当前位置:首页 » 基础知识 » 中考九年级数学基础知识

中考九年级数学基础知识

发布时间: 2022-11-16 15:12:09

① 初中数学知识点之基础知识点总结

初中数学知识点之基础知识点总结

在年少学习的日子里,很多人都经常追着老师们要知识点吧,知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。想要一份整理好的知识点吗?下面是我帮大家整理的初中数学知识点之基础知识点总结,欢迎大家分享。

初中数学知识点之基础知识点总结1

一、数与代数A、数与式:1、有理数:①整数→正整数/0/负整数②分数→正分数/负分数

数轴:

①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

绝对值:

①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:

①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数

平方根:

①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:

①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:

①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。

3、代数式

代数式:单独一个数或者一个字母也是代数式。

合并同类项:

①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

4、整式与分式

整式:

①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。

③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:AM+AN=A(M+N)

(AM)N=AMN

(A/B)N=AN/BN除法一样。

整式的乘法:

①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式/完全平方公式

整式的除法:

①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。

分式:

①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

初中数学知识点:直线的位置与常数的关系

①k>0则直线的倾斜角为锐角

②k<0则直线的倾斜角为钝角

③图像越陡,|k|越大

④b>0直线与y轴的`交点在x轴的上方

⑤b<0直线与y轴的交点在x轴的下方

初中数学知识点之基础知识点总结2

1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

3.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解)。

4.列一元一次方程解应用题:

(1)读题分析法:多用于“和,差,倍,分问题”

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套—————”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。

(2)画图分析法:多用于“行程问题”

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。

11.列方程解应用题的常用公式:

(1)行程问题:距离=速度·时间;

(2)工程问题:工作量=工效·工时;

(3)比率问题:部分=全体·比率;

(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度—水流速度;

(5)商品价格问题:售价=定价·折·,利润=售价—成本,;

(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,

S正方形=a2,S环形=π(R2—r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=πR2h。

本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。

初中数学知识点之基础知识点总结3

二元二次方程与二元二次方程组以及解法要领的孩子试点已经为大家讲完,接下来给大家带来的知识点内容是数轴,希望同学们了解有向直线和数轴的知识要领了。

数轴

11有向直线

在科学技术和日常生活中,为了区别一条直线的两个不同方向,可以规定其中一方向为正向,另一方向为负相

规定了正方向的直线,叫做有向直线,读作有向直线l

12数轴

我们把数轴上任意一点所对应的实数称为点的坐标

对于每一个坐标(实数),在数周上可以找到唯一的点与之对应这就是直线的坐标化

数轴上任意一条有向线段的数量等于它的终点坐标与起点坐标的差任意一条有向线段的长度等于它两个断电坐标差的绝对值

上面的内容是初中数学知识点之数轴,相信同学们看过以后都可以很好的掌握了吧。如果想要了解更多更全的初中数学知识就来关注吧。

初中数学知识点总结:平面直角坐标系

下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系

平面直角坐标系: 在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

初中数学知识点:点的坐标的性质

下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

初中数学知识点:因式分解的一般步骤

关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

初中数学知识点:因式分解

下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

因式分解

因式分解定义

把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素

①结果必须是整式②结果必须是积的形式③结果是等式④

因式分解与整式乘法的关系:m(a+b+c)

公因式:

一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法

①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。②确定商式③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

;

② 初中数学基础知识点归纳总结

初中数学教学,注重培养学生正确的数学情操和几何思维能力。下面是我为大家整理的关于初中数学基础知识点归纳 总结 ,希望对您有所帮助。欢迎大家阅读参考学习!

初中数学基础知识点归纳总结

1、定理1 关于中心对称的两个图形是全等的

2、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

3、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

4、等腰梯形性质定理 等腰梯形在同一底上的两个角相等

5、等腰梯形的两条对角线相等

6、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形

7、对角线相等的梯形是等腰梯形

8、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

9、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

10、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边

11、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半

12、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h

13、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d

14、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

15、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

16、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例

17、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

18、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

19、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例

20、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

21、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

22、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

23、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

24、判定定理3 三边对应成比例,两三角形相似(SSS)

25、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

26、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

27、性质定理2 相似三角形周长的比等于相似比

28、性质定理3 相似三角形面积的比等于相似比的平方

29、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

30、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

31、圆是定点的距离等于定长的点的集合

32、圆的内部可以看作是圆心的距离小于半径的点的集合

33、圆的外部可以看作是圆心的距离大于半径的点的集合

34、同圆或等圆的半径相等

35、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

36、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

37、到已知角的两边距离相等的点的轨迹,是这个角的平分线

38、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

39、定理 不在同一直线上的三点确定一个圆。

40、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

41、推论1

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

42、推论2 圆的两条平行弦所夹的弧相等

43、圆是以圆心为对称中心的中心对称图形

44、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

45、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

46、定理 一条弧所对的圆周角等于它所对的圆心角的一半

47、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

48、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

49、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

50、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

51、①直线L和⊙O相交 d

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r

52、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

53、切线的性质定理 圆的切线垂直于经过切点的半径

54、推论1 经过圆心且垂直于切线的直线必经过切点

55、推论2 经过切点且垂直于切线的直线必经过圆心

56、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角

57、圆的外切四边形的两组对边的和相等

58、弦切角定理 弦切角等于它所夹的弧对的圆周角

59、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

60、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等

61、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

62、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

63、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等

64、如果两个圆相切,那么切点一定在连心线上

65、①两圆外离 d>R+r ②两圆外切 d=R+r③两圆相交 R-rr)

④两圆内切 d=R-r(R>r) ⑤两圆内含 dr)

66、定理 相交两圆的连心线垂直平分两圆的公共弦

67、定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

68、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

69、正n边形的每个内角都等于(n-2)×180°/n

70、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

71、正n边形的面积Sn=pnrn/2 p表示正n边形的周长

72、正三角形面积√3a/4 a表示边长

73、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

74、弧长计算公式:L=n兀R/180

75、扇形面积公式:S扇形=n兀R^2/360=LR/2

76、内公切线长= d-(R-r) 外公切线长= d-(R+r) 本回答被提问者采纳

怎样学好初中数学

1、深刻理解概念,概念是数学的基石,学习概念不仅要知其然,还要知其所以然。

2、对于每个定义、定理必须在牢记其内容的基础上知道是怎样得来的,又是运用到何处的。

3、多看一些例题,不能只看皮毛,不看内涵。

4、要把想和看结合起来,各难度层次的例题都照顾到。

5、看例题要循序渐进,这同后面的“做练习”一样,但看比做有一个显着的好处,例题有现成的解答,思路清晰,只需循着思路走,就会得出结论,所以可以看一些技巧性较强、难度较大的例题。

相关 文章 :

1. 初中数学基础知识点总结

2. 初中数学基础知识点总结之有理数

3. 初中数学知识点整理

4. 初一数学知识点归纳与学习方法

5. 初一数学基础知识有哪些?

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

③ 青岛版初三数学知识点梳理

知识是一座宝库,而实践就是开启宝库的钥匙。学习任何学科,不仅需要大量的记忆,还需要大量的练习,从而达到巩固知识的效果。下面是我给大家整理的一些初三数学的知识点,希望对大家有所帮助。

九年级数学 知识点整理

空间与图形

图形的认识:

1、点,线,面

点,线,面:

①图形是由点,线,面构成的。

②面与 面相 交得线,线与线相交得点。

③点动成线,线动成面,面动成体。

展开与折叠:

①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

②N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧,扇形:

①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

②圆可以分割成若干个扇形。

线:

①线段有两个端点。

②将线段向一个方向无限延长就形成了射线。射线只有一个端点。

③将线段的两端无限延长就形成了直线。直线没有端点。

④经过两点有且只有一条直线。

比较长短:

①两点之间的所有连线中,线段最短。

②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:

①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

②一度的1/60是一分,一分的1/60是一秒。

角的比较:

①角也可以看成是由一条射线绕着他的端点旋转而成的。

②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。

③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

九年级数学知识点梳理

代数式

1、代数式与有理式

用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

整式和分式统称为有理式。

2、整式和分式

含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3、单项式与多项式

没有加减运算的整式叫做单项式。(数字与字母的积-包括单独的一个数或字母)

几个单项式的和,叫做多项式。

说明:

①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

4、同类项及其合并

条件:①字母相同;②相同字母的指数相同

合并依据:乘法分配律。

5、根式

表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

6、同类二次根式、最简二次根式、分母有理化

化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

初三 数学 学习 方法

概念课

要重视教学过程,要积极体验知识产生、发展的过程,要把知识的来龙去脉搞清楚,认识知识发生的过程,理解公式、定理、法则的推导过程,改变死记硬背的方法,这样我们就能从知识形成、发展过程当中,理解到学会它的乐趣;在解决问题的过程中,体会到成功的喜悦。

习题课

要掌握“听一遍不如看一遍,看一遍不如做一遍,做一遍不如讲一遍,讲一遍不如辩一辩”的诀窍。除了听老师讲,看老师做以外,要自己多做习题,而且要把自己的体会主动、大胆地讲给大家听,遇到问题要和同学、老师辩一辩,坚持真理,改正错误。在听课时要注意老师展示的解题思维过程,要多思考、多探究、多尝试,发现创造性的证法及解法,学会“小题大做”和“大题小做”的解题方法,即对选择题、填空题一类的客观题要认真对待绝不粗心大意,就像对待大题目一样,做到下笔如有神;对综合题这样的大题目不妨把“大”拆“小”,以“退”为“进”,也就是把一个比较复杂的问题,拆成或退为最简单、最原始的问题,把这些小题、简单问题想通、想透,找出规律,然后再来一个飞跃,进一步升华,就能凑成一个大题,即退中求进了。如果有了这种分解、综合的能力,加上有扎实的基本功还有什么题目难得倒我们。

复习课

在数学学习过程中,要有一个清醒的复习意识,逐渐养成良好的复习习惯,从而逐步学会学习。数学复习应是一个 反思 性学习过程。要反思对所学习的知识、技能有没有达到课程所要求的程度;要反思学习中涉及到了哪些数学思想方法,这些数学思想方法是如何运用的,运用过程中有什么特点;要反思基本问题(包括基本图形、图像等),典型问题有没有真正弄懂弄通了,平时碰到的问题中有哪些问题可归结为这些基本问题;要反思自己的错误,找出产生错误的原因,订出改正的 措施 。在新学期大家准备一本数学学习“病例卡”,把平时犯的错误记下来,找出“病因”开出“处方”,并且经常拿出来看看、想想错在哪里,为什么会错,怎么改正,通过你的努力,到中考时你的数学就没有什么“病例”了。并且数学复习应在数学知识的运用过程中进行,通过运用,达到深化理解、发展能力的目的,因此在新的一年要在教师的指导下做一定数量的数学习题,做到举一反三、熟练应用,避免以“练”代“复”的题海战术。


青岛版初三数学知识点梳理相关 文章 :

★ 初三数学知识点考点归纳总结

★ 初三数学知识点整理

★ 初三数学知识点归纳

★ 初三数学知识点归纳总结

★ 初三数学知识点上册总结归纳

★ 初三中考数学知识点归纳总结

★ 初三数学中考复习重点章节知识点归纳

★ 初三数学基础知识点总结

★ 初三数学复习知识点总结

★ 初三数学总复习知识点

④ 初三中考数学几何知识点归纳

对初三学生来说,他们很快就要迎来中考了,而中考是人生道路上第一个转折点。对每个初三学生来说,他们都希望自己能够在中考中取得好成绩,从而考上好高中。这次我给大家整理了初三中考数学几何知识点归纳,供大家阅读参考。

目录

初三中考数学几何知识点归纳

学好数学的几条建议

数学八种思维方法

初三中考数学几何知识点归纳

1.过两点有且只有一条直线

2.两点之间线段最短

3.同角或等角的补角相等

4.同角或等角的余角相等

5.过一点有且只有一条直线和已知直线垂直

6.直线外一点与直线上各点连接的所有线段中,垂线段最短

7.平行公理经过直线外一点,有且只有一条直线与这条直线平行

8.如果两条直线都和第三条直线平行,这两条直线也互相平行

9.同位角相等,两直线平行

10.内错角相等,两直线平行

11.同旁内角互补,两直线平行

12.两直线平行,同位角相等

13.两直线平行,内错角相等

14.两直线平行,同旁内角互补

15.定理三角形两边的和大于第三边

16.推论三角形两边的差小于第三边

17.三角形内角和定理三角形三个内角的和等于180°

18.推论1直角三角形的两个锐角互余

19.推论2三角形的一个外角等于和它不相邻的两个内角的和

20.推论3三角形的一个外角大于任何一个和它不相邻的内角

21.全等三角形的对应边、对应角相等

22.边角边公理有两边和它们的夹角对应相等的两个三角形全等

23.角边角公理有两角和它们的夹边对应相等的两个三角形全等

24.推论有两角和其中一角的对边对应相等的两个三角形全等

25边边边公理有三边对应相等的两个三角形全等

26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等

27.定理1:在角的平分线上的点到这个角的两边的距离相等

28.定理2:到一个角的两边的距离相同的点,在这个角的平分线上

29.角的平分线是到角的两边距离相等的所有点的集合

30.等腰三角形的性质定理等腰三角形的两个底角相等

31.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边

32.等腰三角形的顶角平分线、底边上的中线和高互相重合

33.推论3:等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35.推论1:三个角都相等的三角形是等边三角形

36.推论2:有一个角等于60°的等腰三角形是等边三角形

37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38.直角三角形斜边上的中线等于斜边上的一半

39.定理线段垂直平分线上的点和这条线段两个端点的距离相等

40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42.定理1:关于某条直线对称的两个图形是全等形

43.定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44.定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a b=c

47.勾股定理的逆定理如果三角形的三边长a、b、c有关系a b=c,那么这个三角形是直角三角形

48.定理四边形的内角和等于360°

49.四边形的外角和等于360°

50.多边形内角和定理n边形的内角的和等于(n-2)×180°

51.推论任意多边的外角和等于360°

52.平行四边形性质定理1平行四边形的对角相等

53.平行四边形性质定理2平行四边形的对边相等

54.推论夹在两条平行线间的平行线段相等

55.平行四边形性质定理3平行四边形的对角线互相平分56.平行四边形判定定理1两组对角分别相等的四边形是平行四边形

57.平行四边形判定定理2两组对边分别相等的四边形是平行四边形

58.平行四边形判定定理3对角线互相平分的四边形是平行四边形

59.平行四边形判定定理4一组对边平行相等的四边形是平行四边形

60.矩形性质定理1矩形的四个角都是直角

61.矩形性质定理2矩形的对角线相等

62.矩形判定定理1有三个角是直角的四边形是矩形

63.矩形判定定理2对角线相等的平行四边形是矩形

64.菱形性质定理1菱形的四条边都相等

65.菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角

66.菱形面积=对角线乘积的一半,即S=(a×b)÷2

67.菱形判定定理1:四边都相等的四边形是菱形

68.菱形判定定理2:对角线互相垂直的平行四边形是菱形

69.正方形性质定理1:正方形的四个角都是直角,四条边都相等

70.正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71.定理1关于中心对称的两个图形是全等的

72.定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73.逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74.等腰梯形性质定理等腰梯形在同一底上的两个角相等

75.等腰梯形的两条对角线相等

76.等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

77.对角线相等的梯形是等腰梯形

78.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79.推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰

80.推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边

81.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半

82.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a b)÷2S=L×h

83.(1)比例的基本性质如果a:b=c:d,那么ad=bc, 如果ad=bc,那么a:b=c:d

84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d

85.(3)等比性质如果a/b=c/d=…=m/n(b d … n≠0),那么(a c … m)/(b d … n)=a/b

86.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例

87.推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88.定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91.相似三角形判定定理1:两角对应相等,两三角形相似(ASA)

92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93.判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)

94.判定定理3:三边对应成比例,两三角形相似(SSS)

95.定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96.性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97.性质定理2:相似三角形周长的比等于相似比

98.性质定理3:相似三角形面积的比等于相似比的平方

99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

101.圆是定点的距离等于定长的点的集合

102.圆的内部可以看作是圆心的距离小于半径的点的集合

103.圆的外部可以看作是圆心的距离大于半径的点的集合

104.同圆或等圆的半径相等

105.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

<<<

学好数学的几条建议

1、要有学习数学的兴趣。“兴趣是最好的老师”。做任何事情,只要有兴趣,就会积极、主动去做,就会想方设法把它做好。但培养数学兴趣的关键是必须先掌握好数学基础知识和基本技能。有的同学老想做难题,看到别人上数奥班,自己也要去。如果这些同学连课内的基础知识都掌握不好,在里面学习只能滥竽充数,对学习并没有帮助,反而使自己失去学习数学的信心。我建议同学们可以看一些数学名人小 故事 、趣味数学等知识来增强学习的自信心。

2、要有端正的 学习态度 。首先,要明确学习是为了自己,而不是为了老师和父母。因此,上课要专心、积极思考并勇于发言。其次,回家后要认真完成作业,及时地把当天学习的知识进行复习,再把明天要学的内容做一下预习,这样,学起来会轻松,理解得更加深刻些。

3、要有“持之以恒”的精神。要使学习成绩提高,不能着急,要一步一步地进行,不要指望一夜之间什么都学会了。即使进步慢一点,只要坚持不懈,也一定能在数学的学习道路上获得成功!还要有“不耻下问”的精神,不要怕丢面子。其实无论知识难易,只要学会了,弄懂了,那才是最大的面子!

4、要注重学习的技巧和 方法 。不要死记硬背一些公式、定律,而是要靠分析、理解,做到灵活运用,举一反三。特别要重视课堂上学习新知识和分析练习的时候,不能思想开小差,管自己做与学习无关的事情。注意力一定要高度集中,并积极思考,遇到不懂题目时要及时做好记录,课后和同学进行探讨,做好查漏补缺。

5、要有善于观察、阅读的好习惯。只要我们做数学的有心人,细心观察、思考,我们就会发现生活中到处都有数学。除此之外,同学们还可以从多方面、多种 渠道 来学习数学。如:从电视、网络、《小学生数学报》、《数学小灵通》等报刊杂志上学习数学,不断扩展知识面。

6、要有自己的观点。现在,大部分同学遇到一些较难或不清楚的问题时,就不加思考,轻易放弃了,有的干脆听从老师、父母、书本的意见。即使是老师、长辈、书籍等权威,也不是没有一点儿失误的,我们要重视权威的意见,但绝不等于不加思考的认同。

7、要学会概括和积累。及时 总结 解题规律,特别是积累一些经典和特殊的题目。这样既可以学得轻松,又可以提高学习的效率和质量。

8、要重视其他学科的学习。因为各个学科之间是有着密切的联系,它对学习数学有促进的作用。如:学好语文对数学题目的理解有很大的帮助等等。

<<<

数学八种思维方法

1、代数思想这是基本的数学思想之一 ,小学阶段的设未知数x,初中阶段的一系列的用字母代表数,这都是代数思想,也是代数这门学科最基础的根!

2、数形结合是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国着名数学家华罗庚教授的 名言 ,是对数形结合的作用进行了高度的概括。初高中阶段有很多题都涉及到数形结合,比如说解题通过作几何图形标上数据,借助于函数图象等等都是数形给的体现。

3、转化思想在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。

4、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。

5、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

6、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

7、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。

8、极限思想方法事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。

<<<


初三中考数学几何知识点归纳相关 文章 :

★ 初三中考数学知识点归纳总结

★ 初三数学函数几何知识点总结

★ 初三数学知识点考点归纳总结

★ 人教版初三数学知识点归纳整理

★ 初三数学知识点总结归纳

★ 初三数学知识点归纳人教版

★ 初三数学知识点归纳总结

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑤ 关于初中数学知识点总结归纳

数学已成为许多国家及地区的 教育 范畴中的一部分。它应用于不同领域中,包括科学、工程、医学、经济学和金融学等。这次我给大家整理了初中数学知识点 总结 归纳,供大家阅读参考。

初中数学知识点总结归纳

一: 数轴

11 有向直线

在科学技术和日常生活中,为了区别一条直线的两个不同方向,可以规定其中一方向为正向,另一方向为负相

规定了正方向的直线,叫做有向直线,读作有向直线l

12 数轴

我们把数轴上任意一点所对应的实数称为点的坐标

对于每一个坐标(实数),在数周上可以找到唯一的点与之对应这就是直线的坐标化

数轴上任意一条有向线段的数量等于它的终点坐标与起点坐标的差任意一条有向线段的长度等于它两个断电坐标差的绝对值

二:平面直角坐标系

下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

三:平面直角坐标系的构成

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

四:点的坐标的性质

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

五:因式分解的一般步骤

关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

六:因式分解

下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

因式分解

因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

因式分解与整式乘法的关系:m(a+b+c)

公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定 方法 :①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。②确定商式③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

初中数学知识点

1.有理数:

(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

(2)有理数的分类: ① ②

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)相反数的和为0 ? a+b=0 ? a、b互为相反数.

4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2) 绝对值可表示为:或 ;绝对值的问题经常分类讨论;

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数> 0,小数-大数< 0.

6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.

7. 有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

8.有理数加法的运算律:

(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).

9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

10 有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

11 有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .

13.有理数乘方的法则:

(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .

14.乘方的定义:

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.

16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.

18.混合运算法则:先乘方,后乘除,最后加减.

本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题.

体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。

关于初中数学的知识点

一、平移变换:

1。概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。

2。性质:(1)平移前后图形全等;

(2)对应点连线平行或在同一直线上且相等。

3。平移的作图步骤和方法:

(1)分清题目要求,确定平移的方向和平移的距离;

(2)分析所作的图形,找出构成图形的关健点;

(3)沿一定的方向,按一定的距离平移各个关健点;

(4)连接所作的各个关键点,并标上相应的字母;

(5)写出结论。

二、旋转变换:

1。概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

说明:

(1)图形的旋转是由旋转中心和旋转的角度所决定的;

(2)旋转过程中旋转中心始终保持不动。

(3)旋转过程中旋转的方向是相同的。

(4)旋转过程静止时,图形上一个点的旋转角度是一样的。⑤旋转不改变图形的大小和形状。

2。性质:

(1)对应点到旋转中心的距离相等;

(2)对应点与旋转中心所连线段的夹角等于旋转角;

(3)旋转前、后的图形全等。

3。旋转作图的步骤和方法:

(1)确定旋转中心及旋转方向、旋转角;

(2)找出图形的关键点;

(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;

(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形。

说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角。

常见考法

(1)把平移旋转结合起来证明三角形全等;

(2)利用平移变换与旋转变换的性质,设计一些题目。

误区提醒

(1)弄反了坐标平移的上加下减,左减右加的规律;

(2)平移与旋转的性质没有掌握。

学好数学的方法

1、上课前要调整好心态,一定不能想,哎,又是数学课,上课时听讲心情就很不好,这样当然学不好!

2、上课时一定要认真听讲,作到耳到、眼到、手到!这个很重要,一定要学会做笔记,上课时如果老师讲的快,一定静下心来听,不要记,下课时再整理到 笔记本 上!保持高效率!

3、俗话说兴趣是最好的老师,当别人谈论最讨厌的课时,你要告诉自己,我喜欢数学!

4、保证遇到的每一题都要弄会,弄懂,这个很重要!不会就问,不要不好意思,要学会举一反三!也就是要灵活运用!作的题不要求多,但要精!

5、要有错题集,把平时遇到的好题记下来,错题记下来,并要多看,多思考,不能在同一个地方绊倒!!

总之,学习数学,不要怕难,不要怕累,不要怕问!


初中数学知识点总结归纳相关 文章 :

★ 初中数学基础知识整理归纳

★ 初中数学知识点总结

★ 初中数学重点知识点的归纳总结

★ 初中数学知识点归纳有哪些

★ 初中数学知识点总结归纳

★ 初中部数学学习方法总结

★ 初中数学圆的知识点归纳

★ 初一数学学习方法总结

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑥ 初三的数学主要是学什么

初三数学要学习的内容主要包括:直角三角形的边角关系、反比例函数、二次函数、圆.知识内容看似不多,但是都是中考数学的重点和难点.首先,反比例函数与几何综合在中考选择填空题中,出现压轴题还是非常正常的;再者,对圆来讲,它是平面几何中知识最多的几何图形,

涉及的考点和题型也是最多的,在中考证明题中,难度一定不会小;最后,二次函数,在中考数学中以压轴题的形式出现,几乎可以算得上必考的压轴题了.综合上述所讲,初三的学习内容难度不小,对中考起决定性的作用.
应该怎么学
加强基础:无论学什么或者考什么,都离不开基础知识,在学习之初抓住基础,不可一味求难.
适当拓展:掌握基础为前提,进行相应的拓展.例如反比例函数与几何综合的中考题型可以尽早去接触,二次函数压轴题型也要经常去训练,这样才不至于时间太紧张而错失学习的机会.

⑦ 初中数学知识点总结大全 重点都在这了

初中生学习数学要特别注意知识点的总结,下面我为大家总结了初中 数学知识点 ,仅供大家参考。

数学基础知识点

平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

初中数学重点知识点

平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。

垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

垂直平分线定理

性质定理:在垂直平分线上的点到该线段两端点的距离相等;

判定定理:到线段2端点距离相等的点在这线段的垂直平分线上

角平分线:把一个角平分的射线叫该角的角平分线。

数学基本定理

1、过两点有且只有一条直线

2、两点之间线段最短

3、同角或等角的补角相等

4、同角或等角的余角相等

5、过一点有且只有一条直线和已知直线垂直

6、直线外一点与直线上各点连接的所有线段中,垂线段最短

7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8、如果两条直线都和第三条直线平行,这两条直线也互相平行

9、同位角相等,两直线平行

10、内错角相等,两直线平行

11、同旁内角互补,两直线平行

12、两直线平行,同位角相等

以上就是我为大家总结的 初中数学 知识点总结大全,仅供参考,希望对大家有所帮助。

⑧ 初中数学基础知识点总结

初中数学只要内容是函数的学习,其中重点是二次函数的解法。二次函数在数学中占有一定地位,甚至以后的数学学习中都会遇到二次函数问题,因此牢牢掌握二次函数的解法对于大家以后数学学习十分有帮助。现在将初中数学重要知识点整理如下,供大家学习。

目录

有理数

代数式

分式的运算

方程与方程组

有理数

1、数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

2、绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

3、有理数的运算:

加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

4、实数:

①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。


代数式

1、合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

2、整式与分式,整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

3、整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。幂的运算:AM+AN=A(M+N)(A/B)N=AN/BN 除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式/完全平方公式

整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法 :提公因式法、运用公式法、分组分解法、十字相乘法。

分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。


分式的运算

1、乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

2、除法:除以一个分式等于乘以这个分式的倒数。

3、加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。

4、分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。

方程与不等式


方程与方程组

1、一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

2、解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

3、二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

4、二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。解二元一次方程组的方法:代入消元法/加减消元法。一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程

5、一元二次方程的二次函数的关系

关于二次函数的解法公式其实很简单,关键是我们如何应用这些公式来解答实际问题,这有待于大家在以后学习过程中勤加练习, 总结 经验 了。


相关 文章 :

1. 初中数学基础知识点总结

2. 初中数学知识点整理:

3. 初一数学基础知识有哪些?

4. 初中数学的常考知识点20条

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑨ 初中数学必背知识点

总结的有点多,请耐心看哈!

希望能帮助你,还请及时采纳谢谢!


数学,是一门关于如何思维的科学。熟记数学口诀,是解题的一条捷径,孩子做题思维就会变快。从而更加深刻的记住知识点,减轻孩子的学习负担,轻松学习。



下面小优老师将初中数学必须掌握的26个知识点口诀总结如下,希望对你有帮助。


圆的证明不算难,常把半径直径连;

有弦可作弦心距,它定垂直平分弦;

直径是圆最大弦,直圆周角立上边,

它若垂直平分弦,垂径、射影响耳边;

还有与圆有关角,勿忘相互有关联,

圆周、圆心、弦切角,细找关系把线连

同弧圆周角相等,证题用它最多见,

圆中若有弦切角,夹弧找到就好办;

圆有内接四边形,对角互补记心间,

外角等于内对角,四边形定内接圆;

直角相对或共弦,试试加个辅助圆;

若是证题打转转,四点共圆可解难;

要想证明圆切线,垂直半径过外端,

直线与圆有共点,证垂直来半径连,

直线与圆未给点,需证半径作垂线;

四边形有内切圆,对边和等是条件;

如果遇到圆与圆,弄清位置很关键,

两圆相切作公切,两圆相交连公弦。

⑩ 初三数学知识点归纳人教版

初三是初中的最后一年,也是迎接中考的重要一年,想要在中考中取得好的数学成绩,需要对初三数学的知识点进行归纳总结。以下是我分享给大家的初三数学知识点归纳,希望可以帮到你
初三数学知识点归纳
一元二次方程的定义:

定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

一元二次方程的一般形式:

a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c; 其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式.

一元二次方程的特点

(1)该方程为整式方程。

(2)该方程有且只含有一个未知数。

(3)该方程中未知数的最高次数是2。

一元二次方程常见考法

(1)考查一元二次方程的根与系数的关系(韦达定理):这类题目有着解题规律性强的特点,题目设置会很灵活,所以一直很吸引命题者。主要考查①根与系数的推导,有关规律的探究②已知两根或一根构造一元二次方程,这类题目一般比较开放;

(2)在一元二次方程和几何问题、函数问题的交汇处出题。(几何问题:主要是将数字及数字间的关系隐藏在图形中,用图形表示出来,这样的图形主要有三角形、四边形、圆等涉及到三角形三边关系、三角形全等、面积计算、体积计算、勾股定理等);

(3)列一元二次方程解决实际问题,以实际生活为背景,命题广泛。
初三数学学习方法
一、多看数学书,抓住基础

工欲善其事,必先利其器。中考试题有知识面全、注重基础的特点。所以学生要从基本的做起,多看课本。基础差的学生更要多看几遍。在看课本的过程中要强调一点:

第一、例题要重读 ,教材中的例题都是很有代表性的,要珍惜每道例题,可以自己先试着做一做,然后在看解答。

第二、概念要精读,比如射线、二次函数等的概念都是很精准的,要一字一句的仔细阅读。才能加深对概念定理的理解。第三、学会点、划、批、问。把关键的地方点出来,把公式、结论等画出来、把自己的理解、质疑等批出来,把没看懂的地方问出来。

二、学会听课

老师每节课讲课发的讲义都是知识点很全面的。大家都认真听,可是听课后的效率为什么会不同呢?所以要学会听课。听课中要注意:

第一、听每节课的学习要求

第二、听知识引入及知识形成过程

第三、听懂重点、难点

第四、听立体解法的思路和数学思想方法的体现

第五、听好课后总结。

三、建立纠错本

学生要把典型例题、出错的题目写在纠错本上。错题一般分为两种:一种是自己根本就不会做,因为太难了,没有思路;另一种是自己会做,因为粗心做错了,我觉得,最有机制的错题是第二类。因为粗心也有很多种,比如跳步容易引起粗心,我们要分析它,为什么会错?有哪些教训?下一阶段怎么学?

四、做题规范

要求学生书写格式要规范、步骤要完整、条理要清楚。平常的无图题目要正确的由条件画出图形。老师平常给学生做示范作用,有意让学生模仿、训练,逐步养成学生良好的书写习惯。

五、学会总结

通过不同类型的题目的练习,列出重点、难点、自己哪些不会。归纳出各种题型的解题方法。
初三数学复习技巧
注重课本知识

全面复习基础知识,加强基本技能训练的第一阶段的复习工作我们已经结束了,在第二阶段的复习中,反思和总结上一轮复习中的遗漏和缺憾,会发现有些知识还没掌握好,解题时还没有思路,因此要做到边复习边将知识进一步归类,加深记忆;还要进一步理解概念的内涵和外延,牢固掌握法则、公式、定理的推导或证明,进一步加强解题的思路和方法;同时还要查找一些类似的题型进行强化训练,要及时有目的有针对性的补缺补漏,直到自己真正理解会做为止,决不要轻易地放弃。

这个阶段尤其要以课本为主进行复习,因为课本的例题和习题是教材的重要组成部分,是数学知识的主要载体。吃透课本上的例题、习题,才能有利于全面、系统地掌握数学基础知识,熟练数学基本方法,以不变应万变。所以在复习时,我们要学会多方位、多角度审视这些例题习题,从中进一步清晰地掌握基础知识,重温思维过程,巩固各类解法,感悟数学思想方法。复习形式是多样的,尤其要提高复习效率。

另外,现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造了的题,有的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是课本中题目的引申、变形或组合,课本中的例题、练习和作业题不仅要理解,而且一定还要会做。同时,对课本上的《阅读材料》《课题研究》《做一做》《想一想》等内容,我们也一定要引起重视。

注重课堂学习

在任课老师的指导下,通过课堂教学,要求同学们掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,通过对基础知识的系统归纳,解题方法的归类,在形成知识结构的基础上加深记忆,至少应达到使自己准确掌握每个概念的含义,把平时学习中的模糊概念搞清楚,使知识掌握的更扎实的目的,要达到使自己明确每一个知识点在整个初中数学中的地位、联系和应用的目的。上课要会听课,会记录,必须要把握每一节课所讲的知识重点,抓住关键,解决疑难,提高学习效率,根据个人的具体情况,课堂上及时查漏补缺。

夯实基础知识

在历年的数学中考试题中,基础分值占的最多,再加上部分中档题及较难题中的基础分值,因此所占分值的比例就更大。我们必须扎扎实实地夯实基础,通过系统的复习,我们对初中数学知识达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。

有的考题会对需要考查的知识和方法创设一个新的问题情境,特别是一些需要有较高区分度的试题更是如此;每个中档以上难度的数学试题通常要涉及多个知识点、多种数学思想方法,或者在知识交汇点上巧妙设计试题。因此,我们每一个同学要学会思考,老师上课教给我们的是思考问题的角度、方法和策略,我们要用学到的方法和策略,在解决具有新情境问题的过程中,感悟出如何进行正确的思考。

注意知识的迁移

课本中的某些例题、习题,并不是孤立的,而是前后联系、密切相关的,其他学科的知识也和数学有着千丝万缕的联系,我们要学会从思维发展的最近点出发,去发现、研究和展示这些知识的内在联系,这样做不仅有助于自己深刻理解课本知识,有利于强化知识重点,更重要的是能有效地促进自己数学知识网络和方法体系的构建,使知识和能力产生良性迁移,达到触类旁通的效果,通过探究课本典型例题、习题的内在联系,让我们在深刻理解课本知识的同时,更有效地形成知识网络与方法体系。例如一元二次方程的根的判别式,不但可以解决根的判定和已知根的情况求字母系数,还可以解决二次三项式的因式分解、方程组的根的判定及二次函数图象与横轴的交点坐标。

猜你喜欢:

1. 初中数学知识点总结大全

2. 中考数学知识点总结

3. 人教版初中数学总复习资料有哪些

4. 人教版数学中考总复习资料提纲有哪些

5. 初中数学基础知识点总结