① 华师大版八年级数学知识点归纳
天才就是勤奋曾经有人这样说过。如果这话不完全正确,那至少在很大程度上是正确的。学习,就算是天才,也是需要不断练习与记忆的。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。
八年级数学知识点 总结
函数及其相关概念
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的 方法 叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
初二下册数学知识点总结
【解一元一次方程】
1.等式与等量:用"="号连接而成的式子叫等式.注意:"等量就能代入"!
2.等式的性质:
等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;
等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.
3.方程:含未知数的等式,叫方程.
4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:"方程的解就能代入"!
5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.
6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).
8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).
9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).
10.列一元一次方程解应用题:
(1)读题分析法:…………多用于"和,差,倍,分问题"
仔细读题,找出表示相等关系的关键字,例如:"大,小,多,少,是,共,合,为,完成,增加,减少,配套-----",利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.
(2)画图分析法:…………多用于"行程问题"
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。
初二数学 学习 经验 心得
学好初中数学课前要预习
初中生想要学好数学,那么就要利用课前的时间将课上老师要讲的内容预习一下。初中数学课前的预习是要明白老师在课上大致所讲的内容,这样有利于和方便初中生整理知识结构。
初中生 课前预习 数学还能够知道自己有哪些不明白的知识点,这样在课上就会集中注意力去听,不会出现溜号和走神的情况。同时课前预习还可以将知识点形成体系,可以帮助初中生建立完整的知识结构。
学习初中数学课上是关键
初中生想要学好学生,在课上就是一个字:跟。上初中数学课时跟住老师,老师讲到哪里一定要跟上,仔细看老师的板书,随时知道老师讲的是哪里,涉及到的知识点是什么。有的初中生喜欢记笔记,在这里提醒大家,初中数学课上的时候尽量不要记笔记。
你的主要目的是跟着老师,而不是一味的记笔记,即使有不会的地方也要快速简短的记下来,可以在课后完善。跟上老师的思维是最重要的,这就意味着你明白了老师的分析和解题过程。
课后可以适当做一些初中数学基础题
在每学完一课后,初中生可以在课后做一些初中数学的基础题型,在做这样的题时,建议大家是,不要出现错误的情况,做完题后要学会思考和整理。当你的初中数学基础题没问题的时候,就可以做一些有点难度的提升题了,如果做不出来可以根据解析看题。
但是记住千万不要大量的做这类题,初中生偶尔做一次有难度的题还是对数学的学习有帮助的,但是如果将重点放在这上面,没有什么好处。同时要学会整理,将自己错题归纳并总结,
数学是由简单明了的事项一步一步地发展而来,所以,只要学习数学的人老老实实地、一步一步地去理解,并同时记住其要点,以备以后之需用,就一定能理解其全部内容.就是说,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.这好比梯子的阶级,在登梯子时,一级一级地往上登,无论多小的人,只要他的腿长足以跨过一级阶梯,就一定能从第一级登上第二级,从第二级登上第三级、第四级,…….这时,只不过是反复地做同一件事,故不管谁都应该会做.
华师大版八年级数学知识点归纳相关 文章 :
★ 初二数学华师大版知识点
★ 华师大八年级下数学教学总结
★ 八年级上册华师版数学思维导图
★ 八年级数学学习方法指导
★ 八年级下册数学教案华师大范文3篇
★ 八年级上册数学教案华东师大版
★ 八年级华师大上册第十一章数学教案(2)
★ 八年级学习方法指导
★ 八年级华师大上册第十一章数学教案
★ 八年级数学期末考试质量分析
② 华东师大初二数学上册知识点
伟大的成绩和辛勤劳动是成正比例的,有一分劳动就有一分收获,积累,从少到多,奇迹就可以创造出来。学习也是一样的,需要积累,从少变多。下面是我给大家整理的一些初二数学的知识点,希望对大家有所帮助。
八年级 数学三角证明知识点
第一章三角形的证明
1、等腰三角形
(1)三角形全等的性质及判定
全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、
(2)等腰三角形的判定、性质及推论
性质:等腰三角形的两个底角相等(等边对等角)
判定:有两个角相等的三角形是等腰三角形(等角对等边)
推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)
(3)等边三角形的性质及判定定理
性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。
判定定理:有一个角是60度的等腰三角形是等边三角形。或者三个角都相等的三角形是等边三角形。
(4)含30度的直角三角形的边的性质
定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。
2、直角三角形
(1)勾股定理及其逆定理
定理:直角三角形的两条直角边的平方和等于斜边的平方。
逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
(2)直角三角形两个锐角之间的关系
定理:直角三角形两个锐角互余。
逆定理:有两个锐角互余的三角形是直角三角形。
(3)含30度的直角三角形的边的定理
定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。
逆定理:在直角三角形中,一条直角边是斜边的一半,那么这条直角边所对的锐角是30度。
(4)命题与逆命题
命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。
(5)直角三角形全等的判定定理
定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)
3、线段的垂直平分线
(1)线段垂直平分线的性质及判定
性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
(2)三角形三边的垂直平分线的性质
三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。(该点称为三角形的外心)
(3)如何用尺规作图法作线段的垂直平分线
分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。
4、角平分线
(1)角平分线的性质及判定定理
性质:角平分线上的点到这个角的两边的距离相等;
判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。
(2)三角形三条角平分线的性质定理
性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。(该点称为三角形的内心)
初 二年级数学 复习资料
一、直角三角形
1、角平分线: 角平分线上的点到这个角的两边的距离相等
如图,∵AD是∠BAC的平分线(或∠1=∠2),
PE⊥AC,PF⊥AB
∴PE=PF
2、线段垂直平分线:线段垂直平分线上的点到这条线段两个端点
的距离相等 。 如图,∵CD是线段AB的垂直平分线,
∴PA=PB
3、勾股定理及其逆定理
①勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方,即 。
求斜边,则 ;求直角边,则 或 。
②逆定理 如果三角形的三边长a、b、c有关系 ,那么这个三角形是直角三角形 。
分别计算“ ”和“ ”,相等就是 ,不相等就不是 。
4、直角三角形全等
方法 :SAS、ASA、SSS、AAS、HL。
5、 其它 性质
①直角三角形斜边上的中线等于斜边上的一半
如图,在 ABC中,∵CD是斜边AB的中线,∴CD= 。
②在直角三角形中,如果一个锐角等于30°那么它所对的直角
边等于斜边的一半
如图,在 ABC中,∵∠A=30°,∴BC= 。
③在直角三角形中,如果一条直角边等于斜边的一半,那么
这条直角边所对的角等于30°
如图,在 ABC中,∵BC= ,∴∠A=30°。
④三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
如图,在⊿ABC中,∵E是AB的中点,F是AC的中点,
∴EF是⊿ABC的中位线 ∴EF‖BC,
二、四边形
1、多边形内角和公式:n边形的内角和=(n-2)?180?
求n边形的方法:
2、中心对称:(在直角坐标系中即关于原点对称,其横、纵坐标都互为相反数)
成中心对称的两个图形中,对应点得连线经过对称中心,且被对称中心平分
会画与某某图形成中心对称图形
会辨别图形、实物、汉字、英文字母、扑克等是否中心对称图形
3、特殊四边形的判定
①平行四边形:
方法1两组对边分别平行的四边形是平行四边形
如图,∵ AB‖CD,AD‖BC,∴四边形ABCD是平行四边形
方法2 两组对边分别相等的四边形是平行四边形
如图,∵ AB=CD,AD=BC,∴四边形ABCD是平行四边形
方法3两组对角分别相等的四边形是平行四边形
如图,∵∠A=∠C,∠B=∠D,∴四边形ABCD是平行四边形
方法4一组对边平行相等的四边形是平行四边形
如图,∵ AB‖CD,AB=CD,∴四边形ABCD是平行四边形
或∵AD‖BC,AD=BC,∴四边形ABCD是平行四边形
方法5 对角线互相平分的四边形是平行四边形
如图,∵ OA=OC,OB=OD,∴四边形ABCD是平行四边形
②矩形:
方法1 有三个角是直角的四边形是矩形
方法2 对角线相等的平行四边形是矩形
③菱形:
方法1 四边都相等的四边形是菱形
方法2 对角线互相垂直的平行四边形是菱形
④正方形
方法1 有一个角是直角的菱形是正方形
方法2有一组邻边相等的矩形是正方形
4、面积公式
①S平行四边形=底×高 ②S矩形=长×宽 ③S正方形=边长×边长
④S菱形=底×高=? ?×(对角线的积),即:S=(a×b)÷2
初二上册期末数学复习计划
一、复习目标
落实知识点,提高学习效率,在复习中做到突出重点,把知识串成线,结成一张张小网,努力做到面向全体学生,照顾到不同层次的学生的学习需要,努力做到扎实有效,避免做无用功。
1.通过单元区块专题训练,让学生体验成功的快乐,激发其学习数学的兴趣;
2.通过综合训练使学生进一步探索知识间的关系,明确内在的联系,培养学生分析问题和解决问题能力,以及计算能力。
二、复习方式
1.总体思想:先分单元专题复习,再综合练习;
2.单元专题 复习方法 :先做单元试卷,然后教师根据试卷反馈讲解,再布置作业查漏补缺;
3.综合练习:教师及时认真批改,讲评时根据学生存在的问题及时辅导,并且给以巩固训练。
三、方法和 措施 :
第一阶段:知识梳理形成知识网络:
期末复习从27号开始,根据历年期末调研试卷命题的特点,精心选择一些新颖的、有代表性的题型编写到复习讲学稿中,前面三章花3天的时间复习结束,最后两章虽然是刚学的内容准备加强复习.主要把复习的重点放在第11章、第14章、第15章。
12月27日复习第十一章全等三角形
12月28日复习第十二章轴对称
1月4日复习第十三章实数
1月.5日复习第十四章一次函数
1月8日复习第十四章一次函数、第十五章整式的乘除与因式分解
1月9日复习第十五章整式的乘除与因式分解
实际操作:一节课复习,一节课检测。一课时讲解。
第二阶段:综合训练(模拟练习)
这一阶段,重点是提高学生的综合解题能力,训练学生的解题策略,加强解题指导,提高应试能力。做法是:从市调研试卷、其他县市调研试卷、自编模拟试卷中精选几份进行训练,每份的练习要求学生独立完成,老师及时批改,重点讲评。(本阶段从10~16号,约5天左右)
四.在复习阶段要处理好两个方面的关系
(1)课内与课外,讲与练的关系。在课堂上要注意知识的全面性、系统性,面向全体学生,注意突出基础知识和基本能力,引导学生提高分析解决问题的思考方法。切忌以讲代学,以练代学,顾高不顾低。课外练习要精心设计、精心造题,以有理于消化所学的知识、方法,要留有思考的余地,让学生练习中提高对知识和方法的领会和掌握。练习量要兼顾减轻学生的负担,量要适中。
(2)阶段复习与总体提高的关系。复习分二阶段完成,但每一阶段不是孤立的,而是总体的一个环节。在第一阶段复习中,对重要的知识点,在课堂教学与练习中要尽量体现知识间的联系,学科间的渗透、知识的应用性和时代性,有利于减轻学生复习的压力,也有利于学生的理解和掌握。通过过程中量的积累达到质的转变的突破,以提高总体成绩。
总之,在数学期末复习中,我力求做到精选精练,指导方法,双基训练与能力提高并重。争取让学生取得较好的成绩。
华东师大初二数学上册知识点相关 文章 :
★ 初二数学上册知识点总结
★ 初二数学上册知识点总结归纳
★ 初二数学上册知识点总结
★ 八年级上册数学总复习知识点
★ 初二数学上册知识点
★ 初二上册数学知识点归纳总结
★ 数学八年级上册知识点整理
★ 八年级数学上册知识点归纳
★ 初二上册数学知识点总结
★ 初二上学期数学知识点
③ 华师版初二数学上册知识点
对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如。学习需要持之以恒。下面是我给大家整理的一些初二数学的知识点,希望对大家有所帮助。
数学知识点 八年级
抽样调查
(1)调查样本是按随机的原则抽取的,在总体中每一个单位被抽取的机会是均等的,因此,能够保证被抽中的单位在总体中的均匀分布,不致出现倾向性误差,代表性强。
(2)是以抽取的全部样本单位作为一个“代表团”,用整个“代表团”来代表总体。而不是用随意挑选的个别单位代表总体。
(3)所抽选的调查样本数量,是根据调查误差的要求,经过科学的计算确定的,在调查样本的数量上有可靠的保证。
(4)抽样调查的误差,是在调查前就可以根据调查样本数量和总体中各单位之间的差异程度进行计算,并控制在允许范围以内,调查结果的准确程度较高。
课后练习
1.抽样成数是一个(A)
A.结构相对数B.比例相对数C.比较相对数D.强度相对数
2.成数和成数方差的关系是(C)
A.成数越接近于0,成数方差越大B.成数越接近于1,成数方差越大
C.成数越接近于0.5,成数方差越大D.成数越接近于0.25,成数方差越大
3.整群抽样是对被抽中的群作全面调查,所以整群抽样是(B)
A.全面调查B.非全面调查C.一次性调查D.经常性调查
4.对400名大学生抽取19%进行不重复抽样调查,其中优等生比重为20%,概率保证程度为95.45%,则优等生比重的极限抽样误差为(A)
A.40%B.4.13%C.9.18%D.8.26%
5.根据5%抽样资料表明,甲产品合格率为60%,乙产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(B)
A.甲产品大B.乙产品大C.相等D.无法判断
初二数学知识点归纳
四边形性质探索
定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
平行四边形:两组对边分别平行的四边形.。对边相等,对角相等,对角线互相平分。两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形,两条对角线互相平分的四边形是平行四边形,一组对边平行且相等的四边形是平行四边形
菱形:一组邻边相等的平行四边形??(平行四边形的性质)。四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。一组邻边相等的平行四边形是菱形,对角线互相垂直的平行四边形是菱形,四条边都相等的四边形是菱形。
矩形:有一个内角是直角的平行四边形??(平行四边形的性质)。对角线相等,四个角都是直角。有一个内角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形。
正方形:一组邻边相等的矩形。正方形具有平行四边形、菱形、矩形的一切性质。一组邻边相等的矩形是正方形,一个内角是直角的菱形是正方形。
梯形:一组对边平行而另一组对边不平行的四边形。一组对边平行而另一组对边不平行的四边形是梯形。等腰梯形:两条腰相等的梯形。同一底上的两个内角相等,对角线相等。两腰相等的梯形是等腰梯形,同一底上两个内角相等的梯形是等腰梯形。
直角梯形:一条腰和底垂直的梯形。一条腰和底垂直的梯形是直角梯形。
多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做多边形。n边形的内角和等于(n-2)×180
多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。多边形的外角和都等于360°。三角形、四边形和六边形都可以密铺。
定义:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
八年级数学 知识点归纳
1、在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。例1、1、在同一平面内两条直线的位置关系为(相交)和(平行)。2、两条直线相交成直角时,就说这两条直线互相垂直,其…
平行四边形矩形菱形正方形梯形等腰梯形图形两组对边分别平行的四边形。定义用“”表示平行四边形,例如:ABCD,平行四边形ABCD记作有一个角是直角的平有一组邻边相等的平行四边形是菱形有一组邻边相等且…
第十八章平行四边形的认识知识点回顾:平行四边形、特殊平行四边形的特征以及彼此之间的关系1.矩形是特殊的平行四边形,矩形的四个内角都是_____。矩形的对角线___2.菱形是特殊的平行四边形,菱形是四条边都__,它的两条对角线__每条对角线平…
特殊的平行四边形和一元二次方程的知识点归纳
【菱形】
1.菱形的定义:有一组邻边相等的平行四边形叫做菱形。
2.菱形的性质:
(1)菱形的性质有:①平行四边形的一切性质;②四条边都相等;③对角线互相垂直,并且每一条对角线平分一组对角;④菱形是对称轴图形,它有2条对称轴,分别为它的两条对角线所在的直线。
(2)菱形面积=底×高=对角线乘积的一半。
3.菱形的判定:
(1)用定义判定(即一组邻边相等的平行四边形是菱形)。
(2)对角线互相垂直的平行四边形是菱形。
(3)四条边都相等的四边形是菱形。
综上可知,判定菱形时常用的思路:
四条边都相等菱形
菱形四边形
平行
四边形有一组邻边相等菱形
【矩形】
1.矩形的定义:有一个角是直角的平行四边形叫做矩形。
2.矩形的性质:(1)具有平行四边形的一切性质;(2)矩形的四个角都是直角;
(3)矩形的四个角都相等。
4.矩形的判定 方法 :
(1)用定义判定(即有一个角是直角的平行四边形是矩形);
(2)三个角都是直角的四边形是矩形;
(3)对角线相等的平行四边形是矩形。
综上可知,判定矩形时常用的思路:
华师版初二数学上册知识点相关 文章 :
★ 八年级上册华师版数学思维导图
★ 武汉江汉区及高兴区小学升初中对口划片表
★ 华师大版八年级上册数学期末试卷及答案
★ 九年级数学教学工作计划
★ 这些还在火爆的专业你都知道吗?
④ 八年级数学知识点总结
学会整合知识点。把需要学习的信息、掌握的知识分类,做成 思维导图 或知识点卡片,会让你的大脑、思维条理清醒,方便记忆、温习、掌握。同时,要学会把新知识和已学知识联系起来,不断糅合、完善你的知识体系。这样能够促进理解,加深记忆。接下来是我为大家整理的 八年级 数学知识点 总结 ,希望大家喜欢!
八年级数学知识点总结一
等腰三角形判定
中线
1、等腰三角形底边上的中线垂直底边,平分顶角;
2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。
1、两边上中线相等的三角形是等腰三角形;
2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形
角平分线
1、等腰三角形顶角平分线垂直平分底边;
2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。
1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;
2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。
高线
1、等腰三角形底边上的高平分顶角、平分底边;
2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。
1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;
2、有两条高相等的三角形是等腰三角形。
八年级数学知识点总结二
函数及其相关概念
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的 方法 叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
八年级数学知识点总结三
因式分解
1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.
2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.
3.公因式的确定:系数的公约数?相同因式的最低次幂.
注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.
4.因式分解的公式:
(1)平方差公式: a2-b2=(a+ b)(a- b);
(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.
5.因式分解的注意事项:
(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字;
(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;
(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;
(4)因式分解的最后结果要求每一个因式的首项符号为正;
(5)因式分解的最后结果要求加以整理;
(6)因式分解的最后结果要求相同因式写成乘方的形式.
6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.
7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q, 有“ x2+px+q是完全平方式 ? ”.
分式
1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为 的形式,如果B中含有字母,式子 叫做分式.
2.有理式:整式与分式统称有理式;即 .
3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.
4.分式的基本性质与应用:
(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;
(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;
即
(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.
5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.
6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.
7.分式的乘除法法则: .
8.分式的乘方: .
9.负整指数计算法则:
(1)公式: a0=1(a≠0), a-n= (a≠0);
(2)正整指数的运算法则都可用于负整指数计算;
(3)公式: , ;
(4)公式: (-1)-2=1, (-1)-3=-1.
10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.
11.最简公分母的确定:系数的最小公倍数?相同因式的次幂.
12.同分母与异分母的分式加减法法则: .
13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.
14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.
15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.
16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.
17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.
18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.
八年级数学知识点总结四
1全等三角形的对应边、对应角相等
2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
5边边边公理(SSS)有三边对应相等的两个三角形全等
6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
7定理1在角的平分线上的点到这个角的两边的距离相等
8定理2到一个角的两边的距离相同的点,在这个角的平分线上
9角的平分线是到角的两边距离相等的所有点的集合
10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
21推论1等腰三角形顶角的平分线平分底边并且垂直于底边
22等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
23推论3等边三角形的各角都相等,并且每一个角都等于60°
24等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
25推论1三个角都相等的三角形是等边三角形
26推论2有一个角等于60°的等腰三角形是等边三角形
27在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
28直角三角形斜边上的中线等于斜边上的一半
29定理线段垂直平分线上的点和这条线段两个端点的距离相等
30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
八年级数学知识点总结五
第十一章全等三角形
一.知识框架
二.知识概念
1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
2.全等三角形的性质:全等三角形的对应角相等、对应边相等。
3.三角形全等的判定公理及推论有:
(1)“边角边”简称“SAS”
(2)“角边角”简称“ASA”
(3)“边边边”简称“SSS”
(4)“角角边”简称“AAS”
(5)斜边和直角边相等的两直角三角形(HL)。
4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).
在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。通过直观的理解和比较发现全等三角形的奥妙之处。在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。
第十二章轴对称
一.知识框架
二.知识概念
1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
5.等腰三角形的判定:等角对等边。
6.等边三角形角的特点:三个内角相等,等于60°,
7.等边三角形的判定:三个角都相等的三角形是等腰三角形。
有一个角是60°的等腰三角形是等边三角形
有两个角是60°的三角形是等边三角形。
8.直角三角形中,30°角所对的直角边等于斜边的一半。
9.直角三角形斜边上的中线等于斜边的一半。
本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。
第十三章实数
一.知识框架
二.知识概念
1.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。
2.平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。
3.正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。
4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。
5.数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0
实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。重点是实数的意义和实数的分类;实数的运算法则及运算律。
第十四章一次函数
一.知识框架
二.知识概念
1.一次函数:若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。
2.正比例函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。
3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
4.已知两点坐标求函数解析式:待定系数法
一次函数是初中学生学习函数的开始,也是今后学习 其它 函数知识的基石。在学习本章内容时,教师应该多从实际问题出发,引出变量,从具体到抽象的认识事物。培养学生良好的变化与对应意识,体会数形结合的思想。在教学过程中,应更加侧重于理解和运用,在解决实际问题的同时,让学习体会到数学的实用价值和乐趣。
第十五章整式的乘除与分解因式
一.知识概念
1.同底数幂的乘法法则:(m,n都是正数)
2..幂的乘方法则:(m,n都是正数)
3.整式的乘法
(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
(3).多项式与多项式相乘
多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
4.平方差公式:
5.完全平方公式:
6.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n).
在应用时需要注意以下几点:
①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.
②任何不等于0的数的0次幂等于1,即,如,(-2.50=1),则00无意义.
③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;当a<0时,a-p的值可能是正也可能是负的,如,
④运算要注意运算顺序.
7.整式的除法
单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;
多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.
8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.
分解因式的一般方法:1.提公共因式法2.运用公式法3.十字相乘法
分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;
(2)再看能否使用公式法;
(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;
(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;
(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.
整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。在学习本章内容时,应多准备些小组合作与交流活动,培养学生推理能力、计算能力。在做题中体验数学法则、公式的简洁美、和谐美,提高做题效率。
八年级数学知识点总结相关 文章 :
1. 八年级数学知识点总计归纳
2. 初二数学上册知识点总结
3. 人教版八年级数学上册知识点总结
4. 八年级上册数学知识点总结
5. 八年级数学上册知识点归纳
6. 八年级上册数学知识点总结与八年级数学学习技巧
7. 八年级上册数学的知识点归纳
8. 八年级下册数学知识点整理
⑤ 初二数学上的知识点
这个肯定行
初二数学(上)应知应会的知识点
因式分解
1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.
2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.
3.公因式的确定:系数的最大公约数?相同因式的最低次幂.
注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.
4.因式分解的公式:
(1)平方差公式: a2-b2=(a+ b)(a- b);
(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.
5.因式分解的注意事项:
(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字;
(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;
(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;
(4)因式分解的最后结果要求每一个因式的首项符号为正;
(5)因式分解的最后结果要求加以整理;
(6)因式分解的最后结果要求相同因式写成乘方的形式.
6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.
7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q, 有“ x2+px+q是完全平方式 ? ”.
分式
1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为 的形式,如果B中含有字母,式子 叫做分式.
2.有理式:整式与分式统称有理式;即 .
3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.
4.分式的基本性质与应用:
(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;
(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;
即
(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.
5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.
6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.
7.分式的乘除法法则: .
8.分式的乘方: .
9.负整指数计算法则:
(1)公式: a0=1(a≠0), a-n= (a≠0);
(2)正整指数的运算法则都可用于负整指数计算;
(3)公式: , ;
(4)公式: (-1)-2=1, (-1)-3=-1.
10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.
11.最简公分母的确定:系数的最小公倍数?相同因式的最高次幂.
12.同分母与异分母的分式加减法法则: .
13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.
14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.
15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.
16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.
17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.
18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.
数的开方
1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算.
2.平方根的性质:
(1)正数的平方根是一对相反数;
(2)0的平方根还是0;
(3)负数没有平方根.
3.平方根的表示方法:a的平方根表示为 和 .注意: 可以看作是一个数,也可以认为是一个数开二次方的运算.
4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为 .注意:0的算术平方根还是0.
5.三个重要非负数: a2≥0 ,|a|≥0 , ≥0 .注意:非负数之和为0,说明它们都是0.
6.两个重要公式:
(1) ; (a≥0)
(2) .
7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方数;(2)a的立方根表示为 ;即把a开三次方.
8.立方根的性质:
(1)正数的立方根是一个正数;
(2)0的立方根还是0;
(3)负数的立方根是一个负数.
9.立方根的特性: .
10.无理数:无限不循环小数叫做无理数.注意:?和开方开不尽的数是无理数.
11.实数:有理数和无理数统称实数.
12.实数的分类:(1) (2) .
13.数轴的性质:数轴上的点与实数一一对应.
14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆: .
三角形
几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)
1.三角形的角平分线定义:
三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图) 几何表达式举例:
(1) ∵AD平分∠BAC
∴∠BAD=∠CAD
(2) ∵∠BAD=∠CAD
∴AD是角平分线
2.三角形的中线定义:
在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)
几何表达式举例:
(1) ∵AD是三角形的中线
∴ BD = CD
(2) ∵ BD = CD
∴AD是三角形的中线
3.三角形的高线定义:
从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线.
(如图)
几何表达式举例:
(1) ∵AD是ΔABC的高
∴∠ADB=90°
(2) ∵∠ADB=90°
∴AD是ΔABC的高
※4.三角形的三边关系定理:
三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)
几何表达式举例:
(1) ∵AB+BC>AC
∴……………
(2) ∵ AB-BC<AC
∴……………
5.等腰三角形的定义:
有两条边相等的三角形叫做等腰三角形. (如图)
几何表达式举例:
(1) ∵ΔABC是等腰三角形
∴ AB = AC
(2) ∵AB = AC
∴ΔABC是等腰三角形
6.等边三角形的定义:
有三条边相等的三角形叫做等边三角形. (如图)
几何表达式举例:
(1)∵ΔABC是等边三角形
∴AB=BC=AC
(2) ∵AB=BC=AC
∴ΔABC是等边三角形
7.三角形的内角和定理及推论:
(1)三角形的内角和180°;(如图)
(2)直角三角形的两个锐角互余;(如图)
(3)三角形的一个外角等于和它不相邻的两个内角的和;(如图)
※(4)三角形的一个外角大于任何一个和它不相邻的内角.
(1) (2) (3)(4) 几何表达式举例:
(1) ∵∠A+∠B+∠C=180°
∴…………………
(2) ∵∠C=90°
∴∠A+∠B=90°
(3) ∵∠ACD=∠A+∠B
∴…………………
(4) ∵∠ACD >∠A
∴…………………
8.直角三角形的定义:
有一个角是直角的三角形叫直角三角形.(如图)
几何表达式举例:
(1) ∵∠C=90°
∴ΔABC是直角三角形
(2) ∵ΔABC是直角三角形
∴∠C=90°
9.等腰直角三角形的定义:
两条直角边相等的直角三角形叫等腰直角三角形.(如图)
几何表达式举例:
(1) ∵∠C=90° CA=CB
∴ΔABC是等腰直角三角形
(2) ∵ΔABC是等腰直角三角形
∴∠C=90° CA=CB
10.全等三角形的性质:
(1)全等三角形的对应边相等;(如图)
(2)全等三角形的对应角相等.(如图)
几何表达式举例:
(1) ∵ΔABC≌ΔEFG
∴ AB = EF ………
(2) ∵ΔABC≌ΔEFG
∴∠A=∠E ………
11.全等三角形的判定:
“SAS”“ASA”“AAS”“SSS”“HL”. (如图)
(1)(2)
(3) 几何表达式举例:
(1) ∵ AB = EF
∵ ∠B=∠F
又∵ BC = FG
∴ΔABC≌ΔEFG
(2) ………………
(3)在RtΔABC和RtΔEFG中
∵ AB=EF
又∵ AC = EG
∴RtΔABC≌RtΔEFG
12.角平分线的性质定理及逆定理:
(1)在角平分线上的点到角的两边距离相等;(如图)
(2)到角的两边距离相等的点在角平分线上.(如图)
几何表达式举例:
(1)∵OC平分∠AOB
又∵CD⊥OA CE⊥OB
∴ CD = CE
(2) ∵CD⊥OA CE⊥OB
又∵CD = CE
∴OC是角平分线
13.线段垂直平分线的定义:
垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线.(如图)
几何表达式举例:
(1) ∵EF垂直平分AB
∴EF⊥AB OA=OB
(2) ∵EF⊥AB OA=OB
∴EF是AB的垂直平分线
14.线段垂直平分线的性质定理及逆定理:
(1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(如图)
(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.(如图)
几何表达式举例:
(1) ∵MN是线段AB的垂直平分线
∴ PA = PB
(2) ∵PA = PB
∴点P在线段AB的垂直平分线上
15.等腰三角形的性质定理及推论:
(1)等腰三角形的两个底角相等;(即等边对等角)(如图)
(2)等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;(如图)
(3)等边三角形的各角都相等,并且都是60°.(如图)
(1) (2) (3) 几何表达式举例:
(1) ∵AB = AC
∴∠B=∠C
(2) ∵AB = AC
又∵∠BAD=∠CAD
∴BD = CD
AD⊥BC
………………
(3) ∵ΔABC是等边三角形
∴∠A=∠B=∠C =60°
16.等腰三角形的判定定理及推论:
(1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)
(2)三个角都相等的三角形是等边三角形;(如图)
(3)有一个角等于60°的等腰三角形是等边三角形;(如图)
(4)在直角三角形中,如果有一个角等于30°,那么它所对的直角边是斜边的一半.(如图)
(1) (2)(3) (4) 几何表达式举例:
(1) ∵∠B=∠C
∴ AB = AC
(2) ∵∠A=∠B=∠C
∴ΔABC是等边三角形
(3) ∵∠A=60°
又∵AB = AC
∴ΔABC是等边三角形
(4) ∵∠C=90°∠B=30°
∴AC = AB
17.关于轴对称的定理
(1)关于某条直线对称的两个图形是全等形;(如图)
(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线.(如图)
几何表达式举例:
(1) ∵ΔABC、ΔEGF关于MN轴对称
∴ΔABC≌ΔEGF
(2) ∵ΔABC、ΔEGF关于MN轴对称
∴OA=OE MN⊥AE
18.勾股定理及逆定理:
(1)直角三角形的两直角边a、b的平方和等于斜边c的平方,即a2+b2=c2;(如图)
(2)如果三角形的三边长有下面关系: a2+b2=c2,那么这个三角形是直角三角形.(如图)
几何表达式举例:
(1) ∵ΔABC是直角三角形
∴a2+b2=c2
(2) ∵a2+b2=c2
∴ΔABC是直角三角形
19.RtΔ斜边中线定理及逆定理:
(1)直角三角形中,斜边上的中线是斜边的一半;(如图)
(2)如果三角形一边上的中线是这边的一半,那么这个三角形是直角三角形.(如图)
几何表达式举例:
(1) ∵ΔABC是直角三角形
∵D是AB的中点
∴CD = AB
(2) ∵CD=AD=BD
∴ΔABC是直角三角形
几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)
一 基本概念:
三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.
二 常识:
1.三角形中,第三边长的判断: 另两边之差<第三边<另两边之和.
2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.
3.如图,三角形中,有一个重要的面积等式,即:若CD⊥AB,BE⊥CA,则CD?AB=BE?CA.
4.三角形能否成立的条件是:最长边<另两边之和.
5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和.
6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.
7.如图,双垂图形中,有两个重要的性质,即:
(1) AC?CB=CD?AB ; (2)∠1=∠B ,∠2=∠A .
8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.
9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.
10.等边三角形是特殊的等腰三角形.
11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明.
12.符合“AAA”“SSA”条件的三角形不能判定全等.
13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.
14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.
15.会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.
16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.
17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图.
※18.几何重要图形和辅助线:
(1)选取和作辅助线的原则:
① 构造特殊图形,使可用的定理增加;
② 一举多得;
③ 聚合题目中的分散条件,转移线段,转移角;
④ 作辅助线必须符合几何基本作图.
(2)已知角平分线.(若BD是角平分线)
① 在BA上截取BE=BC构造全等,转移线段和角;
② 过D点作DE‖BC交AB于E,构造等腰三角形 .
(3)已知三角形中线(若AD是BC的中线)
① 过D点作DE‖AC交AB于E,构造中位线 ;
② 延长AD到E,使DE=AD
连结CE构造全等,转移线段和角;
③ ∵AD是中线
∴SΔABD= SΔADC
(等底等高的三角形等面积)
(4) 已知等腰三角形ABC中,AB=AC
① 作等腰三角形ABC底边的中线AD
(顶角的平分线或底边的高)构造全
等三角形;
② 作等腰三角形ABC一边的平行线DE,构造
新的等腰三角形.
(5)其它
① 作等边三角形ABC
一边 的平行线DE,构造新的等边三角形;
② 作CE‖AB,转移角;
③ 延长BD与AC交于E,不规则图形转化为规则图形;
④ 多边形转化为三角形;
⑤ 延长BC到D,使CD=BC,连结AD,直角三角形转化为等腰三角形;
⑥ 若a‖b,AC,BC是角平
分线,则∠C=90°.
参考资料:去谷歌搜索:初二上数学知识点 然后点第一个
⑥ 八年级数学的知识点归纳
学习知识要善于思考,思考,再思考。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。
数学知识点八年级
【统计的初步认识】
1、折线统计图的特点:能获取数据变化情况的信息,并进行简单的预测。
2、折线统计图的方法:在方格纸中,根据所给出的数据把点标出来,再用线将点连接起来,要顺次连接。
3、能够看出折线统计图所提供的信息,并回答相关的问题。
补充内容:
1、条形统计图与折线统计图的不同:条形统计图用直条表示数量的多少,折线统计图用折线表示数量的增减变化情况。
2、初步了解复式折线统计图,能够从中获得相应的信息,回答提出的问题。
课后练习
1.统计学的基本涵义是(D)。
A.统计资料
B.统计数字
C.统计活动
D.是一门处理数据的方法和技术的科学,也可以说统计学是一门研究“数据”的科学,任务是如何有效地收集、整理和分析这些数据,探索数据内在的数量规律性,对所观察的现象做出推断或预测,直到为采取决策提供依据。
2.要了解某一地区国有工业企业的生产经营情况,则统计总体是(B)。
A.每一个国有工业企业
B.该地区的所有国有工业企业
C.该地区的所有国有工业企业的生产经营情况
D.每一个企业
3.要了解20个学生的学习情况,则总体单位是(C)。
A.20个学生
B.20个学生的学习情况
C.每一个学生
D.每一个学生的学习情况
4.下列各项中属于数量标志的是(B)。
A.性别
B.年龄
C.职称
D.健康状况
初二下册数学知识点 总结
【抽样调查】
(1)调查样本是按随机的原则抽取的,在总体中每一个单位被抽取的机会是均等的,因此,能够保证被抽中的单位在总体中的均匀分布,不致出现倾向性误差,代表性强。
(2)是以抽取的全部样本单位作为一个“代表团”,用整个“代表团”来代表总体。而不是用随意挑选的个别单位代表总体。
(3)所抽选的调查样本数量,是根据调查误差的要求,经过科学的计算确定的,在调查样本的数量上有可靠的保证。
(4)抽样调查的误差,是在调查前就可以根据调查样本数量和总体中各单位之间的差异程度进行计算,并控制在允许范围以内,调查结果的准确程度较高。
课后练习
1.抽样成数是一个(A)
A.结构相对数B.比例相对数C.比较相对数D.强度相对数
2.成数和成数方差的关系是(C)
A.成数越接近于0,成数方差越大B.成数越接近于1,成数方差越大
C.成数越接近于0.5,成数方差越大D.成数越接近于0.25,成数方差越大
3.整群抽样是对被抽中的群作全面调查,所以整群抽样是(B)
A.全面调查B.非全面调查C.一次性调查D.经常性调查
4.对400名大学生抽取19%进行不重复抽样调查,其中优等生比重为20%,概率保证程度为95.45%,则优等生比重的极限抽样误差为(A)
A.40%B.4.13%C.9.18%D.8.26%
5.根据5%抽样资料表明,甲产品合格率为60%,乙产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(B)
A.甲产品大B.乙产品大C.相等D.无法判断
数学知识点八年级
菱形的判定定理
1.一组邻边相等的平行四边形是菱形。
2.对角线互相垂直的平行四边形是菱形。
3.四条边相等的四边形是菱形。S菱形=1/2×ab(a、b为两条对角线)
正方形定义:一个角是直角的菱形或邻边相等的矩形。
正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。
正方形判定定理:
1.邻边相等的矩形是正方形。
2.有一个角是直角的菱形是正方形。
梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。
直角梯形的定义:有一个角是直角的梯形
等腰梯形的定义:两腰相等的梯形。
等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。
等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。
解梯形问题常用的辅助线:如图
线段的重心就是线段的中点。平行四边形的重心是它的两条对角线的交点。三角形的三条中线交于疑点,这一点就是三角形的重心。宽和长的比是-1(约为0.618)的矩形叫做黄金矩形。
八年级数学知识点相关 文章 :
★ 人教版八年级数学上册知识点总结
★ 八年级数学知识点整理归纳
★ 八年级数学知识点总结
★ 初二数学上册知识点总结
★ 初二数学知识点归纳
★ 初二数学知识点复习整理
★ 八年级数学上知识点归纳
★ 八年级数学上册知识点归纳
★ 八年级上册数学知识点整理
⑦ 八年级数学知识点归纳总结
学习的成功与失败原因是多方面的,要首先从自己身上找原因,才能受到鼓舞,找出努力的方向。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。
八年级数学知识点 总结 北师大版
1.有一个角是直角的平行四边形叫做矩形。
2.对角线相等的平行四边形是矩形。
3.有三个角是直角的四边形是矩形。
菱形的定义:邻边相等的平行四边形。
菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
菱形的判定定理:
1.一组邻边相等的平行四边形是菱形。
2.对角线互相垂直的平行四边形是菱形。
3.四条边相等的四边形是菱形。S菱形=1/2×ab(a、b为两条对角线)
正方形定义:一个角是直角的菱形或邻边相等的矩形。
正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。
正方形判定定理:
1.邻边相等的矩形是正方形。
2.有一个角是直角的菱形是正方形。
梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。
直角梯形的定义:有一个角是直角的梯形
等腰梯形的定义:两腰相等的梯形。
等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。
等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。
解梯形问题常用的辅助线:如图
线段的重心就是线段的中点。平行四边形的重心是它的两条对角线的交点。三角形的三条中线交于疑点,这一点就是三角形的重心。宽和长的比是-1(约为0.618)的矩形叫做黄金矩形。
初二下册数学知识点总结
【统计的初步认识】
1、折线统计图的特点:能获取数据变化情况的信息,并进行简单的预测。
2、折线统计图的方法:在方格纸中,根据所给出的数据把点标出来,再用线将点连接起来,要顺次连接。
3、能够看出折线统计图所提供的信息,并回答相关的问题。
补充内容:
1、条形统计图与折线统计图的不同:条形统计图用直条表示数量的多少,折线统计图用折线表示数量的增减变化情况。
2、初步了解复式折线统计图,能够从中获得相应的信息,回答提出的问题。
课后练习
1.统计学的基本涵义是(D)。
A.统计资料
B.统计数字
C.统计活动
D.是一门处理数据的方法和技术的科学,也可以说统计学是一门研究“数据”的科学,任务是如何有效地收集、整理和分析这些数据,探索数据内在的数量规律性,对所观察的现象做出推断或预测,直到为采取决策提供依据。
2.要了解某一地区国有工业企业的生产经营情况,则统计总体是(B)。
A.每一个国有工业企业
B.该地区的所有国有工业企业
C.该地区的所有国有工业企业的生产经营情况
D.每一个企业
3.要了解20个学生的学习情况,则总体单位是(C)。
A.20个学生
B.20个学生的学习情况
C.每一个学生
D.每一个学生的学习情况
4.下列各项中属于数量标志的是(B)。
A.性别
B.年龄
C.职称
D.健康状况
5.总体和总体单位不是固定不变的,由于研究目的改变(A)。
A.总体单位有可能变换为总体,总体也有可能变换为总体单位
B.总体只能变换为总体单位,总体单位不能变换为总体
C.总体单位不能变换为总体,总体也不能变换为总体单位
D.任何一对总体和总体单位都可以互相变换
6.以下岗职工为总体,观察下岗职工的性别构成,此时的标志是(C)。
A.男性职工人数
B.女性职工人数
C.下岗职工的性别
D.性别构成
初二下册数学知识点
【抽样调查】
(1)调查样本是按随机的原则抽取的,在总体中每一个单位被抽取的机会是均等的,因此,能够保证被抽中的单位在总体中的均匀分布,不致出现倾向性误差,代表性强。
(2)是以抽取的全部样本单位作为一个“代表团”,用整个“代表团”来代表总体。而不是用随意挑选的个别单位代表总体。
(3)所抽选的调查样本数量,是根据调查误差的要求,经过科学的计算确定的,在调查样本的数量上有可靠的保证。
(4)抽样调查的误差,是在调查前就可以根据调查样本数量和总体中各单位之间的差异程度进行计算,并控制在允许范围以内,调查结果的准确程度较高。
课后练习
1.抽样成数是一个(A)
A.结构相对数B.比例相对数C.比较相对数D.强度相对数
2.成数和成数方差的关系是(C)
A.成数越接近于0,成数方差越大B.成数越接近于1,成数方差越大
C.成数越接近于0.5,成数方差越大D.成数越接近于0.25,成数方差越大
3.整群抽样是对被抽中的群作全面调查,所以整群抽样是(B)
A.全面调查B.非全面调查C.一次性调查D.经常性调查
4.对400名大学生抽取19%进行不重复抽样调查,其中优等生比重为20%,概率保证程度为95.45%,则优等生比重的极限抽样误差为(A)
A.40%B.4.13%C.9.18%D.8.26%
5.根据5%抽样资料表明,甲产品合格率为60%,乙产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(B)
A.甲产品大B.乙产品大C.相等D.无法判断
八年级数学知识点归纳总结相关 文章 :
★ 八年级数学知识点整理归纳
★ 人教版八年级数学上册知识点总结
★ 八年级数学知识点总结
★ 八年级下册数学知识点整理
★ 八年级数学上知识点总结
★ 八年级上册数学知识点的总结
★ 初二数学知识点归纳
★ 初二数学上册知识点总结
★ 初中八年级上册数学知识点总结归纳
★ 八年级数学上册知识点归纳
⑧ 八年级数学上册知识点
只有学习精彩,生命才精彩,只有学习成功,事业才成功。每一门科目都有自己的 学习 方法 ,数学作为最烧脑的科目之一,需要不断的练习。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。
初二上学期数学知识点归纳
三角形知识概念
1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8、多边形的内角:多边形相邻两边组成的角叫做它的内角。
9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
13、公式与性质:
(1)三角形的内角和:三角形的内角和为180°
(2)三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
(3)多边形内角和公式:边形的内角和等于?180°
(4)多边形的外角和:多边形的外角和为360°
(5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。②边形共有条对角线。
八年级上册数学知识
一、在平面内,确定物体的位置一般需要两个数据。
二、平面直角坐标系及有关概念
1、平面直角坐标系
在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。
3、点的坐标的概念
对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。
平面内点的与有序实数对是一一对应的。
4、不同位置的点的坐标的特征
(1)、各象限内点的坐标的特征
点P(x,y)在第一象限:x;0,y;0
点P(x,y)在第二象限:x;0,y;0
点P(x,y)在第三象限:x;0,y;0
点P(x,y)在第四象限:x;0,y;0
(2)、坐标轴上的点的特征
点P(x,y)在x轴上,y=0,x为任意实数
点P(x,y)在y轴上,x=0,y为任意实数
点P(x,y)既在x轴上,又在y轴上,x,y同时为零,即点P坐标为(0,0)即原点
(3)、两条坐标轴夹角平分线上点的坐标的特征
点P(x,y)在第一、三象限夹角平分线(直线y=x)上,x与y相等
点P(x,y)在第二、四象限夹角平分线上,x与y互为相反数
(4)、和坐标轴平行的直线上点的坐标的特征
位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
初二数学 复习方法
一、复习内容:
第一章:勾股定理
第二章:实数第三章:位置与坐标
第四章:一次函数
第五章:二元一次方程组
第六章:数据的分析
第七章:平行线的证明
二、复习目标:
八年级数学本学期知识点多,复习时间又比较短,只有三周的时间。
根据实际情况,应该完成如下目标:
(一)、整理本学期学过的知识与方法:1.第一、七章是几何部分。这三章的重点是勾股定理的应用以及平行线的性质与判别还有三角形内角和定理及其应用。所以记住性质是关键,学会判定是重点,灵活应用是目的。要学会判定方法的选择,不同图形之间的区别和联系要非常熟悉,形成一个有机整体。对常见的证明题要多练多 总结 。2.第四五六章主要是概念的教学,对这几章的考试题型学生可能都不熟悉,所以要以与课本同步的训练题型为主,要列表或作图的,让学生积极动手操作,并得出结论,课堂上教师讲评,尽量是精讲多练,该动手的要多动手,尽可能的让学生自己总结出论证几何问题的常用分析方法。3.第二章主要是计算,教师提前先把概念、性质、方法综合复习,加入适当的练习,在练习计算。课堂上逐一对易错题的讲解,多强调解题方法的针对性。最后针对平时练习中存在的问题,查漏补缺。
(二)、在自己经历过的解决问题活动中,选择一个有挑战问题性的问题,写下解决它的过程:包括遇到的困难、克服困难的方法与过程及所获得的体会,并选择这个问题的原因。
(三)、通过本学期的数学学习,让同学们总结自己有哪些收获;有哪些需要改进的地方。
三、复习方法:
1、强化训练,这个学期计算类和证明类的题目较多,在复习中要加强这方面的训练。特别是一次函数,在复习过程中要分类型练习,重点是解题方法的正确选择同时使学生养成检查计算结果的习惯。还有几何证明题,要通过针对性练习力争达到少失分,达到证明简练又严谨的效果。
2、加强管理严格要求,根据每个学生自身情况、学习水平严格要求,对应知应会的内容要反复讲解、练习,必须做到学一点会一点,对接受能力差的学生课后要加强辅导,及时纠正出现的错误,平时多小测多检查。对能力较强的学生要引导他们多做课外习题,适当提高做题难度。
3、加强证明题的训练,通过近阶段的学习,我发现学生对证明题掌握不牢,不会找合适的分析方法,部分学生看不懂题意,没有思路。在今后的复习中我准备拿出一定的时间来专项练习证明题,引导学生如何弄懂题意、怎样分析、怎样写证明过程。力争让学生把各种类型题做全并抓住其特点。
4、加强成绩不理想学生的辅导,制定详细的复习计划,对他们要多表扬多鼓励,调动他们学习的积极性,利用课余时间对他们进行辅导,辅导时要有耐心,要心平气和,对不会的知识要多讲几遍,不怕麻烦,直至弄懂弄会。
四、课时安排:
本次复习共三周时间,具体安排如下:第一章1课时第二章2课时第三章1课时第四章2课时第五章2课时第六章1课时第七章2课时模拟测试4课时
五、复习阶段采取的 措施 :
1.精心备课上课,针对班级学生出现的错题及所涉及到的重点问题认真挑选试题。2.对于复习阶段作业的布置,少而精,有针对性,并且很抓订正及改错。3.在试题的选择上作到面面俱到,重点难点突出,不重不漏。4.面向全体学生。由于学生在知识、技能方面的发展和兴趣、特长等不尽相同,所以要因材施教。在组织教学时,应从大多数学生的实际出发,并兼顾学习有困难的和学有余力的学生。对学习有困难的学生,要特别予以关心,及时采取有效措施,激发他们学习数学的兴趣,指导他们改进学习方法。减缓他们学习中的坡度,使他们经过努力,能够达到大纲中规定的基本要求。对学有余力的学生,要通过讲授选学内容和组织课外活动等多种形式,满足他们的学习愿望,发展他们的数学才能。5.重视改进 教学方法 ,坚持启发式,反对注入式。教师在课前先布置学生预习,同时要指导学生预习,提出预习要求,并布置与课本内容相关、难度适中的尝试题材由学生课前完成,教学中教师应帮助学生梳理学习的知识,指出重点和易错点,解答学生复习时遇到的问题,使学生在学习中体会成功,调动学习积极性。6.改革作业结构减轻学生负担。将学生按学习能力分成几个层次,分别布置难、中、易三档作业,使每类学生都能在原有基础上提高。
八年级数学上册知识点相关 文章 :
★ 人教版八年级数学上册知识点总结
★ 初二数学上册知识点总结
★ 八年级数学上册知识点归纳
★ 八年级数学知识点整理归纳
★ 数学八年级上册知识点整理
★ 八年级数学上册知识点北师大版
★ 初二数学上册知识点总结归纳
★ 初二数学知识点归纳上册人教版
★ 数学八年级上册知识点
★ 初二数学上册知识点