当前位置:首页 » 基础知识 » 数学六年级苏教版知识汇总含讲解
扩展阅读
买车注意事项知识大全 2024-11-05 18:47:07

数学六年级苏教版知识汇总含讲解

发布时间: 2022-11-28 03:19:54

A. 小学六年级上册数学单元总结(苏教版)

苏教版六年级数学上册知识点归纳总结
第一单元 略

第二单元 长方体和正方体

1、两个面相交的线叫做棱,三条棱相交的点叫做顶点。

2、长方体相交于同一顶点的三条棱的长度,分别叫做它的长、宽、高。

3、长方体的特征:面——有六个面,都是长方形(特殊情况下有两个相对的面是正方形),相对的面完全相同;棱——有12条棱,相对的棱长度相等;顶点——有8个顶点。

4、正方体的特征:面——有六个面,都是正方形,所有的面完全相同;棱——有12条棱,所有的棱长度相等;顶点——有8个顶点。

5、正方体也是一种特殊的长方体。

6、把一个长方体或正方体纸盒展开,至少要剪开7条棱。

7、长方体(或正方体)的六个面的总面积,叫做它的表面积。

8、长方体的表面积=(长×宽+宽×高+高×长)×2

正方体的表面积=棱长×棱长×6。

9、物体所占空间的大小叫做物体的体积。

10、容器所能容纳物体的体积,叫做这个容器的容积。

11、常用的体积单位有立方厘米、立方分米、立方米。1立方米=1000立方分米,1立方分米=1000立方厘米。

12、计量液体的体积,常用升和毫升作单位。1立方分米=1升,1立方厘米=1毫升, 1升=1000毫升。

13、长方体的体积=长×宽×高 V =abh

14、正方体的体积=棱长×棱长×棱长 V =a×a×a

15、长方体(或正方体)的体积=底面积×高=横截面×长 V=Sh

16、1 =1 2 =8 3 =27 4 =64 5 =125 6 =216

7 =343 8 =512 9 =729 10 =1000

17、每相邻两个长度单位(除千米外)的进率都是10,每相邻两个面积单位之间的进率都是100,每相邻两个体积单位之间的进率都是1000。

18、正方体的棱长扩大n倍,表面积会扩大n 的平方倍,体积会扩大n 的立方倍。

第三单元 分数乘法

1、分数乘整数的意义与整数乘法的意义相同,是求几个相同加数的和的简便运算。

2、一个数乘分数表示求这个数的几分之几是多少,求一个数的几分之几是多少用乘法计算。

3、分数和分数相乘,用分子相乘的积作分子,分母相乘的积作分母。

4、乘积是1的两个数互为倒数。

5、1的倒数是1,0没有倒数。

6、一个数乘真分数(比1小的数)积比原数小;一个数乘比1大的假分数(比1大的数)积比原数大。

7、真分数的倒数都是假分数,都比1大;假分数的倒数是真分数或1,比1小或等于1。

第四单元 分数除法

比较量=单位“1”的量×分率;

单位“1”的量=比较量÷对应分率;

分率=比较量÷单位“1”的量

3、甲数除以乙数(0除外),等于甲数乘乙数的倒数(变号变倒数)。

4、一个数除以比1大的数商会比原数小,一个数除以比1小的数商会比原数大。

第五单元 认识比

1、两个数相除又叫做这两个数的比。

2、比号前面的数叫做比的前项,比号后面的数叫做比的后项。

3、比的前项相当于除式的被除数,相当于分数的分子;比号相当于除号相当于分数线:比的后项相当于除式的除数相当于分数的分母;比值相当于除式的商相当于分数的值。

4、两个数的比可以用比号连接也可以写成分数形式。

5、比的前项和后项同时乘或除以相同的数(0除外),比值不变,这是比的基本性质。

第八单元 可能性

概率=获胜的情况数除以所有可能出现的情况数。

第九单元 认识百分数

1、表示一个数是另一个数的百分之几的数叫做百分数,百分数又叫做百分比或百分率。

2、分数可以表示分率和数量,但百分数只能表示分率不能表示数量,所以百分数不能跟单位。
3、我们不能说分母是100的分数叫做百分数,因为它有可能是表示数量的分数。

4、把小数化成百分数:先把小数的小数点向右移动两位,再添上“%”。把百分数化成小数:先去掉“%”,再把小数点向左移动两位。

5、把分数化成百分数,除不尽时要先除到第四位小数,保留三位小数再化成百分数。把百分数化成分数先化成分母是100的分数,再约成最简分数。

B. 苏教版一到六年级数学知识

数学题用不等式解这道题数学题用不等式解这道题数学题用不等式解这道题数学题用不等式解这道题

C. 苏教版小学六年级数学第一单元方程的知识点有哪些

列方程解答应用题。

数量间的相等关系。如甲比乙多2, 甲-2=乙 乙+2=甲 甲-乙=2

D. 苏教版小学六年级数学知识点整理

下面是我的复习资料。
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)小学奥数公式
和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题的公式
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
差倍问题的公式
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
植树问题的公式
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题的公式
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题的公式
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题的公式
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题的公式
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题的公式
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
参考资料:网络知道
(一)数的读法和写法 1.
整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。 3.
小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。 4.
小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。 5.
分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。 6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。 8.
百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
(二)数的改写
一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。 1.
准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000
改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。 2.
近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。 3.
四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略
345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。 4. 大小比较 1.
比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
2.
比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……
3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。 (三)数的互化
1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。 2.
分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。 3.
一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。 4.
小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。 5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。 6.
分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。 7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
(四)数的整除 1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。 2.
求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数 。
3.
求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。
4. 成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质;
两个合数的公约数只有1时,这两个合数互质。 (五) 约分和通分 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
小数
1 小数的意义 把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。 2小数的分类
纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。 带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、
5.26 都是带小数。 有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 ……
无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏
循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54
” 。 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 …… 0.5656 ……
混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 ……
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有
一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作 0.5302302 …… 简写作 。
分数
1 分数的意义 把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。 2 分数的分类 真分数:分子比分母小的分数叫做真分数。真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。 3 约分和通分
把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。 分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数 1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率
或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。

E. 苏教版六年级数学下册知识点

课堂临时报佛脚,不如 课前预习 好。其实任何学科都是一样的,学习任何一门学科,勤奋都是最好的 学习 方法 ,没有之一,书山有路勤为径。下面是我给大家整理的一些 六年级数学 的知识点,希望对大家有所帮助。

小学六年级数学下册知识点:圆柱和圆锥

1.认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。

2.探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

3.通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

4.圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面。

5.圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。

6.圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π。

7.圆柱的侧面积=底面周长×高即S侧=Ch或2πr×。

8.圆柱的体积=圆柱的底面积×高,即V=sh或πr2×。

进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。

9.圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。

10.从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离)

11.把圆锥的侧面展开得到一个扇形。

12.圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷。

13.常见的圆柱圆锥解决问题:

①压路机压过路面面积(求侧面积);

②压路机压过路面长度(求底面周长);

③水桶铁皮(求侧面积和一个底面积);

④厨师帽(求侧面积和一个底面积);通风管(求侧面积)。

小学6年级 毕业 考试数学重难知识点

工程问题

基本公式:

①工作总量=工作效率×工作时间

②工作效率=工作总量÷工作时间

③工作时间=工作总量÷工作效率

基本思路:

①假设工作总量为“1”(和总工作量无关);

②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间.

关键问题:

确定工作量、工作时间、工作效率间的两两对应关系。

小学六年级 数学学习方法

学生需要在课堂上做好笔记,用来记录老师讲课重点、补充难题、听课心得等内容,方便日后复习与记忆。而小学数学笔记的记录,很多孩子无法准确掌握,需要下点工夫,找到适合自己的方法。

一、为什么要记笔记?

笔记可以方便日后有重点、不失真地复习。

奥数课堂通常包含大量的信息,涵盖定义、公式、解题技巧等各个方面。大多数同学难以一堂课完全掌握全部内容。尤其我们的课堂还经常包含一些经典的难题、补充题,单凭一次性的记忆无法提供充分的反刍的素材。

二、记笔记要避免的误区

然而,很多同学出于不自信或者对家长的敷衍,为了笔记而笔记——笔记完成就“大功告成”、束之高阁。殊不知:记在自己脑袋里面的知识才是自己的知识,有笔记而无复习正是做笔记的错误。

三、记笔记的形式

你们的 笔记本 内容多吗?平时书包装满的时候,你能够方便的找到笔记本吗?单独阅读笔记的时候,你觉得丰富吗?如果这三个问题你都回答“否”,那么请考虑一下将全部的笔记搬到讲义上去。

笔记一定要方便日后查阅。书写过程中,字迹不要求美观,但是至少直观。

关于某一题的延伸记录在题目旁边,关于一讲的梳理可以放到章节前,补充的题目可以放到章节后,个人心得可以放在页眉页脚。如果有补充随材还可以粘贴或者插入到讲义当中。

简而言之,笔记在形式上的要求就是:用最小的篇幅记录最多的内容,同时分出清晰地层次。


苏教版六年级数学下册知识点相关 文章 :

★ 苏教版六年级下册数学复习提纲

★ 苏教版六年级数学下册复习资料

★ 苏教版六年级数学下册总复习资料

★ 六年级科学苏教版下册复习资料

★ 六年级苏教版小学数学下册总复习题和答案

★ 苏教版六年级下册数学总复习教案(2)

★ 苏教版六年级下册数学练习题

★ 苏教版六年级数学下册计划

★ 苏教版六年级数学总复习教案

★ 六年级数学教学计划下册苏教版(2)

F. 求小学数学苏教版一到六年级知识总结,最好分开,越详细越好,急,谢谢!

邱小璇,数学苏教版1到6年级学生总结,最好分开,越看越好

G. 苏教版小学六年级上册数学复习资料

1、用0、2、4、6中的三个数字组成一个能同时被2、3、5整除的最小三位数是(
)。
2、三个连续奇数的平均数是Y,这三个数中,最大的是(
),最小的是(
)。
3、一根钢丝长3米,把它平均分成4段,每段长(
),每段的长度是这根钢丝的(
)。
4、在0-5六张卡片中,选出四张卡片组成两个两位数,使其中一个两位数能整除另一个两位数,这两个两位数可能是(
)和(
)。
5、写出一个比例,使它们的两个外项之积是18。如(
)。
6、一个圆锥体和一个圆柱体的底面积相等,体积之比是5:6,它们高的比是(
)
7、一架战斗机最长飞行时间是6小时,每小时能飞行2000千米。如果这架战斗机从训练基地出发,大约飞行(
)千米后必须返回(途中不能加油)?
8、在比例尺是20:1的图纸上量得一个圆形零件的直径是2厘米,这个零件的实际面积是(
)
9、两个数相除,商是4余数是23,如果把被除数和除数同时缩小100倍,商是(
),余数是(
)。
10、走同样一段路,小强要10分钟,小明要15分钟,小明与小强速度的最简整数比是(
)。
11、一桶油重20千克,5天吃完,平均每天吃了(
)%,4天吃了(
)千克。
12、十三亿六千万零八百,写作(
),改写成用亿作单位是(
),省略万后面的尾数约是(
)万。
13、把2.2小时:110分钟化成最简整数比是(
),比值是(
)。
14、棱长是1分米的正方体,最多可以剪成(
)个棱长是1厘米的小正方体。
15、(
)公顷=6.7平方千米
3升3毫升=(
)升
(
)分=
2小时15分
7.27千克=(
)千克(
)克
16、(
):20=20÷(
)=(
)%=八成
17、分解质因数:自然数A=2×3×T,自然数B=2×T×5,如果A和B的最大公约数是6.那么A和B的最小公倍数是(
).
18、把一个圆切拼成一个近似的长方形,量得这个长方形的宽是3厘米.这个圆的直径是(
)厘米,长方形的长是(
)厘米.
19、如果6A+5=8,那么3A+5=(
)。如果4X=5Y,那么Y:X=
(
):(
)。X和Y成(
)比例。
20、自然数W(W>1)只有两个约数,它们是(
)与(
).
21、一个等腰三角形的一个底角是35度,它的顶角是(
).这个三角形按角分是(
)三角形.
22、用一根长12分米的铁丝围一个长方形,当长和宽都是整数时,面积有(
)种情况,最小是(
)平方分米.
23、在一个长8分米,宽7分米的长方形纸上剪直径为2分米的圆片,最大可以剪(
)个.
24、用2个相同大小的正方形拼成一个周长是24厘米的长方形,其中一个正方形的周长是(
)厘米.
25、有5盒录音磁带,每盒长10厘米,宽8厘米,高2厘米.请你设计一种最为合适的包装方式,使得包装更省纸,(重叠处不计)需包装纸(
)平方分米.
26、一份稿件共5000字,小强20分钟打了40%,照这样的速度,他还要(
)分钟才能打完这份稿件。
27、用12个边长是1厘米的正方形,可以拼成(
)种不同的长方形,其中周长最小是(
)。
28、一个三角形与一个平行四边形面积和底都相等,已知三角形的高12厘米,平行四边形的高是(
)。
29、爸爸的年龄是小明年龄的2.5倍,小明与爸爸的年龄比是(
),比值是(
)。
30、一个棱长为8分米的正方体,把它平均切成八个小正方体后,每个小正方体的表面积是(
)。
31、一个最简分数,分子加上8,分母加上10,分数的大小不变,这个最简分数是(
)。
32、一个圆柱体切拼成一个近似的长方体后,量得这个长方体的宽和高都是2分米,表面积增加了(
)。这个圆柱体的体积是(
)。
二、
判断题
1、分子和分母是不同的质数的分数一定是最简分数(
)。
2、在一个数的末尾添上0或去掉0,这个数的大小不变(
)。
3、自然数P的最大约数减去它最小倍数,差是1(
).
4、一个正方形的边长是2分米,如果把边长增长A分米,则面积增加A2平方分米(
)
5、两根同样长1米的绳子,一根剪去它的50%,另一根剪去0.5米,那么剩下的绳子也一样长。(
)
6、小明和哥哥去年的年龄比是5:8,今年他们的年龄之比不变.
(
)
7、在比例中,两个外项的积除以两个内项的积,商是1.
(
)
8、我们教室的空间大约是30立方米.(
)
9、真分数的倒数一定比1大.(
)
10、有一个角是45°的等腰三角形,一定是直角三角形.(
)
11、一块长50厘米,宽16厘米的长方形铁皮,要截成边长是5厘米的小正方形铁皮,可以截成32块.(
)
12、如果8G=7W
,那么W:G=8:7
(
)
三、
应用题
1、小强对他们班家里有电脑的同学作了一个调查,他发现他们班家里有电脑的有18人,没有电脑的有20人,你知道小强班上同学家的电脑普及率吗?
2、修一条公路,已经修了全长的45%,距离中点还有2000米,这条公路全长多少米?
3、一个小圆锥体玩具被芳芳一不小心掉进了一个底面积为3平方分米,高4分米的圆柱体量杯中,他发现正好水面上升了1分米。你能求出这个小圆锥体玩具的体积吗?
4、国强化肥厂计划今年生产化肥250万吨,结果今年上半年就完成了计划的52%,如果下半年生产的和上半年的同样多,可超产多少万吨?
5、两辆汽车同时从溧阳开往南京,快车每小时行80千米,慢车每小时行65千米,1.5小时后两车相距多少千米?
6、张师傅加工一批零件,第一天加工了这批零件的25%,第二天又加工了15个,两天加工的零件和这批零件总个数的比是1:3。这批零件共有多少个?
7、水是由氢和氧按1:8化合而成的,现在实验室里有4千克氧,共可以化合成水多少千克?
一、
填空
1、用0、2、4、6中的三个数字组成一个能同时被2、3、5整除的最小三位数是(
)。
2、三个连续奇数的平均数是Y,这三个数中,最大的是(
),最小的是(
)。
3、一根钢丝长3米,把它平均分成4段,每段长(
),每段的长度是这根钢丝的(
)。
4、在0-5六张卡片中,选出四张卡片组成两个两位数,使其中一个两位数能整除另一个两位数,这两个两位数可能是(
)和(
)。
5、写出一个比例,使它们的两个外项之积是18。如(
)。
6、一个圆锥体和一个圆柱体的底面积相等,体积之比是5:6,它们高的比是(
)
7、一架战斗机最长飞行时间是6小时,每小时能飞行2000千米。如果这架战斗机从训练基地出发,大约飞行(
)千米后必须返回(途中不能加油)?
8、在比例尺是20:1的图纸上量得一个圆形零件的直径是2厘米,这个零件的实际面积是(
)
9、两个数相除,商是4余数是23,如果把被除数和除数同时缩小100倍,商是(
),余数是(
)。
10、走同样一段路,小强要10分钟,小明要15分钟,小明与小强速度的最简整数比是(
)。
11、一桶油重20千克,5天吃完,平均每天吃了(
)%,4天吃了(
)千克。
12、十三亿六千万零八百,写作(
),改写成用亿作单位是(
),省略万后面的尾数约是(
)万。
13、把2.2小时:110分钟化成最简整数比是(
),比值是(
)。
14、棱长是1分米的正方体,最多可以剪成(
)个棱长是1厘米的小正方体。
15、(
)公顷=6.7平方千米
3升3毫升=(
)升
(
)分=
2小时15分
7.27千克=(
)千克(
)克
16、(
):20=20÷(
)=(
)%=八成
17、分解质因数:自然数A=2×3×T,自然数B=2×T×5,如果A和B的最大公约数是6.那么A和B的最小公倍数是(
).
18、把一个圆切拼成一个近似的长方形,量得这个长方形的宽是3厘米.这个圆的直径是(
)厘米,长方形的长是(
)厘米.
19、如果6A+5=8,那么3A+5=(
)。如果4X=5Y,那么Y:X=
(
):(
)。X和Y成(
)比例。
20、自然数W(W>1)只有两个约数,它们是(
)与(
).
21、一个等腰三角形的一个底角是35度,它的顶角是(
).这个三角形按角分是(
)三角形.
22、用一根长12分米的铁丝围一个长方形,当长和宽都是整数时,面积有(
)种情况,最小是(
)平方分米.
23、在一个长8分米,宽7分米的长方形纸上剪直径为2分米的圆片,最大可以剪(
)个.
24、用2个相同大小的正方形拼成一个周长是24厘米的长方形,其中一个正方形的周长是(
)厘米.
25、有5盒录音磁带,每盒长10厘米,宽8厘米,高2厘米.请你设计一种最为合适的包装方式,使得包装更省纸,(重叠处不计)需包装纸(
)平方分米.
26、一份稿件共5000字,小强20分钟打了40%,照这样的速度,他还要(
)分钟才能打完这份稿件。
27、用12个边长是1厘米的正方形,可以拼成(
)种不同的长方形,其中周长最小是(
)。
28、一个三角形与一个平行四边形面积和底都相等,已知三角形的高12厘米,平行四边形的高是(
)。
29、爸爸的年龄是小明年龄的2.5倍,小明与爸爸的年龄比是(
),比值是(
)。
30、一个棱长为8分米的正方体,把它平均切成八个小正方体后,每个小正方体的表面积是(
)。
31、一个最简分数,分子加上8,分母加上10,分数的大小不变,这个最简分数是(
)。
32、一个圆柱体切拼成一个近似的长方体后,量得这个长方体的宽和高都是2分米,表面积增加了(
)。这个圆柱体的体积是(
)。
二、
判断题
1、分子和分母是不同的质数的分数一定是最简分数(
)。
2、在一个数的末尾添上0或去掉0,这个数的大小不变(
)。
3、自然数P的最大约数减去它最小倍数,差是1(
).
4、一个正方形的边长是2分米,如果把边长增长A分米,则面积增加A2平方分米(
)
5、两根同样长1米的绳子,一根剪去它的50%,另一根剪去0.5米,那么剩下的绳子也一样长(
)
6、小明和哥哥去年的年龄比是5:8,今年他们的年龄之比不变.
(
)
7、在比例中,两个外项的积除以两个内项的积,商是1.
(
)
8、我们教室的空间大约是30立方米.(
)
9、真分数的倒数一定比1大.(
)
10、有一个角是45°的等腰三角形,一定是直角三角形.(
)
11、一块长50厘米,宽16厘米的长方形铁皮,要截成边长是5厘米的小正方形铁皮,可以截成32块.(
)
12、如果8G=7W
,那么W:G=8:7
(
)
三、
应用题
1、小强对他们班家里有电脑的同学作了一个调查,他发现他们班家里有电脑的有18人,没有电脑的有20人,你知道小强班上同学家的电脑普及率吗?
2、修一条公路,已经修了全长的45%,距离中点还有2000米,这条公路全长多少米?
3、一个小圆锥体玩具被芳芳一不小心掉进了一个底面积为3平方分米,高4分米的圆柱体量杯中,他发现正好水面上升了1分米。你能求出这个小圆锥体玩具的体积吗?
4、国强化肥厂计划今年生产化肥250万吨,结果今年上半年就完成了计划的52%,如果下半年生产的和上半年的同样多,可超产多少万吨?
5、两辆汽车同时从溧阳开往南京,快车每小时行80千米,慢车每小时行65千米,1.5小时后两车相距多少千米?
6、张师傅加工一批零件,第一天加工了这批零件的25%,第二天又加工了15个,两天加工的零件和这批零件总个数的比是1:3。这批零件共有多少个?
7、水是由氢和氧按1:8化合而成的,现在实验室里有4千克氧,共可以化合成水多少千克?

H. 1-六年级数学知识归纳。苏教版。

具体见http://3y.uu456.com/bp_1owkj62uci7d82u9y9c0_2.html

第一章 数和数的运算
一 概念
(一)整数
1 .整数的意义
自然数和0都是整数。
2 .自然数
我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。0也是自然数。
3.计数单位 :一(个)、十、百、千、万、十万、百万、千万、亿……都是
计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4. 数位
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5.数的整除
整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b
整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或
a的因数)。倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能
被2整除。。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。 一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。 一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例
如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。
一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100
以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数
按其约数的个数的不同分类,可分为质数、合数和1。
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因
数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如把28分解质因数
几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数
的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。
公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况: 1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是1。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数
的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……
3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数
1 .小数的意义
把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几…… 一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单
位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2.小数的分类
纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯
小数。
带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是
带小数。
有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 ……
3.1415926 ……
无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小
数叫做无限不循环小数。 例如:∏
循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,
这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环
节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如:
3.111 …… 0.5656 ……
混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。
3.1222 …… 0.03333 ……
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这
个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作 0.5302302 …… 简写作 。
(三)分数
1 .分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位
“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2. 分数的分类
真分数:分子比分母小的分数叫做真分数。真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于
或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3 .约分和通分
把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
分子分母是互质数的分数,叫做最简分数;把异分母分数分别化成和原来分数相等的同分母分数,;(四)百分数;1.表示一个数是另一个数的百分之几的数叫做百分数;分比;二方法;(一)数的读法和写法;1.整数的读法:从高位到低位,一级一级地读;级的读法去读,再在后面加一个“亿”或“万”字;2.整数的写法:从高位到低位,一级一级地写,哪一;有,就在那个数位上写0;3.小数

分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数
1 .表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百
分比。百分数通常用"%"来表示。百分号是表示百分数的符号。

二 方法
(一)数的读法和写法
1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个
级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没
有,就在那个数位上写0。
3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在
个位右下角,小数部分顺次写出每一个数位上的数字。
5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母
按照整数的读法来读。
6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时
按照整数的读法来读。
8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百
分号“%”来表示。
(二)数的改写
一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位
的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以
万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。
2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的
尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。
3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去
掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进
1。例如:省略 345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。
4. 大小比较
1. 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,
就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
2. 比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数
部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……
3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。
(三)数的互化
1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
(四)数的整除
1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。
2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数 。
3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。
4. 成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质;
当合数不是质数的倍数时,这个合数和这个质数互质; 两个合数的公约数只有1时,这两个合数互质。
(五) 约分和通分
约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

三 性质和规律
(一)商不变的规律
商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。
(二)小数的性质
小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
(三)小数点位置的移动引起小数大小的变化
1. 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……
2. 小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……
3. 小数点向左移或者向右移位数不够时,要用“0"补足位。

(四)分数的基本性质
分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分
数的大小不变。
(五)分数与除法的关系
1. 被除数÷除数= 被除数/除数
2. 因为零不能作除数,所以分数的分母不能为零。
3. 被除数 相当于分子,除数相当于分母。

四 运算的意义
(一)整数四则运算
1整数加法:
把两个数合并成一个数的运算叫做加法。
在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。 加数+加数=和 一个加数=和-另一个加数
2整数减法:
已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。
加法和减法互为逆运算。
3整数乘法:
求几个相同加数的和的简便运算叫做乘法。
在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。 在乘法里,0和任何数相乘都得0. 1和任何数相乘都的任何数。
一个因数× 一个因数 =积 一个因数=积÷另一个因数

I. 六年级数学知识点总结

苏教版六年级数学知识点总结

代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.下面是我整理的关于苏教版六年级数学知识点总结,欢迎大家参考!

1、数据的收集和整理

2、表的意义:把收集到的数据整理以后制成表格,用来反映情况,分析具体问题,这样的表格叫做统计表。

3、常见统计表的分类:

(1)、单式统计表:只含有一个统计项目的统计表。

(2)、复式统计表:含有2个或2个以上统计项目的统计表。

(3)、百分数统计表:不仅表明各统计项目的具体数量,而且表明数量间的百分比的'统计表。

4、统计表的制作步骤和方法。

(1)收集数据、整理数据。

(2)根据资料和制作表要求确定统计表的格式和项目。

(3)根据整理好的数据填表。

(4)填写好总计和合计。

(5)写出制表的名称和制表的时间,必要时注明制表人。

5、条形统计图的意义:用一个单位长度表示一定的数量,根据数量画出长短不一的直条,然后把直条按照一定的顺序排列起来。

6、折线统计图的意义:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连起来。

7、扇形统计图:用一个圆表示总量,用圆中大小不同的扇形表示各部分数量所占的百分比。

8、统计量:包括平均数、众数、中位数。

9、统计平均数的意义:平均数能较好地反映一组数据的整体水平。

10、众数:在一组数据中,出现次数最多的那个数据叫众数。

11、中位数:把收集到的某一对象的有关数据,按大小顺序排列,处于中间位置的那个数据(或中间两个数据的平均数)叫中位数。

12、确定现象与不确定现象的认识a、不确定现象:生活中,有些事的发生是不确定的,一般用“可能发生”来描述。

13、确定现象:生活中,有些事情的发生是确定的。一般用“一定发生”或“不可能发生”来描述。

14、可能性大小的表示:用数字表示“一定能”“不可能”。 “一定能”这种可能性用1来表示,“不可能”用0来表示。

1.圆锥的特征:由2个面围成,一个是底面,一个是曲面(展开后是一个扇形) 只有一条高。

2.圆柱的体积:

公式的推导:利用转化的策略。

把圆柱的底面平均分成16、32、64……无限分割,切开后拼成的物体越来越接近长方体。根据长方体的体积公式推导出圆柱的体积公式。

V=sh(底面积×高)

当然在计算圆柱体积的过程中,还有一些变式。如已知半径、直径、底面周长等。

例如:

已知底面半径是10厘米,高是12厘米,求圆柱的体积。

追问

;

J. 苏教版六年级上学期数学总复习提纲

小学数学总复习基础知识

第一单元 数与代数

(一)数的认识

整数【正数、0、负数】

1.一个物体也没有,用0表示。0和1、2、3……都是自然数。自然数是整数。

2.最小的一位数是1,最小的自然数是0。

3.零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。“+4”读作正四。“-4”读作负四。+4也可以写成4。

4.像+4、19、+8844这样的数都是正数。像-4、-11、-7、-155这样的数都是负数。

5.0既不是正数,也不是负数。正数都大于0,负数都小于0。

小数【有限小数、无限小数】

1.分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

2.整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。每相邻两个计数单位间的进率都是10。

3.每个计数单位所占的位置,叫做数位。数位是按照一定的顺序排列的。

4.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

5.根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

6.比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。

7.把一个数改写成用“万”或“亿”作单位的数,只要在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。

8.求小数近似数的一般方法:

(1)先要弄清保留几位小数;

(2)根据需要确定看哪一位上的数;

(3)用“四舍五入”的方法求得结果。

9.整数和小数的数位顺序表: 整数部分 小数点 小数部分 … 亿 级 万 级 个 级 数位 … 千亿位 百亿位 十亿位 亿 位 千万位 百万位 十万位 万 位 千 位 百 位 十 位 个 位 · 十分位 百分位 千分位 万分位 … 计数单位 … 千亿 百亿 十亿 亿 千万 百万 十万 万 千 百 十 个(一) 十分之一 百分之一 千分之一 万分之一 … 分数【真分数、假分数】

1.把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,是这个分数的分数单位。

2.两个数相除,它们的商可以用分数表示。即:a÷b=(b≠0)

3.从小数和分数的意义可以看出,小数实际上就是分母是10、100、1000……的分数。

4.分数可以分为真分数和假分数。

5.分子小于分母的分数叫做真分数。真分数小于1。

6.分子大于或等于分母的分数叫做假分数。假分数大于或等于1。

7.分子和分母只有公因数1的分数叫做最简分数。

8.分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。

9.小数的性质和分数的基本性质是一致的,应用分数的基本性质,可以通分和约分。

百分数【税率、利息、折扣、成数】

1.表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫百分率或

百分比,百分数通常用“%”表示。

2.分数与百分数比较: 不同点 相同点 分 数 可以表示具体数量,可以有单位名称 表示两个数之间的关系 百分数 不可以表示具体数量,不可以有单位名称 3.分数、小数、百分数的互化。

(1)把分数化成小数,用分数的分子除以分母。

(2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约分。

(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。

(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。

(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数。

(6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

4.熟记常用三数的互化。 =0.5=50% ≈0.333=33.3% ≈0.667=66.7% =0.25=25% =0.75=75% =0.2=20% =0.4=40% =0.6=60% =0.8=80% ≈0.167=16.7% ≈0.833=83.3% =0.125=12.5% =0.375=37.5% =0.625=62.5% =0.875=87.5% =0.1=10% =0.3=30% =0.7=70% =0.9=90% =0.05=5% =0.15=15% =0.35=35% =0.45=45% =0.55=55% =0.65=65% =0.85=85% =0.95=95% =0.04=4% =0.025=2.5% =0.02=2% =0.01=1% 5.出勤率表示出勤人数占总人数的百分之几。

合格率表示合格件数占总件数的百分之几。

成活率表示成活棵数占总棵数的百分之几。

6.求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几。

7.多的÷“1”=多百分之几 少的÷“1”=少百分之几