当前位置:首页 » 基础知识 » 初中上学期知识汇总数学
扩展阅读
校外教育机构如何报名 2025-01-23 09:00:34
生物如何牢记基础知识 2025-01-23 09:00:32

初中上学期知识汇总数学

发布时间: 2022-09-08 16:47:11

① 初二数学上册重点知识点总结

初中生在学习数学的过程中应该注意知识点的总结,下面总结了初二数学上册知识点,供大家参考。

位置与坐标

1.确定位置

在平面内,确定一个物体的位置一般需要两个数据。

2.平面直角坐标系

①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点。

③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示。

④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限。

⑤在直角坐标系中,对于平面上任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应。

3.轴对称与坐标变化

关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。

一次函数

(一)一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx+b(k为常数,k≠0),y叫做x的正比例函数。

(二)函数三要素

1.定义域:设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。

2.在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。

3.对应法则:一般地说,在函数记号y=f(x)中,“f”即表示对应法则,等式y=f(x)表明,对于定义域中的任意的x值,在对应法则“f”的作用下,即可得到值域中唯一y值。

(三)一次函数的表示方法

1.解析式法:用含自变量x的式子表示函数的方法叫做解析式法。

2.列表法:把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。

3.图像法:用图象来表示函数关系的方法叫做图象法。

(四)一次函数的性质

1.y的变化值与对应的x的变化值成正比例,比值为k。即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。

2.当x=0时,b为函数在y轴上的交点,坐标为(0,b)。当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)。

3.k为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图象与x轴正方向夹角,θ≠90°)。

4.当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。

5.函数图象性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图象相交于Y轴;当k互为负倒数时,两直线垂直。

6.平移时:上加下减在末尾,左加右减在中间。

全等三角形

1.经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。

2.三角形全等的判定

(1)SSS(边边边)

三边对应相等的三角形是全等三角形。

(2)SAS(边角边)

两边及其夹角对应相等的三角形是全等三角形。

(3)ASA(角边角)

两角及其夹边对应相等的三角形全等。

(4)AAS(角角边)

两角及其一角的对边对应相等的三角形全等。

(5)RHS(直角、斜边、边)

在一对直角三角形中,斜边及另一条直角边相等。

3.角平分线

(1)从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。

(2)性质

①角平分线分得的两个角相等,都等于该角的一半。

②角平分线上的点到角的两边的距离相等。

分式

(一)分式的运算

分式四则运算,顺序乘除加减,

乘除同级运算,除法符号须变(乘),

乘法进行化简,因式分解在先,

分子分母相约,然后再行运算,

加减分母需同,分母化积关键,

找出最简公分母,通分不是很难,

变号必须两处,结果要求最简。

(二)分式的运算法则

(1)约分

①如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。

②分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。

(2)公因式的提取方法

系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。

(3)除法

两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。

(4)乘方

分子乘方做分子,分母乘方做分母,可以约分的约分,最后化成最简。

图形的平移与旋转

1.平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

2.平移性质

(1)图形平移前后的形状和大小没有变化,只是位置发生变化。

(2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等。

② 初一上册数学知识点总结归纳

初一数学是初中数学的基础,这篇文章我给大家总结归纳了初一上册数学课本的重要知识点,供同学们参考。

有理数

(1)定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。

(2)数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。

(3)相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。

(4)绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

(5)有理数的加减法

同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

(6)有理数的乘法

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积为0.例:0×1=0

(7)有理数的除法

除以一个不为0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。0除

以任何一个不为0的数,都得0。

(8)有理数的乘方

求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。其中,a叫做底数,n叫做指数。当aⁿ看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。

一元一次方程

(1)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫做方程。

(2)一元一次方程

一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。

(3)等式的性质

①等式两边同时加上(或减去)同一个整式,等式仍然成立。

若a=b

那么a+c=b+c

②等式两边同时乘或除以同一个不为0的整式,等式仍然成立。

若a=b

那么有a·c=b·c或a÷c=b÷c(c≠0)

③等式具有传递性。

若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an

(3)解方程式的步骤

解一元一次方程的步骤:去分母、去括号、移项、合并同类项、未知数系数化为1。

①去分母:把系数化成整数。

②去括号

③移项:把等式一边的某项变号后移到另一边。

④合并同类项

⑤系数化为1。

角的知识点

1.角:角是由两条有公共端点的射线组成的几何对象。

2.角的度量单位:度、分、秒

3.顶点:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点

4.角的比较:

(1)角可以看成是由一条射线绕着他的端点旋转而成的。

(2)平角和周角:一条射线绕着他的端点旋转,当始边和终边成一条直线时,所成的角叫平角。当它又和始边重合的时候,所成的角角周角。平角等于108度,周角等于360度,直角等于90度。

(3)平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

5.余角和补角:

(1)余角:如果两个角的和是90度,那么称这两个角“互为余角”,简称“互余”。

性质:等角的余角相等。

(2)补角:如果两个角的和是180度,那么称这两个角“互为补角”,简称“互补”。

性质:等角的补角相等。

③ 七年级上册数学知识点归纳总结

数学在初中学习中是一门十分重要的科目,下面是总结的一些七年级上册的重点数学知识点,供大家参考。

整式的加减

一、代数式

1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。

二、整式

1、单项式:

(1)由数和字母的乘积组成的代数式叫做单项式。

(2)单项式中的数字因数叫做这个单项式的系数。

(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2、多项式

(1)几个单项式的和,叫做多项式。

(2)每个单项式叫做多项式的项。

(3)不含字母的项叫做常数项。

3、升幂排列与降幂排列

(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。

(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。

三、整式的加减

1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项:

(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

(3)合并同类项步骤:

a.准确的找出同类项。

b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

c.写出合并后的结果。

图形的初步认识

一、立体图形与平面图形

1、长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。

2、长方形、正方形、三角形、圆等都是平面图形。

3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

二、点和线

1、经过两点有一条直线,并且只有一条直线。

2、两点之间线段最短。

3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。

4、把线段向一方无限延伸所形成的图形叫做射线。

三、角

1、角是由两条有公共端点的射线组成的图形。

2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。

3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。

数据的收集和整理

一.数据的收集

1. 所要考察的对象的全体叫做总体;

把组成总体的每一个考察对象叫做个体;

从总体中取出的一部分个体叫做这个总体的一个样本.

二.普查和抽样调查

1. 为一特定目的而对所有考察对象作的全面调查叫做普查;

为一特定目的而对部分考察对象作的调查叫做抽样调查.

2. 抽样调查的特点: 调查的范围小、节省时间和人力物力优点.但不如普查得到的调查结果精确,它得到的只是估计值。而估计值是否接近实际情况还取决于样本选得是否有代表性。

三.数据的表示

科学记数法:一般地,一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法叫做科学记数法。

四.统计图的特点

折线统计图:能够清晰地反映同一事物在不同时期的变化情况。

条形统计图:能够清晰地反映每个项目的具体数目及之间的大小关系。

扇形统计图:能够清晰地表示各部分在总体中所占的百分比及各部分之间的大小关系

④ 初一数学上册知识点梳理

数学在初中学习中是一门十分重要的科目,下面是总结的初一上册的重点数学知识点,供大家参考。

代数

1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)

2.列代数式的几个注意事项:

(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;

(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;

(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;

(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a。

整式

1.整式:单项式和多项式的统称叫整式。

2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。

3.系数;一个单项式中,数字因数叫做这个单项式的系数。

4.次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

5.多项式:几个单项式的和叫做多项式。

6.项:组成多项式的每个单项式叫做多项式的项。

等式的性质

等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。

一元一次方程

1.定义:

一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。

2.解一元一次方程的步骤

①去分母:把系数化成整数。

②去括号

③移项:把等式一边的某项变号后移到另一边。

④合并同类项

⑤系数化为1.

1.角:角是由两条有公共端点的射线组成的几何对象。

2.角的度量单位:度、分、秒

3.顶点:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点

4.角的比较:

(1)角可以看成是由一条射线绕着他的端点旋转而成的。

(2)平角和周角:一条射线绕着他的端点旋,转当始边和终边成一条直线时,所成的角叫平角。当它又和始边重合的时候,所成的角角周角。平角等于108度,周角等于360度,直角等于90度。

(3)平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

5.余角和补角:

(1)余角:如果两个角的和是90度,那么称这两个角“互为余角”,简称“互余”。

性质:等角的余角相等。

(2)补角:如果两个角的和是180度,那么称这两个角“互为补角”,简称“互补”。

性质:等角的补角相等。

⑤ 九年级上册数学知识点归纳

学习中的困难莫过于一节一节的台阶,虽然台阶很陡,但只要一步一个脚印的踏,攀登一层一层的台阶,才能实现学习的理想。下面就是我为大家梳理归纳的知识,希望能够帮助到大家。

九年级上册数学知识点归纳一

圆的定义

1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素

1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质

1、圆的对称性

(1)圆是图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:

平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O的半径为r,OP=d。

7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。

(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

(直角的外心就是斜边的中点。)

8、直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。

直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;

直线与圆没有交点,直线与圆相离。

9、中,A(x1,y1)、B(x2,y2)。

10、圆的切线判定。

(1)d=r时,直线是圆的切线。

切点不明确:画垂直,证半径。

(2)经过半径的外端且与半径垂直的直线是圆的切线。

切点明确:连半径,证垂直。

11、圆的切线的性质(补充)。

(1)经过切点的直径一定垂直于切线。

(2)经过切点并且垂直于这条切线的直线一定经过圆心。

12、切线长定理。

(1)切线长:从圆外一点引圆的两条切线,切点与这点之间连线段的长叫这个点到圆的切线长。

(2)切线长定理。

∵PA、PB切⊙O于点A、B

∴PA=PB,∠1=∠2。

13、内切圆及有关计算。

(1)内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。

(2)如图,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三边于点D、E、F。

求:AD、BE、CF的长。

分析:设AD=x,则AD=AF=x,BD=BE=5-x,CE=CF=7-x.

可得方程:5-x+7-x=6,解得x=3

(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。

求内切圆的半径r。

分析:先证得正方形ODCE,

得CD=CE=r

AD=AF=b-r,BE=BF=a-r

b-r+a-r=c

14、(1)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。

BC切⊙O于点B,AB为弦,∠ABC叫弦切角,∠ABC=∠D。

(2)相交弦定理。

圆的两条弦AB与CD相交于点P,则PA?PB=PC?PD。

(3)切割线定理。

如图,PA切⊙O于点A,PBC是⊙O的割线,则PA2=PB?PC。

(4)推论:如图,PAB、PCD是⊙O的割线,则PA?PB=PC?PD。

15、圆与圆的位置关系。

(1)外离:d>r1+r2,交点有0个;

外切:d=r1+r2,交点有1个;

相交:r1-r2

内切:d=r1-r2,交点有1个;

内含:0≤d

(2)性质。

相交两圆的连心线垂直平分公共弦。

相切两圆的连心线必经过切点。

16、圆中有关量的计算。

(1)弧长有L表示,圆心角用n表示,圆的半径用R表示。

(2)扇形的面积用S表示。

(3)圆锥的侧面展开图是扇形。

r为底面圆的半径,a为母线长。

九年级上册数学知识点归纳二

1二次根式:形如式子为二次根式;

性质:是一个非负数;

2二次根式的乘除:

3二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并.

4海伦-秦九韶公式:,S是的面积,p为.

1:等号两边都是整式,且只有一个未知数,未知数的次是2的方程.

2配 方法 :将方程的一边配成完全平方式,然后两边开方;

因式分解法:左边是两个因式的乘积,右边为零.

3一元二次方程在实际问题中的应用

4韦达定理:设是方程的两个根,那么有

1:一个图形绕某一点转动一个角度的图形变换

性质:对应点到中心的距离相等;

对应点与旋转中心所连的线段的夹角等于旋转角

旋转前后的图形全等.

2中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;

中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;

3关于原点对称的点的坐标

1圆、圆心、半径、直径、圆弧、弦、半圆的定义

2垂直于弦的直径

圆是图形,任何一条直径所在的直线都是它的对称轴;

垂直于弦的直径平分弦,并且平方弦所对的两条弧;

平分弦的直径垂直弦,并且平分弦所对的两条弧.

3弧、弦、圆心角

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.

4圆周角

在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;

半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径.

5点和圆的位置关系

点在圆外d>r

点在圆上d=r

点在圆内dR+r

外切d=R+r

相交R-r

九年级上册数学知识点归纳三

抛物线顶点坐标公式

y=ax2+bx+c(a=?0)的顶点坐标公式是(-b/2a,(4ac-b2)/4a)

y=ax2+bx的顶点坐标是(-b/2a,-b2/4a)

相关结论

过抛物线y^2=2px(p>0)焦点F作倾斜角为θ的直线L,L与抛物线相交于A(x1,y1),B(x2,y2),有

①x1 x2=p^2/4,y1 y2=—P^2,要在直线过焦点时才能成立;

②焦点弦长:|AB|=x1+x2+P=2P/[(sinθ)^2];

③(1/|FA|)+(1/|FB|)=2/P;

④若OA垂直OB则AB过定点M(2P,0);

⑤焦半径:|FP|=x+p/2(抛物线上一点P到焦点F距离等于到准线L距离);

⑥弦长公式:AB=√(1+k^2) │x2-x1│;

⑦△=b^2-4ac;

⑧由抛物线焦点到其切线的垂线距离,是焦点到切点的距离,与到顶点距离的比例中项;

⑨标准形式的抛物线在x0,y0点的切线就是:yy0=p(x+x0)。

⑴△=b^2-4ac>0有两个实数根;

⑵△=b^2-4ac=0有两个一样的实数根;

⑶△=b^2-4ac<0没实数根。


九年级上册数学知识点归纳相关 文章 :

★ 九年级数学上册重要知识点总结

★ 九年级上册数学知识点归纳整理

★ 人教版九年级数学知识点归纳

★ 初三上册数学知识点归纳

★ 初三数学知识点上册总结归纳

★ 初三数学知识点考点归纳总结

★ 初三九年级上册数学知识点

★ 初中九年级数学知识点总结

★ 初中九年级数学知识点总结归纳

★ 初中数学必备知识点总结初三数学上册一二章知识点

⑥ 初三上册数学知识点总结

读书,始读,未知有疑;其次,则渐渐有疑;中则节节是疑。过了这一番,疑渐渐释,以至融会贯通,都无所疑,方始是学。下面给大家分享一些初三上册数学知识点,希望对大家有所帮助。

初三上册数学知识点1

特殊平行四边形

1、菱形的性质与判定

①菱形的定义:

一组邻边相等的平行四边形叫做菱形。

②菱形的性质:

具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。

菱形是轴对称图形,每条对角线所在的直线都是对称轴。

③菱形的判别 方法 :

一组邻边相等的平行四边形是菱形。

对角线互相垂直的平行四边形是菱形。

四条边都相等的四边形是菱形。

2、矩形的性质与判定

①矩形的定义:

有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。

②矩形的性质:

具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)

③矩形的判定:

有一个内角是直角的平行四边形叫矩形(根据定义)。

对角线相等的平行四边形是矩形。

四个角都相等的四边形是矩形。

④推论:直角三角形斜边上的中线等于斜边的一半。

3、正方形的性质与判定

①正方形的定义:

一组邻边相等的矩形叫做正方形。

②正方形的性质:

正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)

③正方形常用的判定:

有一个内角是直角的菱形是正方形;

邻边相等的矩形是正方形;

对角线相等的菱形是正方形;

对角线互相垂直的矩形是正方形。

④正方形、矩形、菱形和平行边形四者之间的关系

⑤梯形定义:

一组对边平行且另一组对边不平行的四边形叫做梯形。

两条腰相等的梯形叫做等腰梯形。

一条腰和底垂直的梯形叫做直角梯形。

⑥等腰梯形的性质:

等腰梯形同一底上的两个内角相等,对角线相等。

同一底上的两个内角相等的梯形是等腰梯形。

三角形的中位线平行于第三边,并且等于第三边的一半。

夹在两条平行线间的平行线段相等。

在直角三角形中,斜边上的中线等于斜边的一半

初三上册数学知识点2

一元二次方程

1、认识一元二次方程

只含有一个未知数的整式方程,且都可以化为ax2+bx+c=0

(a、b、c为常数,a≠0)的形式,这样的方程叫一元二次方程。

把ax2+bx+c=0(a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。

2、用配方法求解一元二次方程

①配方法 <即将其变为(x+m)2=0的形式>

配方法解一元二次方程的基本步骤:

把方程化成一元二次方程的一般形式;

将二次项系数化成1;

把常数项移到方程的右边;

两边加上一次项系数的一半的平方;

把方程转化成的形式;

两边开方求其根。

3、用公式法求解一元二次方程

②公式法 (注意在找abc时须先把方程化为一般形式)

4、用因式分解法求解一元二次方程

③分解因式法

把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)

5、一元二次方程的根与系数的关系

①根与系数的关系:

当b2-4ac>0时,方程有两个不等的实数根;

当b2-4ac=0时,方程有两个相等的实数根;

当b2-4ac<0时,方程无实数根。

②如果一元二次方程 ax2+bx+c=0 的两根分别为x1、x2,则有:

③一元二次方程的根与系数的关系的作用:

已知方程的一根,求另一根;

不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式:

已知方程的两根x1、x2,可以构造一元二次方程:

x2-(x1+x2)x+x1x2=0

已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程x2-(x1+x2)x+x1x2=0的根

6、应用一元二次方程

①在利用方程来解应用题时,主要分为两个步骤:

设未知数(在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);

寻找等量关系(一般地,题目中会含有一表述等量关系的 句子 ,只须找到此句话即可根据其列出方程)。

②处理问题的过程可以进一步概括为

初三上册数学知识点3

图形的相似

1、成比例线段

①线段的比

如果选用同一个长度单位量得两条线段AB, CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成

四条线段a、b、c、d中,如果a与b的比等于c与d的比,即

那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.

②注意点:

a:b=k,说明a是b的k倍

由于线段 a、b的长度都是正数,所以k是正数

比与所选线段的长度单位无关,求出时两条线段的长度单位要一致

除了a=b之外,a:b≠b:a

比例的基本性质:若

则ad=bc; 若ad=bc, 则

2、平行线分线段成比例

平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图2, l1 // l2 // l3 ,则

3. 黄金分割

如图1,点C把线段AB分成两条线段AC和BC,如果

那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.

黄金分割点是最优美、最令人赏心悦目的点.

4.相似多边形

① 含义:

一般地,形状相同的图形称为相似图形.

对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.

②注意点:

在相似多边形中,最为简单的就是相似三角形.

对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.

全等三角形是相似三角的特例,这时相似比等于1.

注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.

相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.

相似三角形周长的比等于相似比.

相似三角形面积的比等于相似比的平方.

相似多边形的周长等于相似比;面积比等于相似比的平方.

5、探索三角形相似的条件

①相似三角形的判定方法:

②平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

③相似三角形的判定定理的证明

④利用相似三角形测高

⑤相似三角形的性质

⑥图形的位似

初三上册数学知识点 总结 相关 文章 :

★ 九年级数学上册重要知识点总结

★ 初三数学知识点考点归纳总结

★ 九年级上册数学知识点归纳整理

★ 初三数学知识点归纳总结

★ 初三数学知识点总结

★ 初三上册数学知识点盘点与数学学习方法

★ 初三数学重要公式知识大全

★ 初三九年级上册数学知识点

★ 初中数学必备知识点总结初三数学上册一二章知识点

★ 人教版九年级数学知识点归纳

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

⑦ 八年级上册数学知识点总结

学习 八年级 数学知识点的来源于勤奋好学,只有好学者,才能在无边的知识海洋里猎取到真智才学,为大家整理了八年级上册数学知识点 总结 人教版,欢迎大家阅读!

八年级上册数学知识点总结人教版第11-12章

第十一章 全等三角形

知识概念

1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质: 全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:

(1)“边角边”简称“SAS”

(2)“角边角”简称“ASA”

(3)“边边边”简称“SSS”

(4)“角角边”简称“AAS”

(5)斜边和直角边相等的两直角三角形(HL)。

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或利用它证明线段或角的相等的基本 方法 步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).

在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。通过直观的理解和比较发现全等三角形的奥妙之处。在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。

第十二章 轴对称

知识概念

1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质: (1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

5.等腰三角形的判定:等角对等边。

6.等边三角形角的特点:三个内角相等,等于60°,

7.等边三角形的判定: 三个角都相等的三角形是等腰三角形。

有一个角是60°的等腰三角形是等边三角形

有两个角是60°的三角形是等边三角形。

8.直角三角形中,30°角所对的直角边等于斜边的一半。

9.直角三角形斜边上的中线等于斜边的一半。

本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。

八年级上册数学知识点总结人教版第13-14章

第十三章 实数

1.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。

2.平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。

3.正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。

4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。

5.数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。重点是实数的意义和实数的分类;实数的运算法则及运算律。

第十四章 一次函数

知识概念

1.一次函数:若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

2.正比例函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。

3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小。

4.已知两点坐标求函数解析式:待定系数法

一次函数是初中学生学习函数的开始,也是今后学习 其它 函数知识的基石。在学习本章内容时,教师应该多从实际问题出发,引出变量,从具体到抽象的认识事物。培养学生良好的变化与对应意识,体会数形结合的思想。在教学过程中,应更加侧重于理解和运用,在解决实际问题的同时,让学习体会到数学的实用价值和乐趣。

八年级上册数学知识点总结人教版第15章

第十五章 整式的乘除与分解因式

1.同底数幂的乘法法则: (m,n都是正数)

2.. 幂的乘方法则:(m,n都是正数)

3. 整式的乘法

(1) 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

(3).多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

4.平方差公式:

5.完全平方公式:

6. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).

在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

②任何不等于0的数的0次幂等于1,即,如,(-2.50=1),则00无意义.

③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的.

④运算要注意运算顺序.

7.整式的除法

单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

多项式除以单项式: 多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.

8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.

分解因式的一般方法:1. 提公共因式法2. 运用公式法3.十字相乘法

分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;

(2)再看能否使用公式法;

(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;

(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;

(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.

整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。在学习本章内容时,应多准备些小组合作与交流活动,培养学生推理能力、计算能力。在做题中体验数学法则、公式的简洁美、和谐美,提高做题效率。

八年级上册数学知识点总结相关 文章 :

1. 人教版八年级数学上册知识点总结

2. 初二数学上册知识点总结

3. 人教版八年级数学上册知识点总结

4. 八年级数学上册知识点归纳

5. 八年级上册数学知识点总结

6. 新人教版八年级数学上册知识点归纳

7. 八年级上册数学知识点总结与八年级数学学习技巧

8. 八年级数学知识点整理归纳

9. 八年级数学知识点总结

10. 2017人教版八年级上册数学知识点总结

⑧ 初三上学期数学知识点总结

对于很多初三学生来说成绩不好的原因主要是因为数学成绩不好,那么对于初三学生来说想要学好数学那么平时一定要注重数学知识点的总结和归纳,下面我为大家提供初三上学期数学知识点总结,希望大家能够从中得到帮助。

初三数学知识点-二次根式

1、二次根式

式子)0(³aa叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a

必须是非负数。

2、最简二次根式

若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

化二次根式为最简二次根式的方法和步骤:

(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

3、同类二次根式

几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。

推荐阅读: 初三数学知识点总结

初三数学知识点-平行四边形的性质

①平行四边形的对边相等;

②平行四边形的对角相等;

③平行四边形的对角线互相平分.

初三数学知识点-矩形的性质

①矩形具有平行四边形的一切性质;

②矩形的四个角都是直角;

③矩形的对角线相等.

正方形的判定与性质

1.判定方法:

(1)邻边相等的矩形;

(2)邻边垂直的菱形;

(3)对角线垂直的矩形;

(4)对角线相等的菱形;

2.性质:

(1)边:四边相等,对边平行;

(2)角:四个角都相等都是直角,邻角互补;

(3)对角线互相平分、垂直、相等,且每长对角线平分一组内角。

初三数学知识点-二次根式

1、二次根式

式子叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。

2、最简二次根式

若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

化二次根式为最简二次根式的方法和步骤:

(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

3、同类二次根式

几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。

以上内容就是我为大家提供的初三上学期知识点,希望各位初三学生能够认真学习数学,逐渐提高成绩,最后在中考的时候取得优异的成绩。

⑨ 七年级数学上册知识点总结归纳

没有加倍的勤奋,就没有才能,也没有天才。天才其实就是可以持之以恒的人。勤能补拙是良训,一分辛苦一分才,勤奋一直都是学习通向成功的最好捷径。下面是我给大家整理的一些 七年级数学 的知识点,希望对大家有所帮助。

七年级数学知识点

整式的加减

1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。

2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;

单项式中所有字母指数的和,叫单项式的次数.

3.多项式:几个单项式的和叫多项式.

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数项的次数叫多项式的次数;

5..

6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.

7.合并同类项法则:系数相加,字母与字母的指数不变.

8.去(添)括号法则:

去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.

9.整式的加减:一找:(划线);二“+”(务必用+号开始合并)三合:(合并)

10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).

一元一次方程

1.等式:用“=”号连接而成的式子叫等式.

2.等式的性质:

等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;

等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.

3.方程:含未知数的等式,叫方程.

4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!

5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.

6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).

第一学期初一数学复习资料

一几何图形

几何学:数学中以空间形式为研究对象的分支叫做几何学。

从实物中抽象出的各种图形统称为几何图形。几何图形可分为立体图形和平面图形;各个部分不都在同一平面内的几何图形叫做立体图形,各个部分都在同一平面内的几何图形叫做平面图形。

1、几何图形的投影问题

每一种几何体从不同的方向去看它,可以得到不同的简单平面几何图形。实际上投影所得到的简单平面几何图形是被投影几何体可遮挡视线的部分在平面内所留下的影子。2、立体图形的展开问题

将立体图形的表面适当剪开,一、点、线、面、体

1、点、线、面、体的概念点动成线,线动成面,面动成体由平面和曲成围成一个几何体2、点、线、面和体之间的关系(1)点动成线、线动成面、面动成体;

(2)体是由面组成、面与 面相 交成线、线与线相交成点;

二、线段、射线、直线1、线段、射线、直线的定义

(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。线段可以量出长度。(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。射线无法量出长度。(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。直线无法量出长度。概念剖析:①线段有两个端点,射线有一个端点,直线没有端点;

②“线段可以量出长度”,即线段有明确的长度,“射线和直线都无法量出其长度”,即射线和直线既没有明确的长度,

也没有射线与射线、直线与直线、射线与直线之间的长短比较之说;

③线段只有长短之分,而没有大小之别,射线和直线既没有长短之分,也没有大小之别;例1、下列说法正确的是()

A、5㎝长的直线比3㎝长的直线要长2㎝;B、线段向两个方向无限延伸就形成了直线;

C、直线和射线都是不可度量的,所以它们都无法表示;D、直线AB、射线AB和线段AB表示的都是同一几何图形;

2、线段、射线、直线的表示 方法

(1)线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。(2)射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。

(3)直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。

概念剖析:①将线段的两个端点位置颠倒,得到的新线段与原来的线段是同一线段,即线段AB与线段BA是同一线段;

②将表示射线的两个点位置颠倒,得到的新射线与原来的射线不是同一射线,即射线AB与射线BA不是同一射线,因为它们的端点和方向不同;

③将表示直线的两个点位置颠倒,得到的新直线与原来的直线是同一直线,即直线AB与直线BA是同一直线;④识别图中线段的条数要把握一点:只要有一个端点不相同,就是不同的线段;⑤识别图中射线的条数要把握两点:端点和方向缺一不可;

初一新生必看:数学 学习方法 指导

1.做好预习:单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。坚持预习,找到疑点,变被动学习为主动学习,能大大提高学习效率噢,兴趣是的老师嘛。

2.认真听课:听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点(记住预习中的疑点了吗?更要听仔细了),听例题的解法和要求,听蕴含的数学思想和方法,听课堂小结。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题,大胆猜想。记,当然是指课堂笔记了,不是记得多就是有效的知道吗?影响了听课可就不如不记了,记什么,什么时候记,可是有学问的哩,记方法,记技巧,记疑点,记要求,记注意点,记住课后一定要整理笔记。

3.认真解题:课堂练习是最及时最直接的反馈,一定不能错过的,不要急于完成作业,要先看看你的 笔记本 ,回顾学习内容,加深理解,强化记忆,很重要噢。

4.及时纠错:课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,审题出问题了吗?概念模糊了吗?时间紧没来得及?不会做吗?切忌不要动不动就以粗心放过自己(形成习惯可就麻烦了),如果思路正确而计算出错,及时订正,必要时强化相关计算的训练。概念模糊和审题出错都说明你的学习容易出现似懂非懂却还不自知的状态,这可是学习数学的大忌,要坚决克服。至于不会做,当然要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。

5.学会 总结 :大人们常说,数学是一环扣一环,这意思是说知识间是紧密相关的,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,学习的目的性,必要性,知识性做到了然于心,融会贯通,解题时就能做到入手快,方法直接简单,即使平时课堂上没练到的题型,也能得心应手,即举一反三。

6.学会管理:管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷,这可是大考复习时最有用的资料知道吗?


七年级数学上册知识点总结归纳相关 文章 :

★ 初一数学上册知识点归纳

★ 初一数学上册知识点汇总归纳

★ 初一人教版数学上册知识点总结归纳

★ 初一上册数学知识点归纳整理

★ 初一数学上册知识点

★ 初一数学上册知识点总结

★ 初中七年级数学知识点归纳整理

★ 七年级数学上册知识点汇总

★ 初一数学上册重点知识整理

★ 七年级数学上册知识归纳

⑩ 七年级数学上册知识点汇总

一个没有几分诗人气的数学家永远成不了一个完全的数学家.下面给大家带来一些关于 七年级数学 上册知识点汇总,希望对大家有所帮助。

1、有理数减法法则:减去一个数等于加上这个数的相反数,即:a-b=a+(-b).

2、加减法统一成加法:有理数的加减法运算可以通过有理数的减法法则将减法转化为加法,统一成只有加法运算的和式.

3、和式的写法:在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加

号的和的形式.

4、加减混合运算的 方法 和步骤

(1)将减法统一成加法,并写成省略加号的和的形式;

(2)运用加法的交换律和结合律,简化运算.

5、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得0.

6、有理数乘法步骤:先确定积的符号;再计算绝对值的积.

7、倒数:乘积是1的两个数互为倒数.

8、有理数的除法法则

(1)除以一个数等于乘以这个数的倒数;

(2)两数相除,同号得正,异号得负,并把绝对值相除;

(3)0除以任何一个不等于零的数,都得0.

9、乘方的有关概念

(1)求n个相同因数的积的运算叫乘方,乘方的结果叫幂,a叫底,n叫指数,a n读作:a的n 次方(或a的n次幂).

(2)正数的任何次幂都是正数;负数的奇次方幂是负数,偶次方幂是正数.

10、科学计数法

把一个大于10的数记成a×10n的形式,其中0≤a<10,n是正数,这种计数法叫做科学计数法.

11、有理数的混合运算顺序

(1)先算乘方,再算乘除,最后算加减;

(2)同级运算,按照从左至右的顺序依次进行;

(3)如果有括号,就先算小括号,再算中括号,然后算大括号.

12、近似数:与实际很接近的数.

13、精确度:反映近似数的精确程度的量.一般地,一个近似数四舍五入到某一位,就说这个

近似数精确到那一位.

14、计算器的组成:计算器的面板由 显示器 和按键组成.

第3章整式的加减

1、用字母表示数后,有些数量之间的关系用含有字母的式子表示,看上去更加简明,更具有普

遍意义.

2、用字母表示数后,字母的取值要根据实际情景来确定.

3、用运算符号把数或表示数的字母连接而成的式子,称为代数式.

4、单独一个数或单独一个字母也是代数式.

5、列代数式的实质就是把文字语言转化为符号语言.

6、列代数式的一般方法有:

(1)抓住关键词,由关键词确定相应的运算符号;

(2)理清运算顺序,一般是先读的先算,必要时添上括号;

(3)较复杂的数量关系,可分段处理;

(4)根据实际问题中的基本数量关系或公式列代数式.

7、用数值代替代数式中的字母,按照代数式中的运算关系计算得出结果,叫做代数式的值.

8、求代数式的值的步骤:先代入,再求值.

9、数与字母的乘积所组成的代数式叫做单项式,单独的数或字母也是单项式.

10、单项式中的数字因数叫做这个单项式的系数,所有字母指数之和叫做这个单项式的次数.

11、几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母

的项叫做常数项.

12、在多项式里,最高次项的次数就是这个多项式的次数.

13、单项式和多项式统称为整式.

14、把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个

字母的降幂排列.

15、把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个

字母的升幂排列.

16、所含字母相同,并且相同字母的指数也相等的项叫做同类项,所有的常数项都是同类项.

17、把多项式中的同类项合并成一项,叫做合并同类项.

18、合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.

19、去括号法则:

(1)括号前面是“+”,把括号和它前面的“+”号去掉,括号里各项不改变正负号;

(2)括号前面是“—”,把括号和它前面的“—”号去掉,括号里各项改变正负号;

20、添括号法则:

(1)所添括号前面是“+”号,括到括号里的各项不改变正负号;

(2)所添括号前面是“—”号,括到括号里的各项改变正负号;

21、整式加减的一般步骤:先去括号,再合并同类项.

第4章生活中的立体图形

1、生活中的立体图形有很多,常见的有柱体、锥体和球体,其中柱体分为圆柱和棱柱,锥体分

为圆锥和棱锥

2、从正面、上面和侧面(左面或右面)三个不同的方向看一个物体,然后描绘出三幅所看到的

图,即视图.

3、从正面看到的图形,称为主视图;从上面看到的图形,称为俯视图;从侧面看到的图形,称

为侧视图,依观看的方向不同,有左视图和右视图.

4、单一的规则的立体图形的三视图,如果主视图和侧视图是三角形,一般和锥体有关,可根据

俯视图是圆形或n边形,可以判断是圆锥或,n棱锥;对于主视图和侧视图是长方形的,一般和柱体有关,再观察俯视图是圆形或n边形,可以判断是圆柱或n棱柱.

5、圆柱的侧面展开图是矩形(长方形或正方形),圆锥的侧面展开图是扇形.

6、同一个立体图形,按不同的方式展开得到的平面展开图是不同的.

7、圆是由曲面围成的封闭图形;多边形是由线段围成的封闭图形.

8、在多边形中,最基本的图形是三角形.

9、两点之间线段最短.

10、经过两点有1条直线,并且只有1条直线,即两点确定一条直线.

11、线段的长短比较有两种方法:一种是度量的方法;一种是叠合的方法.

12、把一条线段分成两条相等线段的点,叫做这条线段的中点.

13、角是由两条有公共端点的射线组成的图形,角也可以看做是一条射线绕着它的端点旋转

而成的图形.

14、角的表示方法

(1)当顶点处只有一个角时,用一个大写字母表示;

(2)用三个大写字母表示,注意顶点字母必须写在中间;

(3)用希腊字母或阿拉伯数字表示.

15、角的大小比较:

(1)“形的比较”——叠合法;

(2)“数的比较”——度量法.

16、从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的

角平分线.

17、两个角的和等于90°(直角),就说这两个角互为余角;两个角的和等于180°(平角),

就说这两个角互为补角.

18、同角(或等角)的余角相等;同角(或等角)的补角相等.

第5章相交线与平行线

1、对顶角相等.

2、在同一平面内,经过直线外或直线上一点,有且只有1条直线与已知直线垂直.

3、直线外一点与直线上各点连接的所有线段中,垂线段最短.

4、两条直线被第三条直线所截,位于截线的同侧,被截直线的同一方的两个角叫做同位角;位

于截线的两侧,被截直线之间的两个角叫做内错角;位于截线的同侧,被截直线之间的两个角叫做同旁内角.

5、在同一平面内不相交的两条直线叫做平行线.

6、经过直线外一点,有1条直线与这条直线平行.

7、如果两条直线都和第三条直线平行,那么这两条直线也互相平行.

8、平行线的判定方法

(1)同位角相等,两直线平行;

(2)内错角相等,两直线平行;

(3)同旁内角互补,两直线平行;

(4)如果有两条直线与第三条直线平行,那么这两条直线也互相平行;

(5)在同一平面内,垂直于同一条直线的两条直线互相平行.

9、平行线的性质

(1)两直线平行,同位角相等;

(2)两直线平行,内错角相等;

(3)两直线平行,同旁内角互补.

第1章走进数学世界

1、数学伴我们成长,测量、称重、计算等都与数学有关.

2、数学与现实生活密切联系,人类离不开数学.

3、人人都能学好数学.

第2章有理数

1、相反意义的量:像向东和向西、零上和零下、收入和支出、升高和降低、买入和卖出等都表

示具有相反意义的量.

2、正数和负数

(1)正数都大于零;

(2)在正数前面加上一个“—”号的数叫做负数,负数都小于零;

(3)0既不是正数也不是负数,它是正数和负数的分界点.

3、有理数

(4)有理数:正数和分数统称为有理数;

(5)整数包括正整数、0、负整数;

(6)分数包括正分数、负分数.

4、有理数的分类:0和正数统称为非负数,0和负数统称为非正数.

5、数轴的概念:规定了正方向、原点和单位长度的直线叫做数轴.

6、有理数的大小比较

(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;

(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.

7、相反数的意义

(1)代数意义:只有符号不同的两个数称互为相反数,零的相反数是0;

(2)几何意义:在数轴上表示互为相反数的两个点分别位于原点的两侧,且与原点的距离相等.

8、相反数的表示方法:数a的相反数是-a,这里的a可以表示任何一个数.

9、绝对值的意义

(1)几何意义:把数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|;

(2)代数意义:一个正数的绝对值等于本身,零的绝对值是0,一个负数的绝对值等于相反数.

10、绝对值的非负性:对于任何有理数a,都有|a|≥0.

11、两个负数的大小比较法则:两个负数,绝对值大的反而小.

12、有理数大小的比较方法

(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;

(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.

两个正数,绝对值大的数大;两个负数绝对值大的数反而小.

13、有理数的加法法则

(1)同号两数相加,取加数的符号,并把绝对值相加;

(2)绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减较小的绝对值;

(3)互为相反数的两个数相加得0;

(4)一个数同0相加仍得这个数.

14、在进行有理数的加法运算时,应分两步:首先,判断符号;然后,再计算绝对值.

15、有理数的加法运算律

(1)交换律:两个数相加,交换加数的位置,和不变,即:a+b=b+a;(用字母表示)

(2)结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变,即:(a+b)+c=a+(b+c).(用字母表示)

16、运用加法运算律的技巧:正负结合;凑整结合;相反数结合;同分母结合;整分结合.

七年级数学上册知识点汇总相关 文章 :

★ 初一数学上册知识点归纳

★ 初一上册数学知识点归纳整理

★ 初一数学上册重点知识整理

★ 初一数学上册基本概念汇总与学习方法

★ 七年级上册数学知识点总结三篇

★ 七年级数学知识点整理大全

★ 初中七年级数学知识点归纳整理

★ 初一数学有理数知识点

★ 七年级上册数学全册概念总结复习

★ 初一年级上册数学的21个热门知识点