‘壹’ 求小学数学人教版知识点整理及复习题目
小学数学总复习知识整理(全)
第一章 数和数的运算
一 概念
(一)整数
1 整数的意义
自然数和0都是整数。
2 自然数
我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。0也是自然数。
3计数单位
一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4 数位
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除
整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。
一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如把28分解质因数
几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。
公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是1。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……
3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数
1 小数的意义
把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2小数的分类
纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。
带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。
有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 ……
无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏
循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 …… 0.5656 ……
混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 ……
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作 0.5302302 …… 简写作 。
(三)分数
1 分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2 分数的分类
真分数:分子比分母小的分数叫做真分数。真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3 约分和通分
把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数
1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。
累死我啦~~~
‘贰’ 人教版初一数学重要知识点
学习从来无捷径,循序渐进登高峰。如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。学习需要勤奋,做任何事情都需要勤奋。下面是我给大家整理的一些初一数学的知识点,希望对大家有所帮助。
七年级数学 知识点
生活中的轴对称
1、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2、轴对称:对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。可以说成:这两个图形关于某条直线对称。
3、轴对称图形与轴对称的区别:轴对称图形是一个图形,轴对称是两个图形的关系。
联系:它们都是图形沿某直线折叠可以相互重合。
2、成轴对称的两个图形一定全等。
3、全等的两个图形不一定成轴对称。
4、对称轴是直线。
5、角平分线的性质
1、角平分线所在的直线是该角的对称轴。
2、性质:角平分线上的点到这个角的两边的距离相等。
6、线段的垂直平分线
1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。
2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。
7、轴对称图形有:
等腰三角形(1条或3条)、等腰梯形(1条)、长方形(2条)、菱形(2条)、正方形(4条)、圆(无数条)、线段(1条)、角(1条)、正五角星。
8、等腰三角形性质:
①两个底角相等。②两个条边相等。③“三线合一”。④底边上的高、中线、顶角的平分线所在直线是它的对称轴。
9、①“等角对等边”∵∠B=∠C∴AB=AC
②“等边对等角”∵AB=AC∴∠B=∠C
10、角平分线性质:
角平分线上的点到角两边的距离相等。
∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF
11、垂直平分线性质:垂直平分线上的点到线段两端点的距离相等。
∵OC垂直平分AB∴AC=BC
12、轴对称的性质
1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。2、关于某条直线对称的两个图形是全等图形。
2、如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分。
3、如果两个图形关于某条直线对称,那么对应线段、对应角都相等。
13、镜面对称
1.当物体正对镜面摆放时,镜面会改变它的左右方向;
2.当垂直于镜面摆放时,镜面会改变它的上下方向;
3.如果是轴对称图形,当对称轴与镜面平行时,其镜子中影像与原图一样;
学生通过讨论,可能会找出以下解决物体与像之间相互转化问题的办法:
(1)利用镜子照(注意镜子的位置摆放);(2)利用轴对称性质;
(3)可以把数字左右颠倒,或做简单的轴对称图形;
(4)可以看像的背面;(5)根据前面的结论在头脑中想象。
初一数学知识点
一元一次方程的应用
1.一元一次方程解应用题的类型
(1)探索规律型问题;
(2)数字问题;
(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);
(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);
(5)行程问题(路程=速度×时间);
(6)等值变换问题;
(7)和,差,倍,分问题;
(8)分配问题;
(9)比赛积分问题;
(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).
2.利用方程解决实际问题的基本思路:
首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。
列一元一次方程解应用题的五个步骤
(1)审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.
(2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.
(3)列:根据等量关系列出方程.
(4)解:解方程,求得未知数的值.
(5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句.
初一数学 方法 技巧
1.请概括的说一下学习的方法
曰:“像做其他事一样,学习数学要研究方法。我为你们推荐的方法是:超前学习,展开联想,多做 总结 ,找出合情合理。
2.请谈谈超前学习的好处
曰:“首先,超前学习能挖掘出自身的潜力,培养自学能力。经过超前学习,会发现自己能独立解决许多问题,对提高自信心,培养学习兴趣很有帮助。”
其次,够消除对新知识的“隐患”。超前学习能够发现在现有的基础上,自己对新知识认识的不妥之处。相反地,若直接听别人说。似乎自己也能一开始就达到这种理解水平,实践证明,并非这样。
再次,超前学习中的有些内容,当时不能透彻理解,但经过深思之后,即使搁置一边,大脑也会潜意识“加工”。当教师进度进行到这块内容时,我们做第二次理解,会深刻的多。
最后,超前学习能提高听课质量。超前学习以后,我们发现新知识中的多数自己完全可以理解。只有少数地方需借助于别人。这样,在课堂上,我们即能将可以集中注意力的时间放“这少数地方”的理解上,即“好钢用在刀刃上”。事实上,一节课,能集中注意力的时间并不太多。
3.请谈谈联想与总结
曰:联想与总结贯穿与学习过程中的始终。对每一知识的认识,必定要有认识基础。寻找认识基础的过程即是联想,而认识基础的是对以前知识的总结。以前总结的越简洁、清晰、合理,越容易联想。这样就可以把新知识熔进原来的知识结构中为以后的某次联想奠定基础。联想与总结在解题中特别有效。也许你以前并没有这样的认识,但解题能力却很强,这说明你很聪明,你在不自觉中使用这种做法。如果你能很明确的认识这一点,你的能力会更强。
4.那么我们怎样预习呢?
曰:“先 说说 学习的目标:(1)知道知识产生的背景,弄清知识形成的过程。
(2)或早或晚的知道知识的地位和作用:(3)总结出认识问题的规律(或说出认识问题使用了以前的什么规律)。
再说具体的做法:(1)对概念的理解。数学具有高度的抽象性。通常要借助具体的东西加以理解。有时借助字面的含义:有时借助其他学科知识。有时借助图形……理解概念的境界是意会。一定要在理解概念上下一番苦功夫后再做题。
(2)对公式定理的预习,公式定理是使用最多的“规律”的总结。如:完全平方公式,勾股定理等。往往公式的推导定理的证明蕴含着丰富的数学方法及相当有用的解题规律。如三角形内角平分线定理的证明。我们应当先自己推导公式或证明定理,若做不成再参考别人的做法。无论是自己完成的,还是看别人的,都要说出这样做是怎样想出来的。
(3)对于例题及习题的处理见上面的(2)及下面的第五条。
人教版初一数学重要知识点相关 文章 :
★ 人教版初一数学知识点整理
★ 初一数学人教版知识点归纳
★ 初一数学知识点人教版
★ 2021初一数学知识点总结
★ 初一人教版数学上册知识点总结归纳
★ 人教版七年级上册数学知识点
★ 初一数学重点知识点归纳有哪些
★ 初一数学知识点2021
★ 七年级数学知识点大全
★ 人教版初一数学下册知识点复习总结备战中考
‘叁’ 人教版高一数学b版必修一知识点总结
1.集合的关系(属于、子集、并集、交集……)2.函数(定义域、对应法则、值域)3.初等函数(幂函数、指数函数、对数函数)4.函数与生活问题的结合(建立函数模型)
‘肆’ 人教版高中数学AB版有何区别
人教版高中数学AB版
1、知识内容不同:
A版与B版在同一模块知识内容上有所不同。A版的一些数学概念要少于B版。如必修2中第一章《空间几何体》中有关四棱柱的分类、正棱柱与正棱台的概念在B版中不仅给出,而且还在运用考查,而在A版中未给出。
2、解题方法不同:
A版与B版在同一模块知识的解决方法不同。如A版在立体几何这一块用的是纯几何图形法来解题。而B版的这一块用的是向量法从代数的角度来解题。
3、难易程度不同:
A版与B版相比,A版更加内容更简单,要求掌握的知识点也比较少。如人教A版和B版在第一章里有区别,人教A版没有学习反三角函数,没有设计三角函数的余切值,但是人教B版都有。并且A版还省略的内容是和物理、化学等结合较密切的知识。
4、侧重点不同:
B版比A版更全面注重揭示概念的本质,提高数学素养。所以适合对数学有兴趣的学生,而A版教材适用于自学者或者对高中数学要求没有那么高的学生。比如同样是立体几何,A版注重空间想象思维考查,B版则着重考查概念的延伸。
‘伍’ 人教版初一数学知识点
知识是一座宝库,而实践就是开启宝库的钥匙。学习任何学科,不仅需要大量的记忆,还需要大量的练习,从而达到巩固知识的效果。下面是我给大家整理的一些初一数学的知识点,希望对大家有所帮助。
七年级下册数学知识点
概率
一、事件:
1、事件分为必然事件、不可能事件、不确定事件。
2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。
3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。
4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。
二、等可能性:是指几种事件发生的可能性相等。
1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。
2、必然事件发生的概率为1,记作P(必然事件)=1;
3、不可能事件发生的概率为0,记作P(不可能事件)=0;
4、不确定事件发生的概率在0—1之间,记作0
三、几何概率
1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。
2、求几何概率:
(1)首先分析事件所占的面积与总面积的关系;
(2)然后计算出各部分的面积;
(3)最后代入公式求出几何概率。
初一数学下册知识点 总结
篇一:直线、射线、线段
(1)直线、射线、线段的表示 方法
①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.
②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.
③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。
(2)点与直线的位置关系:
①点经过直线,说明点在直线上;
②点不经过直线,说明点在直线外。
篇二:两点间的距离
(1)两点间的距离:连接两点间的线段的长度叫两点间的距离。
(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离。
篇三:正方体
(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.
(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.
(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.
篇四:一元一次方程的解
定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。
把方程的解代入原方程,等式左右两边相等。
13、解一元一次方程:
1.解一元一次方程的一般步骤
去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。
2.解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。
3.在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。
使方程逐渐转化为ax=b的最简形式体现化归思想。
将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。
七年级数学 学习方法 技巧
1回归书本,梳理章节概念公式、性质定理等
就像盖房子,房子的地基是否扎实稳固。比如我们在复习课中,要求孩子们默写公式等,记忆单项式、多项式、整式的概念,以及幂的运算、整式乘除的法则,而且一定要记住平方差和完全平方公式以及变形。有些孩子能够背下完全平方公式,但是一旦用的时候,就偏偏不用,因为不够熟练,怕出错,所以就用最复杂的公式推导一遍,费时费力,还总错,而且重要的公式更加生疏。
比如知识点填空:
知识点填空
我们的孩子在学校大题普遍做的多,考试也能拿到一些分数,但是选择填空老错,考完试下来一看,错就错在概念不清。
比如平行线是怎么定义,性质定理有几条,判定定理有几条?他们之间有什么联系和区别?在这一章中,哪些地方一定要加“同一平面内”这5个字?家长们可以让孩子找找看,捋一捋。
再比如说,三角形一章,涉及到三边关系,角的关系,以及三角形的重要线段和它们的性质,等腰等边三角形的性质,这些一定是期末选择题的备选项。
还有全等的几种证明方法,常见的辅助线做法这是几何证明题的思路。
2题型突破,对各章节常见的 热点 问题归纳练习。
我们的数学、物理这些理科都是要做题型的,而不仅仅是做题,一定要明白思路。
大多数孩子要考的题型和难度,学校每天的作业以及每周的考试卷,你都必须分析一下,对题型归类,你可以用不同的笔标记一下,比如第2题和第8题是一类题,是化简求值还是公式的变形应用?通过这样一遍的分析,孩子们都会发现,其实考来考去,就是那几种题型反复的出,反复的练。这是非常高效的学习方法。
3、熟悉套路、模型
平行线常见的模型:铅笔模型、猪蹄模型,比如我经常和大家说的,遇见拐点,就做平行线。
三角形倒角常见模型:8字型、飞镖型、折角型。
三角形全等模型:角平分线的性质模型,等腰直角三角形模型,三垂直模型,翻折(对称)。
学好这些模型相等于我们是拿着工具箱考试,效率很高,比起其他同学,省去了推导的过程,速度又快,又准确。当然前提要掌握好基础内容,不要本末倒置。
如果孩子们能把前面的步骤都做好了,基本知识点,题型都掌握了,计算也不会出错,那你们考试一定没有问题,除了有些学校本来要求考很难,比如压轴题,不在于做的多,而是在精练,你做完之后不断的复盘,用自己的语言说出思路来,找找看里面的逻辑关系。
4、坚持改错题
把整个学期的试卷装订在一起,每周花半天的时间,订正错题,不会的标记星号,问老师问同学,直到会了为止,下周继续改,看自己是否真的懂了,对于错题,就像骆驼吃草一样,不停地咀嚼,错题也需要孩子们不断反复的看思路,才能在考试的时候避免在同类型的题上反复错。
人教版初一数学知识点相关 文章 :
★ 初一数学人教版知识点归纳
★ 初一数学上册知识点人教版
★ 人教版初一数学知识点
★ 初一数学上册知识点归纳
★ 初一数学人教版上知识点
★ 初一数学知识点人教版
★ 初一人教版数学上册知识点总结归纳
★ 初一上册数学知识点总结人教版(2)
★ 初一数学上册人教版提纲
★ 初一数学上册人教版知识点归纳(2)
‘陆’ 初一上下册数学人教版知识点
有理数: (1)凡能写成 )0pq,p(p q 为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数; (2)有理数的分类: ① 负分数负整数负有理数零正分数正整数正有理数有理数 ② 负分数正分数分数负整数零 正整数 整数有理数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; (4)自然数 0和正整数; a>0 a是正数; a<0 a是负数; a≥0 a是正数或0 a是非负数; a≤ 0 a是负数或0 a是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b; (3)相反数的和为0 a+b=0 a、b互为相反数. (4)相反数的商为-1. (5)相反数的绝对值相等 4.绝对值: (1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2) 绝对值可表示为: ) 0a(a)0a(0)0a(aa 或 )0()0(aaaaa ; (3) 0a1a a ; 0a1a a; (4) |a|是重要的非负数,即|a|≥0; 5.有理数比大小: (1)正数永远比0大,负数永远比0小; (2)正数大于一切负数; (3)两个负数比较,绝对值大的反而小; (4)数轴上的两个数,右边的数总比左边的数大; (5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。 6.倒数:乘积为1的两个数互为倒数; 注意:0没有倒数; 若ab=1 a、b互为倒数; 若ab=-1 a、b互为负倒数. 等于本身的数汇总: 相反数等于本身的数:0 倒数等于本身的数:1,-1 绝对值等于本身的数:正数和0 平方等于本身的数:0,1 立方等于本身的数:0,1,-1. 7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律: (1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10 有理数乘法法则: (1)两数相乘,同号得正,异号得负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac .(简便运算) 12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, 无意义即0 a . 13.有理数乘方的法则: (1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数; 14.乘方的定义: (1)求相同因式积的运算,叫做乘方; (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; (3)a2 是重要的非负数,即a2 ≥0;若a2 +|b|=0 a=0,b=0;(4)据规律 100101101.01.022 2底数的小数点移动一位,平方数的小数点移动二位. 15.科学记数法:把一个大于10的数记成a×10n 的形式,其中a是整数数位只有一位的数, 这种记数法叫科学记数法. 16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤。 19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。 整式的加减 1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。 2.单项式的系数与次数:单项式中的数字因数,称单项式的系数; 单项式中所有字母指数的和,叫单项式的次数. 3.多项式:几个单项式的和叫多项式. 4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数; 5. 多项式 单项式整式 . 6.同类项: 所含字母相同,并且相同字母的指数也相同的单项式是同类项. 7.合并同类项法则: 系数相加,字母与字母的指数不变. 8.去(添)括号法则: 去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号. 9.整式的加减:一找:(划线);二“+”(务必用+号开始合并)三合:(合并) 10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列). 一元一次方程 1.等式:用“=”号连接而成的式子叫等式. 2.等式的性质: 等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式. 3.方程:含未知数的等式,叫方程. 4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”! 5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1. 6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程. 7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0). 8.一元一次方程解法的一般步骤: 化简方程----------分数基本性质 去 分母----------同乘(不漏乘)最简公分母 去 括号----------注意符号变化 移 项----------变号(留下靠前) 合并同类项--------合并后符号 系数化为1---------除前面 10.列一元一次方程解应用题: (1)读题分析法:„„„„ 多用于“和,差,倍,分问题” 仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程. (2)画图分析法: „„„„ 多用于“行程问题” 利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础. 11.列方程解应用题的常用公式: (1)行程问题: 距离=速度·时间 时间距离速度 速度 距离时间; (2)工程问题: 工作量=工效·工时 工时工作量工效 工效工作量 工时; 工程问题常用等量关系: 先做的+后做的=完成量 (3)顺水逆水问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;水流速度=(顺水速度-逆水速度)÷2 顺水逆水问题常用等量关系: 顺水路程=逆水路程(4)商品利润问题: 售价=定价 10 几折 , %100 成本成本 售价利润率; 利润问题常用等量关系: 售价-进价=利润 (5)配套问题: (6)分配问题:
‘柒’ 人教版初一数学知识点整理
知识是取之不尽,用之不竭的。只有限度地挖掘它,才能体会到学习的乐趣。任何一门学科的知识都需要大量的记忆和练习来巩固。虽然辛苦,但也伴随着快乐!下面是我给大家整理的一些初一数学的知识点,希望对大家有所帮助。
人教版初一数学知识点整理
数据的收集与整理
1、普查与抽样调查
为了特定目的对全部考察对象进行的全面调查,叫做普查。其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。
从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。
2、扇形统计图
扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)
圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)
3、频数直方图
频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。
4、各种统计图的特点
条形统计图:能清楚地表示出每个项目的具体数目。
折线统计图:能清楚地反映事物的变化情况。
扇形统计图:能清楚地表示出各部分在总体中所占的百分比。
人教版初一数学下册知识点 总结
篇一:直线、射线、线段
(1)直线、射线、线段的表示 方法
①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.
②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.
③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。
(2)点与直线的位置关系:
①点经过直线,说明点在直线上;
②点不经过直线,说明点在直线外。
篇二:两点间的距离
(1)两点间的距离:连接两点间的线段的长度叫两点间的距离。
(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离。
篇三:正方体
(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.
(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.
(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.
篇四:一元一次方程的解
定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。
把方程的解代入原方程,等式左右两边相等。
13、解一元一次方程:
1.解一元一次方程的一般步骤
去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。
2.解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。
3.在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。
使方程逐渐转化为ax=b的最简形式体现化归思想。
将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。
初一 数学 学习方法
一预习
对于理科学习,预习是必不可少的。我们在预习中,应该把书上的内容看一遍,尽力去理解,对解决不了的问题适当作出标记,请教老师或课上听讲解决,并试着做一做书后的习题检验预习效果。
二听讲
这一环节最为重要,因为老师把知识的精华都浓缩在课堂上,听数学课时应做到抓住老师讲题的思路,方法。有问题记下来,课下整理,解决,数学课上一定要积极思考,跟着老师的思路走。
三复习
体会老师课上的例题,整理思维,想想自己是怎么想的,与老师的思路有何异同,想想每一道题的考点,并试着一题多解,做到举一反三。
四作业
认真完成老师留的习题,适当挑选一些课外习题作为练习,但切忌一味追求偏题,怪题,更不要打“题海战术”。
五总结
这一步是为了更好的掌握所学知识。在学完一段知识或做了一道典型题后可总结:总结专题的数学知识;总结自己卡壳的地方;总结自己是怎么错的,错在哪里,总结题目的“陷阱”设在哪里及总结自己或他人的想法。
如何挑选及处理习题
一市面上的习题集数不胜数,大多数的习题集互相抄袭,漏洞百出,使同学在练习的过程中费时费力。我认为历的考试真题是的习题,它紧扣考试大纲,难度适中,不会出现偏题怪题的现象。同时也使同学们紧紧的把握考试的方向,少走弯路。
二有的同学喜欢“题海战术”拿题就做,从不总结,感觉作的越多,成绩越高。这是学习数学的弊端之一。
要记住:题不在于多而在于精。作题是必不可少的,但作完每一道题都要认真的 反思 ,这道题的考点是什么,这道题的解题方法有多少种,哪种方法最简便,对于作错的习题要反复的思考,找出错误的原因,确保该知识点的熟练掌握。
三很多同学喜欢作偏题,难题。但却疏忽了对书本中的定义,概念及公式的理解。从而导致了在考试中经常出现“基本题”失误的现象。
因此,在平时的数学练习中,要对书中的每一个知识点都要深刻的理解,找出可能出现的考点,陷阱。在考试中则要做到“基本题全作对,稳作中档题一分不浪费,尽力冲击高档题,即使错了不后悔。”
初一下册数学辅导复习资料
1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。从实物中抽象出的各种图形统称为几何图形。有些几何图形的各部分不在同一平面内,叫做立体图形。有些几何图形的各部分都在同一平面内,叫做平面图形。虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。
2.几何图形的分类:几何图形一般分为立体图形和平面图形。
3.直线:几何学基本概念,是点在空间内沿相同或相反方向运动的轨迹。从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。常用直线与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。
4.射线:在欧几里德几何学中,直线上的一点和它一旁的部分所组成的图形称为射线或半直线。
5.线段:指一个或一个以上不同线素组成一段连续的或不连续的图线,如实线的线段或由“长划、短间隔、点、短间隔、点、短间隔”组成的双点长划线的线段。
线段有如下性质:两点之间线段最短。
6. 两点间的距离:连接两点间线段的长度叫做这两点间的距离。
7. 端点:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。
线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段AB或线段BA,线段a。其中AB表示直线上的任意两点。
8.直线、射线、线段区别:直线没有距离。射线也没有距离。因为直线没有端点,射线只有一个端点,可以无限延长。
9.角:具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边。
10.角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。
2.系数:单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1。
3.多项式:几个单项式的和叫多项式。
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数项的次数叫多项式的次数。
5.常数项:不含字母的项叫做常数项。
人教版初一数学知识点整理相关 文章 :
★ 初一数学人教版知识点归纳
★ 七年级数学知识点整理
★ 人教版初一数学上册知识点
★ 初一数学上册知识点归纳
★ 初一人教版数学上册知识点总结归纳
★ 初一数学上册知识点汇总归纳
★ 初一数学知识点人教版
★ 初一数学上册知识点人教版
★ 七年级数学知识点梳理总结
★ 初一数学上册人教版知识点归纳(2)
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();‘捌’ 一年级数学人教版知识点梳理
只有学习精彩,生命才精彩,只有学习成功,事业才成功。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。下面是我给大家整理的一些 一年级数学 的知识点,希望对大家有所帮助。
小学一年级上册数学1到5的认识知识点
【知识点】
1、数的认识
(1)数数,读数,写数
(2)比大小(“<”或“>”〉,排序
(3)数的组成
(4)基数,序数
2、0的认识——-表示没有,表示起点。
3、计算:
加法计算——-意义的理解,认识加号。
减法计算——-意义的理解,认识减号。
会相关的计算(5以内):加法、减法、0的计算。
【练习题】
1+3=()1+1=()3-3=()2+3=()
4-4=()3-3=()3-1=()2-2=()
1+1=()3+1=()2+3=()1+4=()
1+2=()3-2=()4-3=()2-2=()
1+1=()2-1=()3-1=()4+1=()
2-2=()4-2=()3-3=()2+3=()
4-3=()2+2=()3-2=()2+2=()
4-4=()3-1=()2+2=()3-2=()
4-4=()2+3=()3+1=()3+1=()
1-1=()4-3=()4-1=()4+1=()
3+1=()1+2=()4-2=()2-2=()
3-1=()3+1=()4+1=()1+1=()
2+2=()1-1=()3+1=()2+1=()
4+1=()4-4=()2+1=()3+2=()
小学一年级上册数学加减法知识点
【加减法(一)】
把两个数合并在一起用加法。加数+加数=和
如:3+13=16中,3和13是加数,和是16。
从一个数里面去掉一部分求剩下的是多少用减法。被减数-减数=差
如:19-6=13中,19是被减数,6是减数,差是13。
(一)熟记表内加法和减法的得数
(二)知道以下规律
1、加法
(1)两个数相加,保持得数不变:如果相加的这两个数有一个增大了,则另一个数就要减小,且一个数增大了多少,另一个数就要减少多少。
(2)两个数相加,其中的一个数不变,如果另一个数变化则得数也会发生变化,且加数变化了多少,结果就变化多少。
(3)两个数相加,交换它们的位置,得数不变。
2、减法
(1)一个数减去另一个数,保持减数不变:如果被减数增大,结果也增大且被减数增大多少,结果就增大多少;被减数减小,则结果也减小,且被减数减小多少,结果也减小多少。
(2)一个数减另一个数,保持被减数不变:如果减数增大,结果就减小,且减数增大了多少,结果就减小多少;如果减数减小,则结果增大,且减数减小了多少,结果就增大多少。
(3)一个数减另一个数,保持的数不变:被减数增大多少,减数就要增大多少;被减数减小多少,减数也要减小多少。
加减法(二)】
(一)掌握20以内进位加法的计算方法——-“凑十法”
“凑小数,拆大数”,将小数凑成10,然后再计算。
如:3+9(3+7=10,9可以分成7和2,10+2=12)
“凑大数,拆小数”,将大数凑成10,然后再计算。
如:8+7(8+2=10,7可以分成2和5,10+5=15)
注意:孩子喜欢和熟悉的方法才是方法而且只掌握一种就可以了。
(二)20以内不进位加法和不退位减法:
11+6(个位相加,1+6=7)11+6=17
15-3(个位上够减,5-3=2)15-3=12
3、加强进位和不进位、及不退位的训练。
4、看图列式解题时候,要利用图中已知条件正确列式。常用的关系有:
(1)部分数+部分数=总数:这时?在大括号下面的中间。
(2)总数-部分数=另一个部分数:这时?在大括号的上面一边。
(3)大数-小数=相差数:谁比谁多几,或谁比谁少几。
(4)原有-借出=剩下:用了多少,求还剩多少时用。
一年级 数学学习方法 推荐
一年级数学学习方法一、具体的情境中学习数学
“让学生在生动具体的情境中学习数学”是新课标提倡的重要理念之一,也是当前课改中教师们努力追求的。一年级上册教材设计了富有童趣的学习素材和活动情境,例如6~7页的小猪帮小兔盖房、第14~15页的野生动物园、第18页的排队购票、第29页的小猴吃桃……这些都是 儿童 喜欢、熟悉的,可亲可近。在教学中,需要结合实际把静态的文本资源加工成动态的数学学习资源。例如教学“比多少”,应充分利用主题图给学生讲述“小猪帮小兔盖房”的 童话 故事 。让学生走进情境,认真观察、比较,感悟“多”“少”“同样多”。再如教学“0的认识”,教师可根据第29页的主题图编制多媒体动画课件:小猴玩耍、小猴回家、小猴吃桃,用生动有趣的情境激发学生的学习兴趣。再通过观察小猴吃桃的情境:盘子里有2个桃,小猴吃了一个,又吃了一个,盘子里一个也没有了……体验“从有到无”的变化,感知0的含义。教师精心创设的情境可以把生活与数学融为一体,使学生的数学学习过程变得生动有趣。
一年级数学学习方法二、让学生主动获取知识
数学学习的本质是学生的再创造。新课标强调:“数学教学活动必须建立在学生的认知发展水平和已有的知识 经验 基础之上……向学生提供充分从事数学活动的机会”,“动手实践、自主探索与合作交流是学生学习数学的重要方式……数学学习活动应当是一个生动活泼的、主动的和富有个性的过程”。
按这样的理念,本册教材从学生的生活经验和知识经验出发,根据儿童的认知特点和兴趣需要,努力为学生提供充分参与数学活动的时间和空间。例如,例题、 “做一做”等的插图,大都展现小组活动、合作学习的学习方式。旨在提示教师要不断创设有意义的问题情境或数学活动,鼓励每个学生去探索数学,主动地与同伴交流,达到获得知识、发展能力的目的。教材还为学生精心设计现实的、开放式的学习活动,如第33页“做一做”安排了两个开放性活动,让学生通过自由自在的 “滚一滚”“推一推”“搭一搭”“猜一猜”等实际活动,感受、体验各种立体图形的特征……教学中,要本着“学生是数学学习的主人”在课堂上给学生提供充分的观察、操作、思考、交流活动的时间和空间,让学生通过自己的发现去学习数学、获取知识。
(一)让学生通过自己的探索获取数学知识
例如教学“立体图形的初步认识”时,课前为学生准备各种形状的物品,让学生凭借关于形状的感知方面的经验,观察、交流物品的形状是怎样的,并把形状相同的物品放在一起。进而探讨“这几样物品有哪些地方相同”,了解物体形状的特征……学生根据日常生活中积累的经验和对现实情境的感受进行探索,将感性经验进一步抽象化,发展空间观念。
(二)让学生通过动手操作,获取数学知识
一年级学生的思维,离不开形象和动作,动手操作是学生学习数学的重要途径和方法。例如教学“9加几”时,在学生交流不同算法的基础上,请学生用“放进1盒凑成10”的操作活动向同学们介绍自己的想法,使学生直观了解凑10的过程。接着,组织“摆一摆,算一算”“圈一圈,算一算”等活动,边实际操作边进行计算,具体形象的操作过程与抽象的计算过程一一对应。外显的动作驱动内在思维活动,学生在动手操作中感悟、理解新的计算方法。
(三)让学生通过合作与交流,获取数学知识
本册教材设计了大量合作和交流的内容,如让学生合作完成比长短、比高矮的活动,共同探讨物体和图形的形状特征,让学生相互交流自己的计算方法、交流自己分类的标准和分的结果等。在教学中,要适时组织学生进行合作和交流,提出具体的目标和要求,鼓励每一个学生去探索数学,并主动地与同伴进行交流。让学生在互相启发、互相补充的学习活动中,获得知识、发展能力,逐步形成创新意识。
例如数学“9加几”时,由“学校运动会”的具体情境中提出数学问题后,把探索解决问题方法的“任务”交给各组来完成。先让学生独立思考,并在小组内讨论交流解决问题的方法。每个学生根据自己的生活经验用自己的 思维方式 思考,会产生“点数”“接着数”“凑10”等多种计算方法。接着,请各组向全班学生介绍展示本组的研究成果。使学生了解别人和自己找到的不同的方法,由此领悟到解决同一个问题有不同的方法。同时,在交流中,学生欣赏自己的发现、欣赏本组的成果、欣赏全班发现的多种方法,不断体会成功的快乐。有助于培养学生的探索意识和兴趣,增强学生合作学习的意识。
一年级数学人教版知识点梳理相关 文章 :
★ 人教版一年级数学上册知识点
★ 小学一年级数学知识点梳理
★ 人教版一年级数学上册的期末重点整理
★ 一年级数学必考知识点总结
★ 人教版一年级下册数学知识点归纳
★ 一年级数学知识点人教版
★ 一年级数学知识点梳理
★ 小学一年级数学知识点整理
★ 小学一年级数学考点归纳
★ 新人教版一年级下册数学复习要点
‘玖’ 人教版高一数学教材知识点总结
伟大的成绩和辛勤劳动是成正比例的,有一分劳动就有一分收获,积累,从少到多,奇迹就可以创造出来。学习也是一样的,需要积累,从少变多。下面是我给大家整理的一些 高一数学 的知识点,希望对大家有所帮助。
高一上册数学必修一知识点梳理
两个平面的位置关系:
(1)两个平面互相平行的定义:空间两平面没有公共点
(2)两个平面的位置关系:
两个平面平行-----没有公共点;两个平 面相 交-----有一条公共直线。
a、平行
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交
二面角
(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]
(3)二面角的棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
esp.两平面垂直
两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥
两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
高一数学必修五知识点 总结
⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.
⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.
⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列.
⑷对任何m、n,在等差数列{a}中有:a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+….
⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).
⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列{a}中,a-a=a-a=md.(其中m、k、)
⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.
⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.
⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠-1),则a=.
⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式(其中a、b为常数).
⑵在等差数列{a}中,当项数为2n(nN)时,S-S=nd,=;当项数为(2n-1)(n)时,S-S=a,=.
⑶若数列{a}为等差数列,则S,S-S,S-S,…仍然成等差数列,公差为.
⑷若两个等差数列{a}、{b}的前n项和分别是S、T(n为奇数),则=.
⑸在等差数列{a}中,S=a,S=b(n>m),则S=(a-b).
⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a-)上.
⑺记等差数列{a}的前n项和为S.①若a>0,公差d<0,则当a≥0且a≤0时,S;②若a<0,公差d>0,则当a≤0且a≥0时,S最小.
高一数学必修四知识点梳理
1.回归分析:
就是对具有相关关系的两个变量之间的关系形式进行测定,确定一个相关的数学表达式,以便进行估计预测的统计分析 方法 。根据回归分析方法得出的数学表达式称为回归方程,它可能是直线,也可能是曲线。
2.线性回归方程
设x与y是具有相关关系的两个变量,且相应于n组观测值的n个点(xi,yi)(i=1,......,n)大致分布在一条直线的附近,则回归直线的方程为。
其中。
3.线性相关性检验
线性相关性检验是一种假设检验,它给出了一个具体检验y与x之间线性相关与否的办法。
①在课本附表3中查出与显着性水平0.05与自由度n-2(n为观测值组数)相应的相关系数临界值r0.05。
②由公式,计算r的值。
③检验所得结果
如果|r|≤r0.05,可以认为y与x之间的线性相关关系不显着,接受统计假设。
如果|r|>r0.05,可以认为y与x之间不具有线性相关关系的假设是不成立的,即y与x之间具有线性相关关系。
人教版高一数学教材知识点总结相关 文章 :
★ 高一数学知识点总结(人教版)
★ 高中阶段的高一数学课本知识点归纳
★ 高一数学知识点人教版
★ 高一数学知识点总结归纳
★ 高一数学课本的相关主要知识点
★ 高一数学必修一知识点汇总
★ 高一数学人教版上学期知识点
★ 高一数学必修4知识点总结(人教版)
★ 人教版高中数学知识点提纲
★ 人教版高中数学必修一知识点