当前位置:首页 » 基础知识 » 思维中知识点大全
扩展阅读
广西仔歌词有哪些 2025-01-24 09:39:00

思维中知识点大全

发布时间: 2022-09-09 22:23:49

⑴ 高中数学知识点大全

有的学生认为高中数学难做难做。其实高中数学整体上很简单,很简单,很多知识只要读两遍就可以了。下面是我整理的高中数学知识点大全,希望对你们有所帮助!

高中数学知识点

1、基本初等函数

指数、对数、幂函数三大函数的运算性质及图像

函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。关于这三大函数的运算公式,多记多用,多做一点练习,基本就没问题。

函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考点。另外指数函数和对数函数的对立关系及其相互之间要怎样转化等问题,需要着重回看课本例题。

2、函数的应用

这一章主要考是函数与方程的结合,其实就是函数的零点,也就是函数图像与X轴的交点。这三者之间的转化关系是这一章的重点,要学会在这三者之间灵活转化,以求能最简单的解决问题。关于证明零点的 方法 ,直接计算加得必有零点,连续函数在x轴上方下方有定义则有零点等等,这些难点对应的证明方法都要记住,多练习。二次函数的零点的Δ判别法,这个需要你看懂定义,多画多做题。

3、空间几何

三视图和直观图的绘制不算难,但是从三视图复原出实物从而计算就需要比较强的空间感,要能从三张平面图中慢慢在脑海中画出实物,这就要求学生特别是空间感弱的学生多看书上的例图,把实物图和平面图结合起来看,先熟练地正推,再慢慢的逆推(建议用纸做一个立方体来找感觉)。

在做题时结合草图是有必要的,不能单凭想象。后面的锥体、柱体、台体的表面积和体积,把公式记牢问题就不大。

4、点、直线、平面之间的位置关系

这一章除了面与面的相交外,对空间概念的要求不强,大部分都可以直接画图,这就要求学生多看图。自己画草图的时候要严格注意好实线虚线,这是个规范性问题。

关于这一章的内容,牢记直线与直线、面与面、直线与 面相 交、垂直、平行的几大定理及几大性质,同时能用图形语言、文字语言、数学表达式表示出来。只要这些全部过关这一章就解决了一大半。这一章的难点在于二面角这个概念,大多同学即使知道有这个概念,也无法理解怎么在二面里面做出这个角。对这种情况只有从定义入手,先要把定义记牢,再多做多看,这个没有什么捷径可走。

5、圆与方程

能熟练地把一般式方程转化为标准方程,通常的考试形式是等式的一边含根号,另一边不含,这时就要注意开方后定义域或值域的限制。通过点到点的距离、点到直线的距离、圆半径的大小关系来判断点与圆、直线与圆、圆与圆的位置关系。另外注意圆的对称性引起的相切、相交等的多种情况,自己把几种对称的形式罗列出来,多思考就不难理解了。

6、三角函数

考试必在这一块出题,且题量不小!诱导公式和基本三角函数图像的一些性质,没有太大难度,只要会画图就行。难度都在三角函数形函数的振幅、频率、周期、相位、初相上,及根据最值计算A、B的值和周期,及恒等变化时的图像及性质变化,这部分的知识点内容较多,需要多花时间,不要再定义上死扣,要从图像和例题入手。

7、平面向量

向量的运算性质及三角形法则、平行四边形法则的难度都不大,只要在计算的时候记住要“同起点的向量”这一条就OK了。向量共线和垂直的数学表达,是计算当中经常用到的公式。向量的共线定理、基本定理、数量积公式。分点坐标公式是重点内容,也是难点内容,要花心思记忆。

8、三角恒等变换

这一章公式特别多,像差倍半角公式这类内容常会出现,所以必须要记牢。由于量比较大,记忆难度大,所以建议用纸写好后贴在桌子上,天天都要看。要提一点,就是三角恒等变换是有一定规律的,记忆的时候可以集合三角函数去记。

9、解三角形

掌握正弦、余弦公式及其变式、推论、三角面积公式即可。

10、数列

等差、等比数列的通项公式、前n项及一些性质常出现于填空、解答题中,这部分内容学起来比较简单,但考验对其推导、计算、活用的层面较深,因此要仔细。考试题中,通项公式、前n项和的内容出现频次较多,这类题看到后要带有目的的去推导就没问题了。

11、不等式

这一章一般用线性规划的形式来考察学生,这种题通常是和实际问题联系的,所以要会读题,从题中找不等式,画出线性规划图,然后再根据实际问题的限制要求来求最值。



高中数学公式大全

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1_X2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac<0 注:方程没有实根,有共轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c_h 斜棱柱侧面积 S=c'_h

正棱锥侧面积 S=1/2c_h' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi_r2

圆柱侧面积 S=c_h=2pi_h 圆锥侧面积 S=1/2_c_l=pi_r_l

弧长公式 l=a_r a是圆心角的弧度数r >0 扇形面积公式 s=1/2_l_r

锥体体积公式 V=1/3_S_H 圆锥体体积公式 V=1/3_pi_r2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=s_h 圆柱体 V=pi_r2h

高考前数学知识点 总结

选择填空题

1、易错点归纳:

九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。

针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。

2、答题方法:

选择题十大速解方法:

排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;

填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。

解答题

专题一、三角变换与三角函数的性质问题

1、解题路线图

①不同角化同角

②降幂扩角

③化f(x)=Asin(ωx+φ)+h

④结合性质求解。

2、构建答题模板

①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

④ 反思 :反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。

专题二、解三角形问题

1、解题路线图

(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

2、构建答题模板

①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。

专题三、数列的通项、求和问题

1、解题路线图

①先求某一项,或者找到数列的关系式。

②求通项公式。

③求数列和通式。

2、构建答题模板

①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。

③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

④写步骤:规范写出求和步骤。

⑤再反思:反思回顾,查看关键点、易错点及解题规范。

专题四、利用空间向量求角问题

1、解题路线图

①建立坐标系,并用坐标来表示向量。

②空间向量的坐标运算。

③用向量工具求空间的角和距离。

2、构建答题模板

①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。

②写坐标:建立空间直角坐标系,写出特征点坐标。

③求向量:求直线的方向向量或平面的'法向量。

④求夹角:计算向量的夹角。

⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。

专题五、圆锥曲线中的范围问题

1、解题路线图

①设方程。

②解系数。

③得结论。

2、构建答题模板

①提关系:从题设条件中提取不等关系式。

②找函数:用一个变量表示目标变量,代入不等关系式。

③得范围:通过求解含目标变量的不等式,得所求参数的范围。

④再回顾:注意目标变量的范围所受题中其他因素的制约。

专题六、解析几何中的探索性问题

1、解题路线图

①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)

②将上面的假设代入已知条件求解。

③得出结论。

2、构建答题模板

①先假定:假设结论成立。

②再推理:以假设结论成立为条件,进行推理求解。

③下结论:若推出合理结果, 经验 证成立则肯。 定假设;若推出矛盾则否定假设。

④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。

专题七、离散型随机变量的均值与方差

1、解题路线图

(1)①标记事件;②对事件分解;③计算概率。

(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。

2、构建答题模板

①定元:根据已知条件确定离散型随机变量的取值。

②定性:明确每个随机变量取值所对应的事件。

③定型:确定事件的概率模型和计算公式。

④计算:计算随机变量取每一个值的概率。

⑤列表:列出分布列。

⑥求解:根据均值、方差公式求解其值。

专题八、函数的单调性、极值、最值问题

1、解题路线图

(1)①先对函数求导;②计算出某一点的斜率;③得出切线方程。

(2)①先对函数求导;②谈论导数的正负性;③列表观察原函数值;④得到原函数的单调区间和极值。

2、构建答题模板

①求导数:求f(x)的导数f′(x)。(注意f(x)的定义域)

②解方程:解f′(x)=0,得方程的根

③列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。

④得结论:从表格观察f(x)的单调性、极值、最值等。

⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步骤规范性。

以上模板仅供参考,希望大家能针对自己的情况整理出来最适合的“套路”。

高中数学 学习心得

数学是一们基础学科,我们从小就开始接触到它。现在我们已经步入高中,由于高中数学对知识的难度、深度、广度要求更高,有一部分同学由于不适应这种变化,数学成绩总是不如人意。甚至产生这样的困惑:“我在初中时数学成绩很好,可现在怎么了?”其实,学习是一个不断接收新知识的过程。正是由于你在进入高中后 学习方法 或 学习态度 的影响,才会造成学得累死而成绩不好的后果。那么,究竟该如何学好高中数学呢?以下我谈谈我的高中数学学习心得。

一、 认清学习的能力状态。

1、 心理素质。我们在高中学习环境下取决于我们是否具有面对挫折、冷静分析问题的办法。当我们面对困难时不应产生畏惧感,面对失败时不应灰心丧气,而要勇于正视自己,及时作出总结教训,改变学习方法。

2、 学习方式、习惯的反思与认识。(1) 学习的主动性。我们在进入高中以后,不能还像初中时那样有很强的依赖心理,不订 学习计划 ,坐等上课,课前不预习,上课忙于记笔记而忽略了真正的听课,顾此失彼,被动学习。(2) 学习的条理性。我们在每学习一课内容时,要学会将知识有条理地分为若干类,剖析概念的内涵外延,重点难点要突出。不要忙于记笔记,而对要点没有听清楚或听不全。笔记记了一大摞,问题也有一大堆。如果还不能及时巩固、总结,而忙于套着题型赶作业,对概念、定理、公式不能理解而死记硬背,则会事倍功半,收效甚微。(3) 忽视基础。在我身边,常有些“自我感觉良好”的同学,忽视基础知识、基本技能和基本方法,不能牢牢地抓住课本,而是偏重于对难题的攻解,好高骛远,重“量”而轻“质”,陷入题海,往往在考试中不是演算错误就是中途“卡壳”。(4) 不良习惯。主要有对答案,卷面书写不工整,格式不规范,不相信自己的结论,缺乏对问题解决的信心和决心,遇到问题不能独立思考,养成一种依赖于老师解说的心理,做作业不讲究效率,学习效率不高。

二、 努力提高自己的学习能力。

1、 抓要点提高学习效率。(1) 抓教材处理。正所谓“万变不离其中”。要知道,教材始终是我们学习的根本依据。教学是活的,思维也是活的,学习能力是随着知识的积累而同时形成的。我们要通过老师教学,理解所学内容在教材中的地位,并将前后知识联系起来,把握教材,才能掌握学习的主动性。(2) 抓问题暴露。对于那些典型的问题,必须及时解决,而不能把问题遗留下来,而要对遗留的问题及时、有效的解决。(3) 抓 思维训练 。数学的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。我们在平时的训练中,要注重一个思维的过程,学习能力是在不断运用中才能培养出来的。(5) 抓45分钟课堂效率。我们学习的大部分时间都在学校,如果不能很好地抓住课堂时间,而寄希望于课外去补,则会使学习效率大打折扣。

高中数学知识点大全相关 文章 :

★ 高二数学知识点总结

★ 高一数学必修一知识点汇总

★ 高中数学学习方法:知识点总结最全版

★ 高中数学知识点总结

★ 高一数学知识点总结归纳

★ 高三数学知识点考点总结大全

★ 高中数学基础知识大全

★ 高三数学知识点梳理汇总

★ 高中数学必考知识点归纳整理

★ 高一数学知识点总结期末必备

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑵ 推理能力的四个核心知识点

创造性创造性指思维活动的创造意识和创新精神,不墨守成规,奇异、求变,能够创造性地提出问题和创造性地解决问题。突出表现在:一独立性、二分散性、三是新颖性。金海豚给出的思维训练小贴士是:一,加强学习的独立性,保持应有的好奇心。二,增强问题意识,在课堂听讲和读书学习中,注意发现问题,提出问题。三,注重思维的发散,在解题练习中进行多解、多变.系统性系统性指善于抓住问题的各个方面,又不忽视其重要细节的思维品质。考虑问题,总是要从整体出发,能够很好地处理整体与局部的关系。系统思维,可以使一个人变得非常理智,而且统筹能力及预见能力会得到很大的提高,而系统思维能力对一个领导者来说是不可或缺的能力。专家介绍,在给孩子进行思维训练时,应训练孩子站在系统的高度学习知识,注重知识的整体结构,经常进行知识总结。寻找新旧知识的联系与区别,挖掘共性,分离个性,在比较中学习新知识。注重知识的纵横联系,在融会贯通中提炼知识,领悟其关键、核心和本质。深刻性深刻性指思维活动的抽象和逻辑推理水平,表现为能深刻理解概念,分析问题周密,善于抓住事物的本质和规律。“所以,家长要鼓励孩子,一是鼓励孩子追根究底,凡事都要去问为什么,坚决摈弃死记硬背,不但要“知其然”,更要“知其所以然”。二是鼓励孩子积极开展问题研究,养成深钻细研的习惯。每当遇到问题时,尽可能地寻求其规律性,或从不同角度、不同方向变换观察同一问题,以免被假象所迷惑。”敏捷性敏捷性是指思维活动的反应速度和熟练程度,表现为思考问题时的快速灵活,善于迅速和准确地作出决定、解决问题。专家建议: “孩子要熟练掌握适宜阶段的基础知识和基本技能,熟能生巧,不要一味图进度快、难度高。在课堂上,要争取超前思维,在老师抛出问题后主动思考,把被动接受知识的过程变成主动思维训练的过程。而且要限时完成学习任务,有意识地限定时间,培养思维的敏捷性。”灵活性“灵活性”包括四个方面:一是思维起点的灵活性,即能否从不同的角度、方向、方面按照不同的方法来解决问题;二是思维过程的灵活性,即能否从分析到综合,从综合到分析,灵活地进行综合分析;三是概括和迁移能力,是否愿意和善于运用规律,能否触类旁通;四是思维的结果是不是多种合理而灵活的答案。”专家提醒,首先,平常要注意知识的应用性,能够把知识真正活学活用,而不仅仅停留在书本知识表面;其实,要注重知识之间的相互渗透和迁移,只有知识形成体系后,才能真正被吸收和消化。

⑶ 八年级上册物理思维导图_知识点汇总

教师还能够利用学生自行画的 思维导图 ,实现对学生思维过程的整体把握。下面我整理了 八年级 上册物理思维导图,希望大家喜欢!

八年级上册物理思维导图1 八年级上册物理思维导图2 八年级上册物理思维导图3 八年级上册物理思维导图4 八年级上册物理知识点汇总

第一章 声

1、人耳感受到声音的频率有一个范围:20Hz~20000Hz,高于20000Hz叫超声波;低于20Hz叫次声波;

2、动物的听觉范围和人不同,大象靠次声波交流,地震、火山爆发、台风、海啸都要产生次声波;

一、噪声的危害和控制

1、噪声:(!)从物理角度上讲物体做无规则振动时发出的声音叫噪声;(2)从环保的角度上讲,凡是妨碍人们正常学习、工作、休息的声音以及对人们要听的声音产生干扰的声音都是噪声;

2、乐音:从物理角度上讲,物体做有规则振动发出的声音;

3、常见招生来源:飞机的轰鸣声、汽车的鸣笛声、鞭炮声、金属之间的摩擦声;

4、噪声的等级:表示声音强弱的单位是分贝。符号dB,超过90dB会损害健康;0dB指人耳刚好能听见的声音;

5、控制噪声:(1)在生源处较弱(安消声器);(2)在传播过程中(植树。隔音墙)(3)在人耳处减弱(戴耳塞)

二、声音的利用

1、超声波的能量大、频率高用来打结石、清洗钟表等精密仪器;超声波基本沿直线传播用来回声定位(蝙蝠辨向)制作(声纳系统)

2、传递信息(医生查病时的“闻”,打B超,敲铁轨听声音等等)

3、声音可以传递能量(飞机场帮边的玻璃被震碎,雪山中不能高声说话,一音叉振动,未接触的音叉振动发生)

第二章 光的传播

一、光源:能发光的物体叫做光源。光源可分为1、冷光源(水母、节能灯),热光源(火把、太阳);2、天然光源(水母、太阳),人造光源(灯泡、火把);3、生物光源(水母、斧头鱼),非生物光源(太阳、灯泡)

二、光的传播

1、光在同种均匀介质中沿直线传播;

2、光的直线传播的应用:

(1)小孔成像:像的形状与小孔的形状无关,像是倒立的实像(树阴下的光斑是太阳的像)

(2)取直线:激光准直(挖隧道定向);整队集合; 射击 瞄准;

(3)限制视线:坐井观天(要求会作有水、无水时青蛙视野的光路图);一叶障目;

(4)影的形成:影子;日食、月食(要求知道日食时月球在中间;月食时地球在中间)

3、光线:常用一条带有箭头的直线表示光的径迹和方向;

三、光速

1、真空中光速是宇宙中最快的速度;

2、在计算中,真空或空气中光速c=3×108m/s;

3、光在水中的速度约为c,光在玻璃中的速度约为c;

4、光年:是光在一年中传播的距离,光年是长度单位;1光年≈9.46×1015m;

注:声音在固体中传播得最快,液体中次之,气体中最慢,真空中不传播;光在真空中传播的最快,空气中次之,透明液体、固体中最慢(二者刚好相反)。光速远远大于声速,(如先看见闪电再听见雷声,在100m赛跑时声音传播的时间不能忽略不计,但光传播的时间可忽略不计)。

四、光的反射

1、当光射到物体表面时,有一部份光会被物体反射回来,这种现象叫做光的反射。

2、我们看见不发光的物体是因为物体反射的光进入了我们的眼睛。

3、反射定律:在反射现象中,反射光线、入射光线、法线都在同一个平面内;反射光线、入射光线分居法线两侧;反射角等于入射角。

(1)、法线:过光的入射点所作的与反射面垂直的直线;

(2)入射角:入射光线与法线的夹角;反射角:法射光线与法线间的夹角。(入射光线与镜面成θ角,入射角为90°-θ,反射角为90°-θ)

(3)入射角与反射角之间存在因果关系,反射角总是随入射角的变化而变化而变化,因而只能说反射角等于入射角,不能说成入射角等于反射角。(镜面旋转θ,反射光旋转2θ)

(4)垂直入射时,入射角、反射角等于多少?答:垂直入射时,入射角为0度,反射角亦等于0度。

4、反射现象中,光路是可逆的(互看双眼)

5、利用光的反射定律画一般的光路图(要求会作):

(1)、确定入(反)射点:入射光线和反射面或反射光线和反射面或入射光线和反射光线的交点即为入射(反射)点

(2)、根据法线和反射面垂直,作出法线。

(3)、根据反射角等于入射角,画出入射光线或反射光线

5、两种反射:镜面反射和漫反射。

(1)镜面反射:平行光射到光滑的反射面上时,反射光仍然被平行的反射出去;

(2)漫反射:平行光射到粗糙的反射面上,反射光将沿各个方向反射出去;

(3)镜面反射和漫反射的相同点:都是反射现象,都遵守反射定律;不同点是:反射面不同(一光滑,一粗糙),一个方向的入射光,镜面反射的反射光只射向一个方向(刺眼);而漫反射射向四面八方;(下雨天向光走走暗处,背光走要走亮处,因为积水发生镜面反射,地面发生漫反射,电影屏幕粗糙、黑板要粗糙是利用漫反射把光射向四处,黑板上“反光”是发生了镜面反射)

⑷ day23 联想思维:从知识点到思维之网

整理听课收获:

大脑中的知识点零散凌乱,怎么办?

终极原因是大脑里没有清晰的知识点

办法一:深入挖掘一个点,进而挖出整个网络

举例:勾股定理可以用各种数学办法证明。实际是有500多种

让知识点在大脑里高度清晰

把学到的抽象东西翻译成具体的事情。把概念变成可触可摸,有实际意义的东西。找到任何东西的实际意义。

默写基本概念,基本公式。第二步是推导,这样反复多次,才能有清晰的概念。

办法二:抓住核心概念主导的核心架构

举例:汤因比《历史研究》,文明兴衰的规律是什么?文明对内外部威胁的应战的成败的决定的。

办法三:通过模板,构建自己的思维模板

思考题:

1、那些知识点是你明确掌握的

2、这些点之间有什么关联?

3、你有自己的以为模板吗?

书:《历史研究》

⑸ 数学思维和方法有哪些内容

1、数学思维方法有哪些
一、转化方法:
转化思维,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、更清晰。
二、逻辑方法:
逻辑是一切思考的基础。罗辑思维,是人们在认识过程中借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。罗辑思维,在解决逻辑推理问题时使用广泛。
三、逆向方法:
逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。
四、对应方法:
对应思维是在数量关系之间(包括量差、量倍、量率)建立一种直接联系的思维方法。比较常见的是一般对应(如两个量或多个量的和差倍之间的对应关系)和量率对应。
五、创新方法:
创新思维是指以新颖独创的方法解决问题的思维过程,通过这种思维能突破常规思维的界限,以超常规甚至反常规的方法、视角去思考问题,提得出与众不同的解决方案。可分为差异性、探索式、优化式及否定性四种。
六、系统方法:
系统思维也叫整体思维,系统思维法是指在解题时对具体题目所涉及到的知识点有一个系统的认识,即拿到题目先分析、判断属于什么知识点,然后回忆这类问题分为哪几种类型,以及对应的解决方法。
七、类比方法:
类比思维是指根据事物之间某些相似性质,将陌生的、不熟悉的问题与熟悉问题或其他事物进行比较,发现知识的共性,找到其本质,从而解决问题的思维方法。
八、形象方法:
形象思维,主要是指人们在认识世界的过程中,对事物表象进行取舍时形成的,是指用直观形象的表象,解决问题的思维方法。想象是形象思维的高级形式也是其一种基本方法。
如何锻炼自己的数学思维?
一、做出来不如讲出来,听得懂不如说得通。
做10道题,不如讲一道题。孩子做完家庭作业后,家长不妨鼓励孩子开口讲解一下数学作业中的难题,我也在群里会经常发一些比较好的训练题,您也可以鼓励去想一想说一说,如果讲得好,家长还可进行小奖励,让孩子更有成就感。
二、举一反三,学会变通。
举一反三出自孔子的《论语·述而》:“举一隅,不以三隅反,则不复也。”意思是说:我举出一个墙角,你们应该要能灵活的推想到另外三个墙角,如果不能的话,我也不会再教你们了。后来,大家就把孔子说的这段话变成了“举一反三”这句成语,意思是说,学一件东西,可以灵活的思考,运用到其他相类似的东西上!
在数学的训练中,一定要给孩子举一反三训练。一道题看似理解了,但他的思维可能比较直线,不多做几道举一反三或在此基础上变式的题,他还是转不过玩了。
举一反三其实就是“师傅领进门,学艺在自身”这句话的执行行为。
三、建立错题本,培养正确的思维习惯
每上第一次课,我所讲的课程内容都和学生的错题有关。我通常把试卷中的错题摘抄出几个典型题,作为课堂的例题再讲一遍。而学生的反应,或是像没有见过,或是对题目非常熟悉,但没有思路。这些现象的发生,都是学生没有及时总结的原因。所以第一次课后我都建议我的学生做一个错题本,像写日记一样,记录下自己的错题和错因分析。
一般来说,错题分为三种类型:第一种是特别愚蠢的错误、特别简单的错误;第二种就是拿到题目时一点思路都没有,不知道解题该从何下手,但是一看到答案却恍然大悟;第三种就是题目难度中等,按道理有能力做对,但是却做错了。
尤其第二种、第三种,必须放到错题本上。建立错题本的好处就是掌握了自己所犯错的类型,为防范一类错误成为习惯性的思维。
四、图形推理是培养逻辑思维能力最好的工具
假是真时真亦假,真是假时假亦真;逻辑思维是在规则的确定下而进行的思维,如果联系生活就属于非常规思维。一切看似与生活毫无联系却自在法则约束规范的范围内。逻辑推理的“瞒天过海”可谓五花八门,好似一个万花筒,百变无穷,乐趣无穷。
几何图形是助其锻炼逻辑思维的好工具,经典的图形推理题总有其构思、思路、巧妙的思维;经典在于其看似变态,而实际解法却简而又简单。
因此,多训练一些图形推理题,对其逻辑思维很有帮助。

⑹ 网友网友谁有免费的初中各科思维导图全汇总,涵盖3各科所有知识点资源分享给我谢谢了

《190430初中全册 全科 知识思维导图:看图学习,超速记忆.rar》网络网盘资源免费下载

链接: https://pan..com/s/1Dh_sXJTU64Ee_txPjIOqGA

?pwd=j2qv 提取码: j2qv