当前位置:首页 » 基础知识 » 数学基础知识大串讲
扩展阅读
经典毛概论文哪里有 2024-11-05 13:24:53
儿童摄影店怎么宣传 2024-11-05 13:24:38

数学基础知识大串讲

发布时间: 2022-11-27 17:50:10

㈠ 初中数学之基础知识点总结

有关初中数学之基础知识点总结

在日常生活或是工作学习中,大家一定都或多或少地接触过一些化学知识,下面是我为大家收集的有关初中数学之基础知识点总结相关内容,仅供参考,希望能够帮助到大家。

一、数与代数

数与式:

1、有理数:①整数→正整数/0/负整数②分数→正分数/负分数

数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数 无理数:无限不循环小数叫无理数

平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

3、代数式

代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

4、整式与分式

整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:AM+AN=A(M+N)

(AM)N=AMN

(A/B)N=AN/BN 除法一样。

整式的.乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式/完全平方公式

整式的除法:

①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。

分式:

①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

直线的位置与常数的关系

①k>0则直线的倾斜角为锐角

②k<0则直线的倾斜角为钝角

③图像越陡,|k|越大

④b>0直线与y轴的交点在x轴的上方

⑤b<0直线与y轴的交点在x轴的下方

;

㈡ 四年级数学基本知识点总结

学习从来无捷径,循序渐进登高峰。如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。学习需要勤奋,做任何事情都需要勤奋。下面是我给大家整理的一些 四年级数学 的知识点,希望对大家有所帮助。

四年级上册数学《大数的认识》练习知识点

一.填空。

(1)10个一千是(),10个一万是()。

(2)与万位相邻的数位是()和(),与亿位相邻的数位是()和()。

(3)5030600是()位数,5在()位,表示()个(),3在()位,表示()个(),6在()位,表示()个()。

(4)三千四百二十万九千是()位数,这个数写作(),省略万后面的尾数是约是()万。

(5)2017年某市的粮食总产量可达到12319000000千克,把12319000000省略亿位后面的尾数约是()亿。

二.判断下列说法是否正确。

(1)亿位右边的数位是十亿位,左边的数位是千万位。()

(2)位是十亿位的数是10位数。()

(3)最小的自然数是1。()

(4)3854000000≈4亿。()

(5)算盘上1颗上珠表示5,1颗下珠表示1。()

三.读一读,写一写。

1.我国的占地面积约960万平方千米。

960万写作()。

2.2017年第一季度某品牌手机的销量是420724部。

420724读作()。

3.2016年天猫双十一的销售额达到10000000000元。

10000000000读作()。

4.2016年我国人口普查人数为十三亿八千二百七十一万。

十三亿八千二百七十一万写作()。

四.比较下面每组数的大小。

32700()124300 62147()54312

43159()43178374200()374189

五.数的改写及求近似数。

360000=()万

23000000=()万

500000000=()亿

35124≈()万

934231≈()万

789004002≈()亿

六.解决问题。

1.用0.2.4.7.8这五个数组成一个五位数,使这个五位数省略万后面的尾数约是8万,求这个五位数是多少?最小是多少?

2.小红抄写一个六位数,把位上的7错写成了1,把百位上的0错写成了6,所得的新数比原来的六位数小多少?

四年级上册数学基础知识点

1、自然数整数的意义

用来表示物体个数的1,2,3……叫做自然数。一个物体也没有,用0表示。0也是自然数它们都是整数。

最小的自然数是0,没有的自然数。自然数的个数是无限的。

2、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。其中"一"是计数的基本单位。

3、十进制计数法10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

4、数位

计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5、整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个"亿"或"万"字。每一级末尾的0都不读出来, 其它 数位连续有几个0都只读一个零。

6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

7、万以上数的写法:

(1)一个数含有万级和亿级,应从位写起,一级一级地往下写。

(2)写数时哪一位上是几就在那一位上写几,遇到哪一位上一个单位也没有,就在那一位上写0占位。

8、比较两个数的大小:

(1)如果位数不同,位数多的那个数就大,位数少的那个数就小;

(2)如果位数相同,就从位开始比较,位数大的那个数就大;如果第一位相同就看下一位,以此类推。

9、整万、整亿数的改写:

(1)改写成以"万"为单位的数,把万位后面的4个0去掉,加上一个"万"字即可。

(2)改写成以"亿"为单位的数,把亿位后面的8个0去掉,加上一个"亿"字即可。

10、近似数与准确数:

有些数的前面有"约"字,都不是准确数,像这样的数我们称做为"近似数"。

"四舍五入法":在取近似数的时候,按要求保留到哪一位,这一位后面的数称为"尾数"。如果尾数的位数字小于5,就把尾数去掉。如果尾数的位数字大于或等于5,就把尾数舍去并向它的前一位进"1",这种取近似数的 方法 叫做四舍五入法。

"省略万位或亿位后面的尾数求近似数",就是用"四舍五入"法,把一个数精确(保留)到万位或亿位,求它的近似数。

(1)用"万"作单位的近似数,应看千位上的数是几,再决定是"四舍"还是"五入"。

(2)用"亿"作单位的近似数,就看千万位上的数是几,再决定是"四舍"还是"五入"。

(3)不管是用"万"还是用"亿"作单位,写近似数时都要用约等号(≈)连接,末尾还要写上"万"字或"亿"字。

11、求近似数和数的改写的相同点:求近似数和数的改写都是把一个较大的数表示成整"万"或整"亿"的数,后面都要加一个"万"字或"亿"字。

不同点:求近似数是把一个数变成一个近似数,数的大小发生了变化;而数的改写只是把一个大数写成了以"万"或"亿"为单位的数,大小没有发生变化。

12、数字编码。数不仅可以用来表示数量和顺序,还可以用来编码。编码中的数字代表着一定的意义。编码具有有序性。

数学 学习方法 技巧

一:记笔记

这方法其实很普遍也很简单,但恰恰是很多同学不容易做到的,记笔记有很多好处,一是可以把老师的精华记录下来方便复习,二是练习学生的书写能力,三是可以让学生养成边听边写的学习能力,这对于提高学习效率是非常有效的。

二:错题本

很多孩子都马虎,但有些马虎其实是同学对知识点理解不清晰造成的,这类的题目一定要记录下来。还有的是出题者故意设计的陷阱,这也可以记录下来,定时复习,久了之后很多马虎自然而然地就避免了。

三:学习小组

定期地和小组成员分享好试题,好方法,好技巧,好 经验 ,即可以增加同学之间的情感,又可以在交朋友的过程学习到新的东西,提高学习效率,培养合作精神,增强协调能力。

四:题目分类本

和错题本一样,专门记录自己做过的试题,分类指的是将自己做过的试题分为几大类,一类是极其简单,自己一看就会的。一类是有一定难度,需要思考找到突破口的,还有一类就是难度很大,需要综合运用很多知识并进行推理才能解答的,后两类都应该是我们的记录重点。在对试题分类的过程中同学自然地就增强了对试题的进一步理解。

五:旧题新解

不定时的翻翻原来做过的试题,但是重点是思考有没有新的解题思路和解题技巧。这样不断地增加思考有利于形成学生思考习惯的形成,也有利于学生 发散思维 的形成,多角度考察问题的思路,并随时利用新学知识去解决问题。


四年级数学基本知识点 总结 相关 文章 :

★ 做小学四年级数学上册知识点总结

★ 四年级数学上册知识点

★ 小学四年级数学学习方法指导

★ 四年级数学三角形知识点归纳

★ 四年级数学知识点整理

★ 四年级数学知识点归纳梳理

★ 四年级数学上册知识点人教版

★ 四年级上册数学基础知识点

★ 小学四年级上册数学知识点归纳

★ 四年级数学常考知识点

㈢ 初一数学重要知识点归纳

学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目 学习 方法 其实都是一样的,不断的记忆与练习,使知识刻在脑海里。下面是我给大家整理的初一数学知识点,希望对大家有所帮助。

七年级数学 基础知识点

三角形的高线:

1、从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。

2、任意三角形都有三条高线,它们所在的直线相交于一点。(垂心)

3、注意等底等高知识的考试

7、相关命题:

1)三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。

2)锐角三角形中的锐角的取值范围是60≤X<90。锐角不小于60度。

3)任意一个三角形两角平分线的夹角=90+第三角的一半。

4)钝角三角形有两条高在外部。

5)全等图形的大小(面积、周长)、形状都相同。

6)面积相等的两个三角形不一定是全等图形。

7)能够完全重合的两个图形是全等图形。

8)三角形具有稳定性。

9)三条边分别对应相等的两个三角形全等。

10)三个角对应相等的两个三角形不一定全等。

11)两个等边三角形不一定全等。

12)两角及一边对应相等的两个三角形全等。

13)两边及一角对应相等的两个三角形不一定全等。

14)两边及它们的夹角对应相等的两个三角形全等。

15)两条直角边对应相等的两个直角三角形全等。

16)一条斜边和一直角边对应相等的两个三角形全等。

17)一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。

18)一角和一边对应相等的两个直角三角形不一定全等。

初一数学下册知识点 总结

篇一:直线、射线、线段

(1)直线、射线、线段的表示方法

①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.

②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.

③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。

(2)点与直线的位置关系:

①点经过直线,说明点在直线上;

②点不经过直线,说明点在直线外。

篇二:两点间的距离

(1)两点间的距离:连接两点间的线段的长度叫两点间的距离。

(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离。

篇三:正方体

(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.

(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.

(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.

数学初一知识点总结

1.有理数:

(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;

(2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2)绝对值可表示为:

绝对值的问题经常分类讨论;

(3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0

初一数学重要知识点归纳

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(SSS) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于60的等腰三角形是等边三角形

37 在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半

38 直角三角形斜边上的中线等于斜边上的一半

39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ?

40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42 定理1 关于某条直线对称的两个图形是全等形

43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

初一数学重要知识点

正数和负数

⒈、正数和负数的概念

负数:比0小的数正数:比0大的数0既不是正数,也不是负数

注意:①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,—a就不能做出简单判断)

②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

2、具有相反意义的量

若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:

零上8℃表示为:+8℃;零下8℃表示为:—8℃

3、0表示的意义

(1)0表示“没有”,如教室里有0个人,就是说教室里没有人;

(2)0是正数和负数的分界线,0既不是正数,也不是负数。如:

(3)0表示一个确切的量。如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

有理数

1、有理数的概念

(1)正整数、0、负整数统称为整数(0和正整数统称为自然数)

(2)正分数和负分数统称为分数

(3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。③整数也能化成分数,也是有理数

注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8也是偶数,—1,—3,—5也是奇数。

初一数学方法技巧

1.请概括的说一下学习的方法

曰:“像做其他事一样,学习数学要研究方法。我为你们推荐的方法是:超前学习,展开联想,多做总结,找出合情合理。

2.请谈谈超前学习的好处

曰:“首先,超前学习能挖掘出自身的潜力,培养自学能力。经过超前学习,会发现自己能独立解决许多问题,对提高自信心,培养学习兴趣很有帮助。”

其次,够消除对新知识的“隐患”。超前学习能够发现在现有的基础上,自己对新知识认识的不妥之处。相反地,若直接听别人说。似乎自己也能一开始就达到这种理解水平,实践证明,并非这样。

再次,超前学习中的有些内容,当时不能透彻理解,但经过深思之后,即使搁置一边,大脑也会潜意识“加工”。当教师进度进行到这块内容时,我们做第二次理解,会深刻的多。

最后,超前学习能提高听课质量。超前学习以后,我们发现新知识中的多数自己完全可以理解。只有少数地方需借助于别人。这样,在课堂上,我们即能将可以集中注意力的时间放“这少数地方”的理解上,即“好钢用在刀刃上”。事实上,一节课,能集中注意力的时间并不太多。

3.请谈谈联想与总结

曰:联想与总结贯穿与学习过程中的始终。对每一知识的认识,必定要有认识基础。寻找认识基础的过程即是联想,而认识基础的是对以前知识的总结。以前总结的越简洁、清晰、合理,越容易联想。这样就可以把新知识熔进原来的知识结构中为以后的某次联想奠定基础。联想与总结在解题中特别有效。也许你以前并没有这样的认识,但解题能力却很强,这说明你很聪明,你在不自觉中使用这种做法。如果你能很明确的认识这一点,你的能力会更强。

4.那么我们怎样预习呢?

曰:“先 说说 学习的目标:(1)知道知识产生的背景,弄清知识形成的过程。

(2)或早或晚的知道知识的地位和作用:(3)总结出认识问题的规律(或说出认识问题使用了以前的什么规律)。

再说具体的做法:(1)对概念的理解。数学具有高度的抽象性。通常要借助具体的东西加以理解。有时借助字面的含义:有时借助其他学科知识。有时借助图形……理解概念的境界是意会。一定要在理解概念上下一番苦功夫后再做题。

(2)对公式定理的预习,公式定理是使用最多的“规律”的总结。如:完全平方公式,勾股定理等。往往公式的推导定理的证明蕴含着丰富的数学方法及相当有用的解题规律。如三角形内角平分线定理的证明。我们应当先自己推导公式或证明定理,若做不成再参考别人的做法。无论是自己完成的,还是看别人的,都要说出这样做是怎样想出来的。

(3)对于例题及习题的处理见上面的(2)及下面的第五条。

初一数学重要知识点归纳相关 文章 :

★ 初一数学上册知识点归纳

★ 初一数学上册重点知识整理

★ 初一数学知识点梳理归纳

★ 初一数学上册知识点汇总归纳

★ 七年级数学重要知识点总结

★ 初一数学知识点整理

★ 初一数学重要知识点总结

★ 初一数学知识点小归纳

★ 初一数学知识点归纳

★ 初一数学知识点归纳与学习方法

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

㈣ 高中数学知识点总结

《高中数学基础知识梳理(数学小飞侠)》网络网盘免费下载

链接:

提取码: i8i2

资源目录

01.集合例题讲解.mp4

01.集合进阶.mp4

02函数的值域.mp4

03函数的定义域与解析式.mp4

04函数的单调性.mp4

04函数的奇偶性.mp4

05指数运算与指数函数.mp4

07对数运算与对数函数.mp4

08幂函数突破.mp4

09函数零点专题.mp4

10含参二次函数与不等式专题.mp4

11二次函数根的分布专题.mp4

12空间几何体.mp4

13点线面位置关系进阶.mp4

14平行关系突破.mp4

15垂直关系突破.mp4

16空间几何关系综合.mp4

17直线方程突破.mp4

18圆的方程突破.mp4

19算法初步.mp4

20算法语句与算法案例.mp4

21数据的收集与频率分布.mp4

22常用统计量与相关关系.mp4

23古典概型概率.mp4

24几何概型概率.mp4

25任意角重难点.mp4

26三角函数定义与诱导公式.mp4

27三角函数图像及性质.mp4

28平面向量几何运算.mp4

29平面向量代数运算.mp4

30.三角恒等变换.mp4

31.三角函数计算专题.mp4

32.正弦定理与余弦定理.mp4

33.等差数列突破.mp4

34.等比数列突破.mp4

35.数列通项公式专题 .mp4

36.数列求和公式专题 .mp4

37.二次不等式与分式不等式.mp4

38.线性规划问题.mp4

39.基本不等式突破.mp4

40.逻辑用语专题.mp4

41.椭圆方程及其几何性质.mp4

42.双曲线方程及其性质.mp4

43.抛物线方程及其性质.mp4

44.直线与圆锥曲线综合.mp4

45.空间向量突破.mp4

46.导数的计算专题.mp4

47.导数的应用.mp4

48.导数的应用(二).mp4

49.定积分与微积分.mp4

50.复数专题.mp4

51.排列组合.mp4

52.二项式定理.mp4

53.随机变量及其变量.mp4

54回归分析与独立性检验.mp4

资源目录

01.集合例题讲解.mp4

01.集合进阶.mp4

02函数的值域.mp4

03函数的定义域与解析式.mp4

04函数的单调性.mp4

04函数的奇偶性.mp4

05指数运算与指数函数.mp4

07对数运算与对数函数.mp4

08幂函数突破.mp4

09函数零点专题.mp4

10含参二次函数与不等式专题.mp4

11二次函数根的分布专题.mp4

12空间几何体.mp4

13点线面位置关系进阶.mp4

14平行关系突破.mp4

15垂直关系突破.mp4

16空间几何关系综合.mp4

17直线方程突破.mp4

18圆的方程突破.mp4

19算法初步.mp4

20算法语句与算法案例.mp4

21数据的收集与频率分布.mp4

22常用统计量与相关关系.mp4

23古典概型概率.mp4

24几何概型概率.mp4

25任意角重难点.mp4

26三角函数定义与诱导公式.mp4

27三角函数图像及性质.mp4

28平面向量几何运算.mp4

29平面向量代数运算.mp4

30.三角恒等变换.mp4

31.三角函数计算专题.mp4

32.正弦定理与余弦定理.mp4

33.等差数列突破.mp4

34.等比数列突破.mp4

35.数列通项公式专题 .mp4

36.数列求和公式专题 .mp4

37.二次不等式与分式不等式.mp4

38.线性规划问题.mp4

39.基本不等式突破.mp4

40.逻辑用语专题.mp4

41.椭圆方程及其几何性质.mp4

42.双曲线方程及其性质.mp4

43.抛物线方程及其性质.mp4

44.直线与圆锥曲线综合.mp4

45.空间向量突破.mp4

46.导数的计算专题.mp4

47.导数的应用.mp4

48.导数的应用(二).mp4

49.定积分与微积分.mp4

50.复数专题.mp4

51.排列组合.mp4

52.二项式定理.mp4

53.随机变量及其变量.mp4

54回归分析与独立性检验.mp4

㈤ 四年级数学基础重要知识点

学习从来无捷径,循序渐进登高峰。如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。学习需要勤奋,做任何事情都需要勤奋。下面是我给大家整理的一些 四年级数学 的知识点,希望对大家有所帮助。

四年级上册数学基础知识点

1、自然数整数的意义

用来表示物体个数的1,2,3……叫做自然数。一个物体也没有,用0表示。0也是自然数它们都是整数。

最小的自然数是0,没有的自然数。自然数的个数是无限的。

2、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。其中"一"是计数的基本单位。

3、十进制计数法10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

4、数位

计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5、整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个"亿"或"万"字。每一级末尾的0都不读出来, 其它 数位连续有几个0都只读一个零。

6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

7、万以上数的写法:

(1)一个数含有万级和亿级,应从位写起,一级一级地往下写。

(2)写数时哪一位上是几就在那一位上写几,遇到哪一位上一个单位也没有,就在那一位上写0占位。

8、比较两个数的大小:

(1)如果位数不同,位数多的那个数就大,位数少的那个数就小;

(2)如果位数相同,就从位开始比较,位数大的那个数就大;如果第一位相同就看下一位,以此类推。

9、整万、整亿数的改写:

(1)改写成以"万"为单位的数,把万位后面的4个0去掉,加上一个"万"字即可。

(2)改写成以"亿"为单位的数,把亿位后面的8个0去掉,加上一个"亿"字即可。

10、近似数与准确数:

有些数的前面有"约"字,都不是准确数,像这样的数我们称做为"近似数"。

"四舍五入法":在取近似数的时候,按要求保留到哪一位,这一位后面的数称为"尾数"。如果尾数的位数字小于5,就把尾数去掉。如果尾数的位数字大于或等于5,就把尾数舍去并向它的前一位进"1",这种取近似数的 方法 叫做四舍五入法。

"省略万位或亿位后面的尾数求近似数",就是用"四舍五入"法,把一个数精确(保留)到万位或亿位,求它的近似数。

(1)用"万"作单位的近似数,应看千位上的数是几,再决定是"四舍"还是"五入"。

(2)用"亿"作单位的近似数,就看千万位上的数是几,再决定是"四舍"还是"五入"。

(3)不管是用"万"还是用"亿"作单位,写近似数时都要用约等号(≈)连接,末尾还要写上"万"字或"亿"字。

11、求近似数和数的改写的相同点:求近似数和数的改写都是把一个较大的数表示成整"万"或整"亿"的数,后面都要加一个"万"字或"亿"字。

不同点:求近似数是把一个数变成一个近似数,数的大小发生了变化;而数的改写只是把一个大数写成了以"万"或"亿"为单位的数,大小没有发生变化。

12、数字编码。数不仅可以用来表示数量和顺序,还可以用来编码。编码中的数字代表着一定的意义。编码具有有序性。

四年级数学知识点

运算定律及简便运算

一、加法运算定律:

1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)

加法的这两个定律往往结合起来一起使用。

如:165+93+35=93+(165+35)依据是什么?

3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)

二、乘法运算定律:

1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a

2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×(b×c)

乘法的这两个定律往往结合起来一起使用。如:125×78×8的简算

3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再把积相加。

(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c

四年级上册数学《近似数》知识点

近似数知识点

1、 精确数与近似数的特点。

精确数一般都以“一”为单位,近似数都是省略尾数,以“万”或“亿”为单位。

2、 用四舍五入法保留近似数的方法。

根据题中要求,看到所要保留位数的下一位,如果这一位满5,则向前一位进一;如果不够5则舍去。而不管尾数的后几位是多少。如精确到万位,只看千位,精确到亿位,只看到千万位。最后一定要写出单位名称。

典型练习题

一、填空

1、一个数是由7个千、3个百和5个十组成的,这个数是( )。

2、一个数从右边起,百位是第( )位,第五位是( )位。

3、3465的位是( )位,是( )位数。“6”在( )位上,表示( )。“3”在( )位上,表示( )。

4、100里面有( )十,一千里面有( )百,10个一是( )。

5、的四位数是( ),的三位数是( ),它们的和( ),差是( )。由( )个千、( )个百、( )个一组成3207。

6、万以内数的读法是从( )位起,按照数位顺序读;( )位上是几就读( )千;百位上是几就读( )……;中间有一个或两个0,只读( )个零;末尾不管有几个零都( )。

二、写出下面各数的近似数。

698的近似数是: 2956的近似数是:

3120的近似数是: 2802的近似数是:

1004的近似数是: 5023的近似数是:


四年级数学基础重要知识点相关 文章 :

★ 四年级上册数学基础知识点

★ 小学四年级数学基础知识点

★ 四年级数学基础复习知识点

★ 四年级数学基础知识点总结

★ 小学四年级数学上册重要知识点

★ 四年级数学基础知识点

★ 四年级数学重要知识点

★ 小学四年级数学基本知识点

★ 小学四年级数学重要知识点

★ 四年级数学基本知识点总结

㈥ 六年级数学知识点归纳整理

学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目 学习 方法 其实都是一样的,不断的记忆与练习,使知识刻在脑海里。下面是我给大家整理的一些 六年级数学 的知识点,希望对大家有所帮助。

小学6年级 毕业 考试数学重难知识点:行程问题

基本概念:

行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.

基本公式:

路程=速度×时间;路程÷时间=速度;路程÷速度=时间

关键问题:

确定运动过程中的位置和方向。

相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)

追及问题:追及时间=路程差÷速度差(写出其他公式)

流水问题:顺水行程=(船速+水速)×顺水时间

逆水行程=(船速-水速)×逆水时间

顺水速度=船速+水速

逆水速度=船速-水速

静水速度=(顺水速度+逆水速度)÷2

水 速=(顺水速度-逆水速度)÷2

流水问题:关键是确定物体所运动的速度,参照以上公式。

过桥问题:关键是确定物体所运动的路程,参照以上公式。

主要方法:画线段图法

基本题型:

已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。

六年级数学知识点归纳

一、圆的特征

1、圆是平面内封闭曲线围成的平面图形。

2、圆的特征:外形美观,易滚动。

3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。

半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。

直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。

同圆或等圆内直径是半径的2倍:d=2r或r=d÷2

4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。

5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。

有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

有二条对称轴的图形:长方形

有三条对称轴的图形:等边三角形

有四条对称轴的图形:正方形

有无条对称轴的图形:圆,圆环

6、画圆

(1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。

二、圆的周长:

围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

1、圆的周长总是直径的三倍多一些。

2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

即:圆周率π=周长÷直径≈3.14

所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd,c=2πr

圆周率π是一个无限不循环小数,3.14是近似值。

3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

4、半圆周长=圆周长一半+直径=πr+d

小学六年级数学 复习方法

一、要明确复习的目的、任务, 从实际出发

复习绝不能搞成简单的机械重复。应通过复习系统整理小学阶段所学的数学基础知识,理清知识的重点和关键, 搞清知识间的内在联系, 使学生的四则计算能力、初步的 逻辑思维 能力和空间观念在原有的基础上得到进一步的提高。

通过复习,学生能系统地掌握有关整数、小数、分数、百分数、比和比例、简易方程等基础知识, 并能正确、迅速地进行整数、小数和分教的四则计算, 提高计算能力。进一步掌握一常用的计量单位, 能够比较熟练地计算一些几何形体的周长、面积和体积, 并能进行简单你土地丈量和土石方计算, 培养学生的空间观念。能够掌握所学的常见的数量关系和解}答应用题的方法, 提高学生用算术方法和列方程解应用题的能力,培养学生逻辑思维能力科解决实际间题的能力。

复习前一定要结合本班学生的实际确定重点, 选取的 教学方法 进行复习。每节课都要有明确的复习目的、要求和主攻方向,这样才能提高复习质量。

二、确定复习的重点及范围

复习不是简单地重复以前所学的知识, 教师必须重视授课的内容, 对已学的知识进行系统的整理, 复习时,要注意发挥学生的主体作用,调动学生学习的积极性, 启发他们自学, 自己归纳整理所学的知识, 使知识系统化。或启发学生质疑间难, 由教师引导学生释疑,以促进学生深入理解知识。下面是十个复习重点:

1)整数和小数的意义、读写法, 计量单位和名数的互化。

2)整数、小数、分数的四则混合运算。

3)平面图形的概念、周长和面积。

4)简易方程。

5)数的整除和珠算。

6)分数、百分数的意义和性质及繁分数的化简。

7)立体图形的表面积和体积。

8)比和比例。

9)各类应用题的解法及列方程解应用题。

1 0)统计表和统计图。

三、采用灵活的复习方法

在复习时必须注意发挥学生的主动性。 促使学生独立思考。复习不应只是让学生把已学的数学知识简单地再现。 这样会助长学生死记硬背, 应当注意促进学生融会贯通和灵活运用所学的知识。

1)对比分析法。对于学生容易棍淆的一些概念、定义、公式和法则, 要让学生在理解的基础上逐渐掌握。并通过对比分析, 帮助学生了解它们之间的联系与区别,从而加深记忆。

2)独立阅读法。复习的知识都是已经学过的,教师可选择若干段有联系的教材, 让学生独立阅读,教师就关键性的伺题组织讨论, 抓住重点或学生不懂之处扼要地进行讲解, 扩散学生的思维, 培养学生独立分析间题的能力。

3)分类整理法。纵观小学数学的应用题内容,形式多种多样。在教材中的编排也较为分散, 特别是几何知识, 内容抽象, 概念多, 公式多, 计算繁。因此, 我们在复习时必须分类进行整理。 使知识系统化、条理化。找出各种知识的本质特征, 培养学生的逻辑思维能力。

4)归纳综合法。小学数学内容繁多, 知识面广。每部分的内容大多涉及其他部分的知识,横向联系面大, 知识的迁移性较强。复习时应由易到难, 由一般到特殊, 由基本到灵活, 充分运用知识的迁移规律,进行综合性的复习。

5)有侧重点地进行复习。随时掌握学生的学习情况, 发现学生中的知识缺陷,根据具体情况及时予以补救。要有针对性、有重点地进行复习、 完善学生的知识。

四、复习的具体 措施

1) 反思 教学,制定计划。复习中我们不能按部就班地照书本编排重讲知识,免得学生吃一遍冷饭,枯燥无味。教师应该有效合理地系统复习基础知识,内化知识结构,激发学生积极主动的参与学习活动。因此第一阶段的复习应该注重基础,全面反思。同时,教师也要要求每个学生做好听课笔记。老师上课复习的内容, 特别是综合板书的关键语句, 学生都要做好笔记。老师每个星期还要抽查一次, 督促学生及时完成。

2)专题训练,突破各个环节针对学生容易发生普遍性错误和个别性错误的知识点,应采用典型反思和个别反思相结合,加强针对训练,展开专题复习方式,突破各个环节的复习思路。一方面,对学生进行专题训练,针对复习。另一方面,注重单元试卷、综合试卷、 学生 自我评价 的反思,把每一章节的知识联系在一起复习。加强知识的连惯性,在这一阶段中要灵活。再一方面,注重测试的批改与讲评。

3)分层引导,全面提高。重视班级学生分层引导,发展共性,培养个性,激励学生互帮互助,共同奋斗,共同提高。通过这几个阶段的复习,每个学生都会有很大提高。


六年级数学知识点归纳整理相关 文章 :

★ 六年级上册数学知识点整理归纳

★ 六年级数学期末复习知识点汇总

★ 人教版六年级数学知识点整理

★ 六年级数学总复习知识点整理(完整版)

★ 一至六年级数学知识点复习资料整合

★ 小学六年级数学知识点总结

★ 六年级数学小知识总结

★ 六年级数学的重难点知识总结

★ 六年级数学上册知识点总结

★ 小学六年级数学学习方法和技巧大全

㈦ 高中数学知识点总结(最全版)(强烈推荐)

链接:

提取码: rrtg

高中数学基础知识梳理(数学小飞侠)

㈧ 关于数学的知识有哪些

如下:

1、数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。

2、数学在人类历史发展和社会生活中发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。

3、数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。

4、数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用。

㈨ 数学的基础知识是什么

数学的基础知识如下:

如果说数学的基础知识,首先要看你处于哪个数学学习阶段(初等数学,高等数学,或者数学研究方向)。

初等数学的话,基础知识就是记忆使用各种定理定义(代数:一元二元一次二次方程,一元二元一次二次函数等,几何:平面几何,简单立体几何等)。

高等数学的话,基础知识就是利用已知尝试推演定理(各种初等函数的扩展,解析几何,向量,立体几何,微积分,统计学等)。

数学的简介:

数学[英语:mathematics,源自古希腊语μθημα(máthēma);经常被缩写为math或maths],是研究数量、结构、变化、空间以及信息等概念的一门学科。

数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。

在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。

㈩ 高中数学知识点大全

有的学生认为高中数学难做难做。其实高中数学整体上很简单,很简单,很多知识只要读两遍就可以了。下面是我整理的高中数学知识点大全,希望对你们有所帮助!

高中数学知识点

1、基本初等函数

指数、对数、幂函数三大函数的运算性质及图像

函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。关于这三大函数的运算公式,多记多用,多做一点练习,基本就没问题。

函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考点。另外指数函数和对数函数的对立关系及其相互之间要怎样转化等问题,需要着重回看课本例题。

2、函数的应用

这一章主要考是函数与方程的结合,其实就是函数的零点,也就是函数图像与X轴的交点。这三者之间的转化关系是这一章的重点,要学会在这三者之间灵活转化,以求能最简单的解决问题。关于证明零点的 方法 ,直接计算加得必有零点,连续函数在x轴上方下方有定义则有零点等等,这些难点对应的证明方法都要记住,多练习。二次函数的零点的Δ判别法,这个需要你看懂定义,多画多做题。

3、空间几何

三视图和直观图的绘制不算难,但是从三视图复原出实物从而计算就需要比较强的空间感,要能从三张平面图中慢慢在脑海中画出实物,这就要求学生特别是空间感弱的学生多看书上的例图,把实物图和平面图结合起来看,先熟练地正推,再慢慢的逆推(建议用纸做一个立方体来找感觉)。

在做题时结合草图是有必要的,不能单凭想象。后面的锥体、柱体、台体的表面积和体积,把公式记牢问题就不大。

4、点、直线、平面之间的位置关系

这一章除了面与面的相交外,对空间概念的要求不强,大部分都可以直接画图,这就要求学生多看图。自己画草图的时候要严格注意好实线虚线,这是个规范性问题。

关于这一章的内容,牢记直线与直线、面与面、直线与 面相 交、垂直、平行的几大定理及几大性质,同时能用图形语言、文字语言、数学表达式表示出来。只要这些全部过关这一章就解决了一大半。这一章的难点在于二面角这个概念,大多同学即使知道有这个概念,也无法理解怎么在二面里面做出这个角。对这种情况只有从定义入手,先要把定义记牢,再多做多看,这个没有什么捷径可走。

5、圆与方程

能熟练地把一般式方程转化为标准方程,通常的考试形式是等式的一边含根号,另一边不含,这时就要注意开方后定义域或值域的限制。通过点到点的距离、点到直线的距离、圆半径的大小关系来判断点与圆、直线与圆、圆与圆的位置关系。另外注意圆的对称性引起的相切、相交等的多种情况,自己把几种对称的形式罗列出来,多思考就不难理解了。

6、三角函数

考试必在这一块出题,且题量不小!诱导公式和基本三角函数图像的一些性质,没有太大难度,只要会画图就行。难度都在三角函数形函数的振幅、频率、周期、相位、初相上,及根据最值计算A、B的值和周期,及恒等变化时的图像及性质变化,这部分的知识点内容较多,需要多花时间,不要再定义上死扣,要从图像和例题入手。

7、平面向量

向量的运算性质及三角形法则、平行四边形法则的难度都不大,只要在计算的时候记住要“同起点的向量”这一条就OK了。向量共线和垂直的数学表达,是计算当中经常用到的公式。向量的共线定理、基本定理、数量积公式。分点坐标公式是重点内容,也是难点内容,要花心思记忆。

8、三角恒等变换

这一章公式特别多,像差倍半角公式这类内容常会出现,所以必须要记牢。由于量比较大,记忆难度大,所以建议用纸写好后贴在桌子上,天天都要看。要提一点,就是三角恒等变换是有一定规律的,记忆的时候可以集合三角函数去记。

9、解三角形

掌握正弦、余弦公式及其变式、推论、三角面积公式即可。

10、数列

等差、等比数列的通项公式、前n项及一些性质常出现于填空、解答题中,这部分内容学起来比较简单,但考验对其推导、计算、活用的层面较深,因此要仔细。考试题中,通项公式、前n项和的内容出现频次较多,这类题看到后要带有目的的去推导就没问题了。

11、不等式

这一章一般用线性规划的形式来考察学生,这种题通常是和实际问题联系的,所以要会读题,从题中找不等式,画出线性规划图,然后再根据实际问题的限制要求来求最值。



高中数学公式大全

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1_X2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac<0 注:方程没有实根,有共轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c_h 斜棱柱侧面积 S=c'_h

正棱锥侧面积 S=1/2c_h' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi_r2

圆柱侧面积 S=c_h=2pi_h 圆锥侧面积 S=1/2_c_l=pi_r_l

弧长公式 l=a_r a是圆心角的弧度数r >0 扇形面积公式 s=1/2_l_r

锥体体积公式 V=1/3_S_H 圆锥体体积公式 V=1/3_pi_r2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=s_h 圆柱体 V=pi_r2h

高考前数学知识点 总结

选择填空题

1、易错点归纳:

九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。

针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。

2、答题方法:

选择题十大速解方法:

排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;

填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。

解答题

专题一、三角变换与三角函数的性质问题

1、解题路线图

①不同角化同角

②降幂扩角

③化f(x)=Asin(ωx+φ)+h

④结合性质求解。

2、构建答题模板

①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

④ 反思 :反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。

专题二、解三角形问题

1、解题路线图

(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

2、构建答题模板

①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。

专题三、数列的通项、求和问题

1、解题路线图

①先求某一项,或者找到数列的关系式。

②求通项公式。

③求数列和通式。

2、构建答题模板

①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。

③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

④写步骤:规范写出求和步骤。

⑤再反思:反思回顾,查看关键点、易错点及解题规范。

专题四、利用空间向量求角问题

1、解题路线图

①建立坐标系,并用坐标来表示向量。

②空间向量的坐标运算。

③用向量工具求空间的角和距离。

2、构建答题模板

①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。

②写坐标:建立空间直角坐标系,写出特征点坐标。

③求向量:求直线的方向向量或平面的'法向量。

④求夹角:计算向量的夹角。

⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。

专题五、圆锥曲线中的范围问题

1、解题路线图

①设方程。

②解系数。

③得结论。

2、构建答题模板

①提关系:从题设条件中提取不等关系式。

②找函数:用一个变量表示目标变量,代入不等关系式。

③得范围:通过求解含目标变量的不等式,得所求参数的范围。

④再回顾:注意目标变量的范围所受题中其他因素的制约。

专题六、解析几何中的探索性问题

1、解题路线图

①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)

②将上面的假设代入已知条件求解。

③得出结论。

2、构建答题模板

①先假定:假设结论成立。

②再推理:以假设结论成立为条件,进行推理求解。

③下结论:若推出合理结果, 经验 证成立则肯。 定假设;若推出矛盾则否定假设。

④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。

专题七、离散型随机变量的均值与方差

1、解题路线图

(1)①标记事件;②对事件分解;③计算概率。

(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。

2、构建答题模板

①定元:根据已知条件确定离散型随机变量的取值。

②定性:明确每个随机变量取值所对应的事件。

③定型:确定事件的概率模型和计算公式。

④计算:计算随机变量取每一个值的概率。

⑤列表:列出分布列。

⑥求解:根据均值、方差公式求解其值。

专题八、函数的单调性、极值、最值问题

1、解题路线图

(1)①先对函数求导;②计算出某一点的斜率;③得出切线方程。

(2)①先对函数求导;②谈论导数的正负性;③列表观察原函数值;④得到原函数的单调区间和极值。

2、构建答题模板

①求导数:求f(x)的导数f′(x)。(注意f(x)的定义域)

②解方程:解f′(x)=0,得方程的根

③列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。

④得结论:从表格观察f(x)的单调性、极值、最值等。

⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步骤规范性。

以上模板仅供参考,希望大家能针对自己的情况整理出来最适合的“套路”。

高中数学 学习心得

数学是一们基础学科,我们从小就开始接触到它。现在我们已经步入高中,由于高中数学对知识的难度、深度、广度要求更高,有一部分同学由于不适应这种变化,数学成绩总是不如人意。甚至产生这样的困惑:“我在初中时数学成绩很好,可现在怎么了?”其实,学习是一个不断接收新知识的过程。正是由于你在进入高中后 学习方法 或 学习态度 的影响,才会造成学得累死而成绩不好的后果。那么,究竟该如何学好高中数学呢?以下我谈谈我的高中数学学习心得。

一、 认清学习的能力状态。

1、 心理素质。我们在高中学习环境下取决于我们是否具有面对挫折、冷静分析问题的办法。当我们面对困难时不应产生畏惧感,面对失败时不应灰心丧气,而要勇于正视自己,及时作出总结教训,改变学习方法。

2、 学习方式、习惯的反思与认识。(1) 学习的主动性。我们在进入高中以后,不能还像初中时那样有很强的依赖心理,不订 学习计划 ,坐等上课,课前不预习,上课忙于记笔记而忽略了真正的听课,顾此失彼,被动学习。(2) 学习的条理性。我们在每学习一课内容时,要学会将知识有条理地分为若干类,剖析概念的内涵外延,重点难点要突出。不要忙于记笔记,而对要点没有听清楚或听不全。笔记记了一大摞,问题也有一大堆。如果还不能及时巩固、总结,而忙于套着题型赶作业,对概念、定理、公式不能理解而死记硬背,则会事倍功半,收效甚微。(3) 忽视基础。在我身边,常有些“自我感觉良好”的同学,忽视基础知识、基本技能和基本方法,不能牢牢地抓住课本,而是偏重于对难题的攻解,好高骛远,重“量”而轻“质”,陷入题海,往往在考试中不是演算错误就是中途“卡壳”。(4) 不良习惯。主要有对答案,卷面书写不工整,格式不规范,不相信自己的结论,缺乏对问题解决的信心和决心,遇到问题不能独立思考,养成一种依赖于老师解说的心理,做作业不讲究效率,学习效率不高。

二、 努力提高自己的学习能力。

1、 抓要点提高学习效率。(1) 抓教材处理。正所谓“万变不离其中”。要知道,教材始终是我们学习的根本依据。教学是活的,思维也是活的,学习能力是随着知识的积累而同时形成的。我们要通过老师教学,理解所学内容在教材中的地位,并将前后知识联系起来,把握教材,才能掌握学习的主动性。(2) 抓问题暴露。对于那些典型的问题,必须及时解决,而不能把问题遗留下来,而要对遗留的问题及时、有效的解决。(3) 抓 思维训练 。数学的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。我们在平时的训练中,要注重一个思维的过程,学习能力是在不断运用中才能培养出来的。(5) 抓45分钟课堂效率。我们学习的大部分时间都在学校,如果不能很好地抓住课堂时间,而寄希望于课外去补,则会使学习效率大打折扣。

高中数学知识点大全相关 文章 :

★ 高二数学知识点总结

★ 高一数学必修一知识点汇总

★ 高中数学学习方法:知识点总结最全版

★ 高中数学知识点总结

★ 高一数学知识点总结归纳

★ 高三数学知识点考点总结大全

★ 高中数学基础知识大全

★ 高三数学知识点梳理汇总

★ 高中数学必考知识点归纳整理

★ 高一数学知识点总结期末必备

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();