⑴ 高中数学导数知识点
导数具体知识仅凭我讲是不够得,你需要买一本参考书像《高考题库》导数系列,或《决战高考》本人最爱做的就是导数,你有什么问题问我我会给你具体解答,我的QQ为 1084698040 把不会的发我空间或邮箱,希望共同进步
⑵ 高中数学的课外知识:导数与穿根法的问题(不会的就别说了)
我虽然不是很懂,但我想回答一下我的想法。我是高二的学生,对导数还是比较熟悉。上述的方法可适用于三次函数,如y=ax3+bx2+cx+d可以对其求导y'=3ax2+2bx+c令y'=0则若得到两个不同的实数根。则这两个点就是转折点,因此可以根据单调性来画出草图。。。高中阶段差不多就这样了。。。谢谢。。望采纳
⑶ 高中数学知识点总结
高考
知识汇总
第一部分 集合
(1)含n个元素的集合的
数为2^n,
数为2^n-1;
的数为2^n-2;
(2) 注意:讨论的时候不要遗忘了 的情况。
(3)
第二部分 函数与
1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。
2.函数值域的求法:①
;②
;③
;④利用函数
;
⑤
;⑥利用
; ⑦利用
或几何意义(斜率、距离、绝对值的意义等);⑧利用函数
( 、 、 等);⑨
法
3.
的有关问题
(1)复合
求法:
① 若f(x)的定义域为〔a,b〕,则
f[g(x)]的定义域由不等式a≤g(x)≤b解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)
的判定:
①首先将
分解为基本函数:内函数 与外函数 ;
②分别研究内、外函数在各自定义域内的
;
③根据“同性则增,异性则减”来判断
在其定义域内的单调性。
注意:外函数 的定义域是内函数 的值域。
4.
:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5.函数的
⑴函数的定义域关于
是函数具有
的必要条件;
⑵ 是
;
⑶ 是
;
⑷
在原点有定义,则 ;
⑸在关于
的
内:
有相同的单调性,
有相反的单调性;
(6)若所给函数的解析式较为复杂,应先等价变形,再判断其
;
6.函数的单调性
⑴单调性的定义:
① 在区间 上是增函数 当 时有 ;
② 在区间 上是
当 时有 ;
⑵单调性的判定
1 定义法:
注意:一般要将式子 化为几个
作积或作商的形式,以利于判断符号;
②
法(见导数部分);
③复合函数法(见2 (2));
④图像法。
注:证明单调性主要用定义法和导数法。
7.函数的周期性
(1)周期性的定义:
对定义域内的任意 ,若有 (其中 为非零常数),则称函数 为
, 为它的一个周期。
所有正周期中最小的称为函数的
。如没有特别说明,遇到的周期都指
。
(2)
的周期
① ;② ;③ ;
④ ;⑤ ;
⑶函数周期的判定
①定义法(试值) ②图像法 ③
(利用(2)中结论)
⑷与周期有关的结论
① 或 的周期为 ;
② 的图象关于点
周期为2 ;
③ 的图象关于直线
周期为2 ;
④ 的图象关于点
,直线
周期为4 ;
8.
的图像与性质
⑴
: ( ;⑵
: ;
⑶
: ;⑷
: ;
⑸
: ;(6)
: ;⑺
: ;
⑻其它常用函数:
1
: ;②
: ;特别的
2 函数 ;
9.
:
⑴解析式:
①
: ;②
: , 为顶点;
③
: 。
⑵
问题解决需考虑的因素:
①开口方向;②对称轴;③端点值;④与
交点;⑤
;⑥两根符号。
⑶
问题解决方法:①
;②分类讨论。
10.
:
⑴图象作法 :①描点法 (特别注意
的五点作图)②
法③导数法
⑵
:
1 平移变换:ⅰ ,2 ———“正左负右”
ⅱ ———“正上负下”;
3 伸缩变换:
ⅰ , ( ———纵坐标不变,横坐标伸长为原来的 倍;
ⅱ , ( ———横坐标不变,纵坐标伸长为原来的 倍;
4
:ⅰ ;ⅱ ;
ⅲ ; ⅳ ;
5
:
ⅰ ———右不动,右向左翻( 在 左侧图象去掉);
ⅱ ———上不动,下向上翻(| |在 下面无图象);
11.
(曲线)
的证明
(1)证明函数 图像的
,即证明图像上任意点关于
(对称轴)的对称点仍在图像上;
(2)证明函数 与 图象的
,即证明 图象上任意点关于
(对称轴)的对称点在 的图象上,反之亦然;
注:
①曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
②曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2a-x, y)=0;
③曲线C1:f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
④f(a+x)=f(b-x) (x∈R) y=f(x)图像关于直线x= 对称;
特别地:f(a+x)=f(a-x) (x∈R) y=f(x)图像关于直线x=a对称;
⑤函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;
12.
的求法:
⑴
(求 的根);⑵
;⑶
.
13.导数
⑴导数定义:f(x)在点x0处的导数记作 ;
⑵常见函数的导数公式: ① ;② ;③ ;
④ ;⑤ ;⑥ ;⑦ ;
⑧ 。
⑶导数的
法则:
⑷(理科)
:
⑸导数的应用:
①利用导数求切线:注意:ⅰ所给点是切点吗?ⅱ所求的是“在”还是“过”该点的切线?
②利用导数判断函数单调性:
ⅰ 是增函数;ⅱ 为
;
ⅲ 为常数;
③利用导数求
:ⅰ求导数 ;ⅱ求方程 的根;ⅲ列表得
。
④利用导数最大值与最小值:ⅰ求的
;ⅱ求区间端点值(如果有);ⅲ得最值。
14.(理科)
⑴
的定义:
⑵
的性质:① ( 常数);
② ;
③ (其中 。
⑶
(牛顿—
):
⑷定积分的应用:①求
的面积: ;
3 求
的路程: ;③求变力做功: 。
第三部分
、
与
1.⑴
与
的互化: 弧度 , 弧度, 弧度
⑵
: ;扇形
: 。
2.三角函数定义:角 中边上任意一点 为 ,设 则:
3.
规律:一全正,二正弦,三两切,四余弦;
4.
记忆规律:“函数名不(改)变,符号看象限”;
5.⑴ 对称轴: ;
: ;
⑵ 对称轴: ;对称中心: ;
6.同角三角函数的基本关系: ;
7.两角和与差的正弦、余弦、
公式:①
② ③ 。
8.
:① ;
② ;③ 。
9.正、
:
⑴
: ( 是
直径 )
注:① ;② ;③ 。
⑵
: 等三个;注: 等三个。
10。几个公式:
⑴
: ;
⑵
半径r= ;
直径2R=
11.已知 时三角形解的个数的判定:
第四部分
1.
与
:注:原图形与
面积之比为 。
2.表(侧)面积与
:
⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧= ;③体积:V=S底h
⑵
:①表面积:S=S侧+S底;②侧面积:S侧= ;③体积:V= S底h:
⑶台体:①表面积:S=S侧+S上底S下底;②侧面积:S侧= ;③体积:V= (S+ )h;
⑷球体:①表面积:S= ;②体积:V= 。
3.位置关系的证明(主要方法):
⑴直线与直线平行:①
4;②
的性质定理;③
的性质定理。
⑵直线与平面平行:①
的判定定理;②
。
⑶平面与平面平行:①
的判定定理及推论;②垂直于同一直线的两平面平行。
⑷直线与平面垂直:①直线与平面垂直的判定定理;②
的性质定理。
⑸平面与平面垂直:①定义---两平面所成
为直角;②
的判定定理。
注:理科还可用向量法。
4.求角:(步骤-------Ⅰ。找或作角;Ⅱ。求角)
⑴
的求法:
1 平移法:平移直线,2 构造三角形;
3 ②
:补成正方体、
、长方体等,4 发现两条
间的关系。
注:理科还可用向量法,转化为两直线
的夹角。
⑵直线与平面所成的角:
①
(利用
定义);②先求斜线上的
h,与斜线段长度作比,得sin 。
注:理科还可用向量法,转化为直线的
与平面
的夹角。
⑶
的求法:
①定义法:在
的棱上取一点(特殊点),作出
,再求解;
②三垂线法:由一个半面内一点作(或找)到另一个
的垂线,用
或
作出二面角的
,再求解;
③
法:利用面积
公式: ,其中 为
的大小;
注:对于没有给出棱的二面角,应先作出棱,然后再选用上述方法;
理科还可用向量法,转化为两个班平面
的夹角。
5.求距离:(步骤-------Ⅰ。找或作
;Ⅱ。求距离)
⑴两
间的距离:一般先作出公
,再进行计算;
⑵点到直线的距离:一般用
作出
,再求解;
⑶点到平面的距离:
①垂面法:借助
的性质作垂线段(确定已知面的垂面是关键),再求解;
5 等体积法;
理科还可用向量法: 。
⑷
:(步骤)
(Ⅰ)求线段AB的长;(Ⅱ)求
∠AOB的弧度数;(Ⅲ)求
AB的长。
6.结论:
⑴从一点O出发的三条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面∠BOC上的
在∠BOC的平分线上;
⑵立平斜公式(
公式):
⑶
的各侧面与底面所成的角相等,记为 ,则S侧cos =S底;
⑷长方体的性质
①长方体
与过同一顶点的三条棱所成的角分别为 则:cos2 +cos2 +cos2 =1;sin2 +sin2 +sin2 =2 。
⑷ 高中数学所有知识点归纳
高中数学基础知识梳理(数学小飞侠)
链接:
若资源有问题,欢迎追问~
⑸ 高中数学导数知识点总结
按题型来总结知识点:
1.简单的求导公式
2.求单调区间
3.求函数极值
4.最值
⑹ 谁能给我整个高中的数学知识点总结
本人亲身试验
如果LZ你是新高一,那就好办。
1.其实我觉得最重要的就是自信。不管你初中怎样,高中的数学是不一样的,初中很死很呆。如果只是按照初中的方法,学不好高中数学,至少不会拔尖。所以,给自己信心!这样才有动力啊。
2.有自信,那就拿出行动。在高一时,最好自学完大部分课程,不用钻得很深,把参考书的知识提纲看看,大致掌握。然后,看教科书(现在高考题蛮多技巧都是课本上的,比如放缩法的一个公式),把书上的练习做一做,做简单的,不需要很深。
3.在自学的同时,最最重要的是老师讲的课程,讲到哪里,你就要钻研到哪里。若是条件可以的话,可以跟个辅导班,我之前就是这么过来的,分享一家口碑不错的http://www.wpjj.cn/a/1.html,仅供参考。伴随着老师的步伐,在已经自学的基础上,开始做一些高考题,有些题一开始或许有些难度,或许有些知识点的技巧老师没讲到,但是,你要钻研,探寻知识的本质是什么。
4.笔记本,这个当初我没注意到,很是后悔。笔记本记什么,记你自己的技巧与老师的技巧(最好配上题),记错题(不要错一题写一题,把错误分类,每一类后写明自己错的原因)
5.如上所做,在高二,上课会很轻松,你只要学习技巧与思维,这时开始,一题多解的训练,一道题,尽可能想多一点方法,还可以与同学交流。
6.在高一,一开始学集合可能会很晕,这很正常,初中与高中的衔接是这样的,你一定要给自己信心,努力钻研,这个过渡期就很快度过的。
7.下面给出 我自己曾经遇到的问题。
a.立体几何(血的教训,记住啊),一开始学的是“综合法”(是什么你先不用管),很简单,
是简单的立体几何,在高二时,又会学到“坐标法”(这个基本是万能方法),坐标法,是万金油,但是,你要记住,千万不要用泛滥了。我在学习坐标法后,立体几何题都用坐标法,不用思考,提笔就算。最后,我发现我不会用综合法了......现在高考趋势于综合法,坐标法对付几年前高考题,很快。但是,坐标法最近不好用啊,甚至用不了。综合法,是思维,坐标法,是计算。
两者过关,万无一失。所以,建议你两种方法都练,但综合法为主,坐标法为辅。
b.圆锥曲线,通常是高考最后3题,较难,刚学不建议马上做高考题,基础一点要牢(一定,一定,切记切记).
c.导数, 通常较难,也是基础要牢,导数题,通常比较活,题海战术似乎没什么用(不要深陷其中),要掌握思维与技巧,才可能学好导数。
总结来说:自信(任何时候都要对自己说:我可以的),基础(一切之源,要牢),钻研(我曾经为了寻找一个规律,弄到凌晨3点),归纳(就是你的笔记本)
做到上面这几点,坚持3年,高考至少135,若是加一点竞赛思想,保140没问题.
⑺ 总结高中数学知识点(人教版)
.集合、简易逻辑
理解集合、子集、补集、交集、并集的概念;
了解空集和全集的意义;
了解属于、包含、相等关系的意义;
掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
理解逻辑联结词"或"、"且"、"非"的含义;
理解四种命题及其相互关系;掌握充要条件的意义。
2.函数
了解映射的概念,在此基础上加深对函数概念的理解。
了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法。
了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数。
理解分数指数的概念,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质。
理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图象和性质。
能够运用函数的性质、指数函数、对数函数的性质解决某些简单的实际问题。
3.不等式
理解不等式的性质及其证明。
掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。
掌握分析法、综合法、比较法证明简单的不等式。
掌握二次不等式,简单的绝对值不等式和简单的分式不等式的解法。
理解不等式:|a|-|b|≤|a+b|≤|a|+|b|。
4.三角函数(46课时)
理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。
掌握任意角的正弦、余弦、正切的定义,
并会利用单位圆中的三角函数线表示正弦、余弦和正切。
了解任意角的余切、正割、余割的定义;
掌握同角三角函数的基本关系式:
掌握正弦、余弦的诱导公式。
掌握两角和与两角差的正弦、余弦、正切公式;
掌握二倍角的正弦、余弦、正切公式;通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力。
能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明(包括引出积化和差、和差化积、半角公式,但不要求记忆)。
了解周期函数与最小正周期的意义;
了解奇偶函数的意义;并通过它们的图象理解正弦函数、余弦函数、正切函数的性质;以及简化这些函数图象的绘制过程;
会用"五点法"画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义。
会由已知三角函数值求角,并会用符号 arcsin x、arccos x、arctan x表示。
掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的计算问题。
5.平面向量
理解向量的概念,掌握向量的几何表示,
了解共线向量的概念。
掌握向量的加法与减法。
掌握实数与向量的积,理解两个向量共线的充要条件。
了解平面向量的基本定理,
理解平面向量的坐标的概念,
掌握平面向量的坐标运算。
掌握平面向量的数量积及其几何意义,
了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。
掌握平面两点间的距离公式,
掌握线段的定比分点和中点坐标公式,并且能熟练运用;
掌握平移公式。
6.数列
理解数列的概念,
了解数列通项公式的意义;
了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
理解等差数列的概念,
掌握等差数列的通项公式与前 n 项和公式,并能解决简单的实际问题。
理解等比数列的概念
掌握等比数列的通项公式与前 n 项和公式,并能解决简单的实际问题。
7.直线和圆的方程
理解直线的倾斜角和斜率的概念,
掌握过两点的直线的斜率公式,
掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程。
掌握两条直线平行与垂直的条件,
掌握两条直线所成的角和点到直线的距离公式;
能够根据直线的方程判断两条直线的位置关系。
会用二元一次不等式表示平面区域。
了解简单的线性规划问题,了解线性规划的意义,并会简单应用。
掌握圆的标准方程和一般方程,
了解参数方程的概念,理解圆的参数方程。
8.圆锥曲线方程
掌握椭圆的定义、标准方程和椭圆的简单几何性质;
理解椭圆的参数方程。
掌握双曲线的定义、标准方程和双曲线的简单几何性质。
掌握抛物线的定义、标准方程和抛物线的简单几何性质。
9.直线、平面、简单几何体
掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;
能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。
掌握两条直线平行与垂直的判定定理和性质定理;
掌握两条直线所成的角和距离的概念(对于异面直线的距离,只要求会利用给出的公垂线计算距离)。
掌握直线和平面平行的判定定理和性质定理;
掌握直线和平面垂直的判定定理和性质定理;
掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念;
了解三垂线定理及其逆定理。
掌握两个平面平行的判定定理和性质定理;
掌握二面角、二面角的平面角、两个平行平面间的距离的概念;
掌握两个平面垂直的判定定理和性质定理。
进一步熟悉反证法,会用反证法证明简单的问题。
了解多面体的概念,了解凸多面体的概念。
了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。
了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。
了解正多面体的概念,了解多面体的欧拉公式。
了解球的概念,掌握球的性质,掌握球的表面积和体积公式。
10.排列、组合、二项式定理
掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
11.概率
了解随机事件的统计规律性和随机事件概率的意义。
了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率。
了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率。
会计算事件在 n 次独立重复试验中恰好发生 k 次的概率。
选修Ⅰ
1.统计
了解随机抽样、分层抽样的意义,会用它们对简单实际问题进行抽样;
会用样本频率分布估计总体分布,
会利用样本估计总体期望值和方差,体会如何从数据中提取信息并作出统计推断。
2.导数
理解导数是平均变化率的极限;理解导数的几何意义。
掌握函数 的导数公式,会求多项式函数的导数。
理解极大值、极小值、最大值、最小值的概念,
会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值。
选修Ⅱ
1.概率与统计
了解离散型随机变量的意义,
会求出某些简单的离散型随机变量的分布列。
了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。
会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本。
会用样本频率分布估计总体分布。
了解正态分布的意义及主要性质。
了解线性回归的方法和简单应用。
2. 极限
理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。
从数列和函数的变化趋势了解数列极限和函数极限的概念。
掌握极限的四则运算法则;会求某些数列与函数的极限。
了解连续的意义,借助几何直观理解闭区间上连续函数有最大值和最小值的性质。
3.导数
了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);
掌握函数在一点处的导数的定义和导数的几何意义;
理解导函数的概念。
熟记基本导数公式(c,xm(m为有理数), sin x, cos x, ex, ax, ln x,logax的导数);
掌握两个函数和、差、积、商的求导法则;
了解复合函数的求导法则,会求某些简单函数的导数。
会从几何直观了解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。
4.数系的扩充--复数
理解复数的有关概念;
掌握复数的代数表示与几何意义。
掌握复数代数形式的运算法则,能进行复数代数形式的加、减、乘、除运算。
⑻ 上海 高二 数学 知识点总结
高二数学期末复习知识点总结
一、直线与圆:
1、直线的倾斜角 的范围是
在平面直角坐标系中,对于一条与 轴相交的直线 ,如果把 轴绕着交点按逆时针方向转到和直线 重合时所转的最小正角记为 , 就叫做直线的倾斜角。当直线 与 轴重合或平行时,规定倾斜角为0;
两条平行线 与 的距离是
2、圆的标准方程: .⑵圆的一般方程:
注意能将标准方程化为一般方程
3、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与 轴垂直的直线.
4、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.
过两点(x1,y1),(x2,y2)的直线的斜率k=( y2-y1)/(x2-x1),另外切线的斜率用求导的方法。
5、点 到直线 的距离公式 ;
6、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.① 相离② 相切③ 相交
7、直线方程:⑴点斜式:直线过点 斜率为 ,则直线方程为 ,
⑵斜截式:直线在 轴上的截距为 和斜率 ,则直线方程为
8、 , ,① ∥ , ; ② .
直线 与直线 的位置关系:
(1)平行 A1/A2=B1/B2 注意检验 (2)垂直 A1A2+B1B2=0
9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形) 直线与圆相交所得弦长
二、圆锥曲线方程:
1、椭圆: ①方程 (a>b>0)注意还有一个;②定义: |PF1|+|PF2|=2a>2c; ③ e= ④长轴长为2a,短轴长为2b,焦距为2c; a2=b2+c2 ;
2、抛物线 :①方程y2=2px注意还有三个,能区别开口方向; ②定义:|PF|=d焦点F( ,0),准线x=- ;③焦半径 ; 焦点弦 =x1+x2+p;
3、双曲线:①方程 (a,b>0) 注意还有一个;②定义: ||PF1|-|PF2||=2a<2c; ③e= ;④实轴长为2a,虚轴长为2b,焦距为2c; 渐进线 或 c2=a2+b2
4、直线被圆锥曲线截得的弦长公式:
5、注意解析几何与向量结合问题:
没别的了