分"的思想是化繁为简的理论基础,要将它和关系"重新组合"、"拆项"等结合起来,加以训练。
(二)延续性 所谓"延续性"是指相关数学知识在以后的学习中是否会重新"遭遇"。从数学体系的角度来看,"函数"的思想、"立体感"的建立等都是非常重要的。这些内容在小学数学中往往表现为应用题的列式,圆、圆柱、圆锥、长方体、正方体的识图、运算与转化等。
(三)变通性 所谓"变通性"是指学生对相关数学知识的灵活运算的能力。常见的有"发现新规律,定义新运算的能力"、"优化设计(最大、最小)的能力"、"分析推理(执因索果)的能力"、以及"公式的变形与迭代(包括单位换算、数的进制、手表问题等)的能力"。
二、关于数学应用问题的归类
小学数学的应用题往往是概念、公式的应用。
小学数学常用的一些概念、公式,应加以记忆。如:存入银行的钱叫做本金;取款时银行多付的钱叫做利息;购买建设债券和储蓄在实质上是一样的,是支援国家建设的另一种方式,只是债券的利率一般高于定期储蓄;"一成"就是十分之一,改写成百分数就是10%;表示两个比相等的式子叫做比例;比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项;在比例里,两个外项的积等于两个内项的积(比例的基本性质);比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例,解比例要根据比例的基本性质来解。图上距离和实际距离的比叫做比例尺;一种量变化,另一种量也随着变化,这两种量是两种相关联的量;圆的周长公式:C=2Π r或C=ΠD;圆柱的侧面积=底面周长×高;长方体的体积=长×宽×高=底面积×高;长方形的面积=长×宽; 正方形的面积=边长×边长;平行四边形的面积=底×高;三角形的面积=1/2 ×底×高;梯形的面积:= 1/2(上底+下底)×高;圆的面积=∏×R×R;长方体、正方体和圆柱的体积公式可以统一写成:"底面积×高"等等。
(一)分数、百分数的应用题 "分率(百分率、利率、折扣)"的概念是解题的关键,其中标准量"1"的选取是解题突破口。
(二)工程问题 工程问题要弄清工作量、工作效率、工作时间三者之间的关系:工作量=工作效率×工作时间;工作效率= 工作量/工作时间;工作时间=工作量/工作效率 ;总工作量=各分工作量之和
(三)行程问题 从表层意义上是考查学生对路程、时间、速度三者关系的认识,从深层次的角度分析,实际上是检查学生的变通能力,因为需要考虑的不仅仅是"路程=时间×速度;时间=路程 /速度;速度=路程/时间 ",往往还涉及到时间、地点和方向等诸多要素,因此,解这类题目的关键是认准哪些是"变化的条件",如何在解题中准确运用"不变的公式"。
(四)浓度问题 (不作重点要求) 这类题目要求了解的关系式: 溶液=溶质+ 溶剂 ;浓度=溶质 / 溶液;溶液= 溶质 / 浓度;溶质= 溶液×浓度
三、简单的几何问题
面积、体积问题 主要考虑以下内容:
平行四边形面积计算公式怎样得到的?三角形和梯形面积计算公式怎样得到的?圆的面积计算公式呢?思索正方形面积是怎样计算的?为什么?
提示:我们在得到长方形面积计算公式后,可以通过剪、拼等方法,对图形进行转化,从而得出相应图形的面积计算公式。
求表面积就是求立体图形的什么?(所有面的面积总和)长方体表面积是怎样算的?这类题还有什么简便的方法?圆柱体表面积是怎样算的?
提示:立体图形的表面积是所有面的面积的总和,所以要先求各部分的面积,然后相加。长方体和圆柱体的表面积都可以用侧面积加两个底面积。
求长方体和圆柱的体积有什么相同的地方?
提示:长方体其实也是一个柱体,长方体和圆柱体的体积,其实都是用底面积乘以高。
圆柱(锥) 是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的。要认识圆柱的`底面、侧面和高;认识圆锥的底面和高。要知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。
四、简单的统计
简单的统计表、统计图、还学过求平均数和求百分数等都是统计初步知识。
在统计工作中除了对数据进行分类整理用统计表来表示以外,有时还可以用统计图来表示。常见统计图有以下三类:条形统计图;折线统计图;扇形统计图。
要认识统计图,并明确统计图的特点和作用,经历"收集、整理数据和用统计图表示数据、整理结果"过程。能根据绘制出的统计图,分析数据所反映的一些简单事实,能作出一些简单的推理与判断,进一步认识统计是解决实际问题的一种策略和方法。在学习统计知识的同时,感受数学与生活的联系及其在生活中的应用。
求平均数的关键,是要先弄清被平均的数量是什么,总数是多少;以及要求的平均数是按照什么平均的,要平均分成多少份等等。
掌握一些与百分数有关的概念,如:发芽率,出勤率,成活率,利息等。了解有关利息的初步知识,知道"本金"、"利息"、"利率"的含意,会利用利息的计算公式进行一些有关利息的简单计算。理解成数的意义,知道它在实际生产生活中的简单应用,会进行一些简单计算。税收的计算也是百分数的一种具体应用。了解什么是个人所得税,怎样计算个人所得税? 什么是成活率?它的计算公式是什么?
;㈡ 小学数学常用的教学方法有哪几种
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?
由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.
㈢ 小升初数学要如何备考最有效
小升初竞争压力越来越大,不少家长早早开始计划孩子的小升初备考。如何高效备考小升初数学?上海爱智康小学辅导频道搜集整理了以下内容,大家可以参考。
首先来看看2017小升初数学考试命题趋势解读
(一)综合性
主要考查学生的“双基”,以及知识的综合运用能力,如:小学数学的分数、小数的四则混合运算。
运算中要注意:
(1)小数的相加、相减、相除三类运算中的小数点对齐问题;
(2)乘法运算中的乘数与被乘数共有几位小数,所得的积就有几位小数,不够时要补零;
(3)分数的加减运算要注意通分(先找出分母的最小公倍数,再将分子、分母同时扩大相同的倍数);
(4)带分数相加减,应将整数、分数部分分别相加减,然后将所得的结果进行合并,如分数部分不够减,要考虑向整数部分“借”;
(5)分数运算中“约分”的思想是化繁为简的理论基础,要将它和关系“重新组合”、“拆项”等结合起来,加以训练。
(二)延续性
所谓“延续性”是指相关数学知识在以后的学习中是否会重新“遭遇”。从数学体系的角度来看,“函数”的思想、“立体感”的建立等都是非常重要的。
这些内容在小学数学中往往表现为应用题的列式,圆、圆柱、圆锥、长方体、正方体的识图、运算与转化等。
(三)变通性
所谓“变通性”是指学生对相关数学知识的灵活运算的能力。常见的有“发现新规律,定义新运算的能力”、“优化设计(最大、最小)的能力”、“分析推理(执因索果)的能力”、以及“公式的变形与迭代(包括单位换算、数的进制、手表问题等)的能力”。
再从三个方面来看如何高效备考小升初数学
一、清楚奥数比赛与小升初的关系
杯赛一定程度上是为小升初提供了试题、筹码、经验以及增强了学生的自信心。
二、小升初数学备考计划
小升初作为应试升学,却缺乏应试升学应有的复习备考环节应有的复习备考环节!要想在小升初中脱颖而出,六年级进行综合复习、真题模拟很重要!
三、从知识方面充分做好择校备考工作
前面提到,择校题中,奥数很少(有的学校几乎补考奥数)。从题型上来说,主要有判断题,选择题,填空题,口算题,巧算题,几何题,应用题等,与平时的常规考题题型基本一致,从知识上来讲,以小学五六年级知识为主,会有很少量的超纲题(入勾股定理,解方程,字母表示数量)。
更多小升初数学备考方法及备考资料,你可以搜索《如何高效备考小升初数学(含知识点归纳)》这篇文章看看。
㈣ 学期末数学素养展示主要考察哪些方面
这学期开始写反思之后,我对过去的一些教学也不断的重新审视。其中最明显的一点就是,过去我对已有的制度或者形式只是照做,现在我会思考其是否有意义、有效果。这学期眼看已经要进行尾声,学生的数学素养展示测试也要进行了,过去的数学素养展示就是单纯的口算能力测试,但是如今的我再去看,就会觉得这样的形式应当摒弃了。小学数学素养是指个人应对复杂社会应具备的各种能力的综合体,主要包括知识、技能、态度、价值观。一般认为,素养与知识(或认知)、能力(技能)、态度(或情意)等概念的不同在于,它强调知识、能力、态度的统整,超越了长以来知识与能力二元对立的思维方式,凸显了情感、态度、价值观的重要,强调了人的反省思考及行动与学习。义务教育数学课程标准(2011年版)》(以下简称《标准》)明确提出10个核心词,即数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。
1、 数感
关于数与数量、数量关系、运算结果估计等方面的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。
2、 符号意识
能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行运算和推理,得到的结论具有一般性。建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。
3、 空间观念
根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。
4、 几何直观
利用图形描述分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。
5、 数据分析观念
了解现实生活中许多问题应先做调查研究,收集数据,通过分析做出判断,体会数据中蕴涵着信息;了解对于同样的数据可以有多种分析方法,需要根据问题背景选择合适的方法;通过数据分析体验随机性。数据分析是统计的核心。
6、 运算能力
能够根据法则和运算律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。
7、 推理能力
推理能力的发展应贯穿在整个数学学习过程中。推理是数学的基本思维方式,也是学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理。在解决问题的过程中,两者功能不同,相辅相成。合情推理用于探索思路,发现结论; 演绎推理用于证明结论。
8、 模型思想
模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。建立和求解模型的过程包括:问题抽象,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果并讨论意义。这些内容的学习有助于学生初步形成模型思想,提高学习数学的兴趣和应用意识。
9、应用意识
应用意识有两个方面的含义,一方面,有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题;另一方面,认识到现实生活中蕴涵着大量与数量和图形有关的可题,这些问题可以抽象成数学问题,用数学的方法予以解决。在整个数学教育的过程中都应该培养学生的应用意识,综合实践活动是培养应用意识很好的载体。
10、创新意识
创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。学生自己发现和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法。创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终。
归根结底,学生学数学是为了用数学,而不是只会做几个题、算几个数。因此,在学期结尾的数学素养展示中,题目必须要根据教材中体现出的上述数学核心素养来进行考察。上述10个核心关键词中,我认为者本学期教材中有重点体现的有以下几种:数感、符号意识、运算能力、推理能力、模型思想、应用意识。因此,我暂定本学期末数学素养展示的考察题目为以下几个:
1、5的4倍是几?画图、列式,写出口诀(考察学生对乘法的意义的理解)
2、12是几的3倍?画图、列式,写出口诀(考查学生对除法意义的理解、对题目中两个数之间关系的理解)
3、15是3的几倍?画图、列式,写出口诀(考查学生对除法意义的理解、对题目中两个数之间关系的理解)
4、一图四式(考察学生分析图片中信息的能力、体会图中物体状态的能力)
5、计算:连乘、连除、乘除混合(考察学生对算式计算顺序的掌握情况)
6、看图列出乘加、乘减算式(考查学生分析图片的能力)
㈤ 小学五年级数学如何复习
1.重视基础知识,提高解题准确度和速度
中考,首先是考查基础知识和基本技能.数学中考试题满分120分,其中较易试题,中等试题,较难试题的分值比例大致是7:2:1,其中较易试题和大部分中等试题都是考查基础知识和基本技能,如果把这部分全部拿到,成绩不会太低.
2.重视应用
以"解决简单实际问题"为目标的应用题,是初中数学的重点和难点,也是近年来中考命题的热点.
例,为缓解"停车难"问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图(如图).按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入.为标明限高,请你根据该图计算的高.精确到0.1m).
点拨:方程思想的最大应用就是列方程解实际问题,要注意的是求得的解必须符合实际意义,即需要检验.
3.重视创新开放
《大纲》指出:"初中数学中要培养的创新意识主要是指:对自然界和社会中的现象具有好奇心,不断追求新知,独立思考,会从数学的角度发现和提出问题,并用数学方法加以探索,研究和解决".
4.解题之后要反思,从六个方面进行:
①思因果②思规律③思多解④思变通⑤思归类⑥思错误.
5.重视数学思想方法,提高解题能力
数学思想方法是知识转化为能力的桥梁和纽带.转化和化归思想(消元法,降次法,待定系数法),函数与方程思想,数形结合思想,分类讨论思想都是每年中考必考的数学思想方法.