⑴ 高中数学必修一各章思维导图
内容如下:
《高中数学必修1》(即《普通高中课程标准实验教科书·数学必修1·A版》的简称)是2007年1月人民教育出版社出版的图书,作者是人民教育出版社课程教材研究所、中学数学课程教材研究开发中心。该书是高中数学学习阶段顺序必修的第一本教学辅助资料。
本册包括:集合、函数。
作为这套书的主编,在大家开始用这套书学习数学之前,对于为什么要学数学、如何才能学好数学等问题,我有一些想法与你们交流。
为什么要学数学呢?我想从以下两个方面谈谈认识。
1.数学是有用的。
2.学数学能提高能力
那么,如何才能学好数学呢?我想首先应当对数学有一个正确的认识。
1.数学是自然的。
2.数学是清楚的。
在对数学有一个正确认识的基础上,还需要讲究一点点方法。
1.学数学要摸索自己的学习方法。
2.学数学趁年轻。
⑵ 数学,高中数学图片中
数学四大思想:函数与方程、转化与化归、分类讨论、数形结合;函数与方程函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。 笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。 函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。 函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。等价转化等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。 转化有等价转化与非等价转化。等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能给人带来思维的闪光点,找到解决问题的突破口。我们在应用时一定要注意转化的等价性与非等价性的不同要求,实施等价转化时确保其等价性,保证逻辑上的正确。 着名的数学家,莫斯科大学教授C.A.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解题转化为已经解过的题”。数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。 等价转化思想方法的特点是具有灵活性和多样性。在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行。它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形。消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化。可以说,等价转化是将恒等变形在代数式方面的形变上升到保持命题的真假不变。由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免搬硬套题型。 在数学操作中实施等价转化时,我们要遵循熟悉化、简单化、直观化、标准化的原则,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题,比如从超越式到代数式、从无理式到有理式、从分式到整式…等;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;
⑶ 鲁科版高中数学必修一知识点
第一章集合(附上图片)
第二章函数(附上图片)
附:
一、函数的定义域的常用求法:
1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数中;余切函数中;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
二、函数的解析式的常用求法:
1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法
三、函数的值域的常用求法:
1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、直接法
四、函数的最值的常用求法:
1、配方法;2、换元法;3、不等式法;4、几何法;5、单调性法
五、函数单调性的常用结论:
1、若均为某区间上的增(减)函数,则在这个区间上也为增(减)函数
2、若为增(减)函数,则为减(增)函数
3、若与的单调性相同,则是增函数;若与的单调性不同,则是减函数。
4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。
5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。
六、函数奇偶性的常用结论:
1、如果一个奇函数在处有定义,则,如果一个函数既是奇函数又是偶函数,则(反之不成立)
2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。
3、一个奇函数与一个偶函数的积(商)为奇函数。
4、两个函数和复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。
5、若函数的定义域关于原点对称,则可以表示为,该式的特点是:右端为一个奇函数和一个偶函数的和。
⑷ 高中数学知识点详细总结
高中数学重点有什么?该怎样攻克?
高中数学重点内容还有很多.这些重点都是保持多年来的经验,他们分析过高考数学的题型,高中数学重点分为以下几个部分.
向量讲解
其实高中数学重点就是在必修的里面.必修是每个高中生都必须学习的,不管是分不分文理科,他们都是会学习的.很多重点都是在必修里面,然而在选秀当中就是讲一些统计之类的问题,这都是我们在生活当中就会学到的,所以这些都不是重点,重中之重就是在必修的课本当中.
⑸ 如何学好高中数学函数
一、教给学生阅读课本的方法
1.对于识字不多,思考能力有限的低年级的学生来说,应采取在老师指导下讲解和阅读相结合的办法。如对刚入学的小朋友,首先要帮助他们初步了解数学课的特点,知道数学课要学习哪些知识,看数学课本的插图时要看清、数准图上各种东西的个数。接着教他们学会有顺序地阅读教科书,即要从上到下,从左往右地看;教学10以内数的认知看主题图时,要学会先整体后部分地看。又如,低年级教材中的知识是用各种图示表示的,教师要把指导重点放在帮助学生掌握看图方法上,努力使他们做到四会:一要会看例题插图,能比较准确地进述图意;二要会看标有思维过程的算式,看懂计算方法;三要会看应用题的图示,能根据图示理解题意,搞清数量之间的关系、思考解答方法;四要会看多种练习形式,懂得练习题的要求。
2.对于已积累了一定的知识和具有一定能力的中年级学生来说,教师可采用半工半读半扶半放的方式进行培养。如教师既可先讲后读,具体指导学生阅读课本的方法;也可骗制阅读提纲,让学生带着提纲阅读课本,寻找答案,帮助学生理解教材。
3.对于具有一定自学能力的高年级学生来说,则可采取课前预习、启发引导、独立阅读的办法。如指导预习时,教师对学生要有明确的要求,要有预习的范围,要提出必要的思考题或实验作业,要检查预习情况。课堂上教师可以放手让学生去读读、讲讲、论论、练练的方式进行自学与讨论,要求他们在把握知识的基础上理清知识体系,进一步提高认知水平。
二、教给学生科学的记忆方法
1.理解记忆法。就是通过学生的积极思维,依据事物的内在联系,在理解的基础上去记忆的方法。如:什么叫梯形。首先让学生通过认真观察,理解“只有一组对边”是什么意思,若把“只”字去掉又会怎样。通过积极思考,学生认知到“只有一组对边平行”就是四条边中相对的两条边为一组,其中一组平行,另一组不平行。这样学生在理解的基础上记忆梯形这个概念就容易了。
2.规律记忆法。就是寻找事物内在规律,抓住其规律帮助记忆的方法。数学知识是有规律的,只要引导学生掌握其规律,就可以进行有效记忆。例如:记忆长度、面积、体积单位进率。因为长度单位相邻之间的进率是10,面积单位相邻之间的进率是100,体积单位之间的进率是1000。掌握了这个规律记忆就比较容易。
3.形象记忆法。就是借助事物的形象或表象进行记忆的方法。小学生的思维以形象思维为主,逐步向抽象思维发展。在教学中,教师讲课时要注意生动、形象,以唤醒学生对事物的表象,进行形象记忆。例如,一年级数的认知教学时,老师把数与某些实物形象记忆:把“2”比作小鸭子、“3”比作耳朵等。
4.比较记忆法。这是把相似、相近的数学材科学的进行对比,把握它们的相同点与不同点,加强记忆的一种方法。例如,整除与除尽,质数与互质数等,在学生理解后,引导学生进行比较记忆。
5.类比联想记忆法。是指对某一事物的感知或回忆引起性质上相似的事物的回忆的方法。例如,让学生记忆分数的基本性质时,引导学生联想除法的商不变性质和除法与分数的关系,那么分数的基本性质就不难记忆了。
6.归纳记忆法。是把具有内在联系的知识集中起来,组成系统,形成网络的记忆方法。你如,有关面积知识,学生是跨越几个年级才全部学完。这些图形有特征上的不同,也有公式上的区别。零敲碎打获得的知识,必须给予系统上的整理,才能保证这部分知识本身固有的整体性。可以通过下面网状图形,把这些图形的内在联系揭示出来,这样有利于学生进行系统记忆。
三、教给学生复习的方法
复习就是把学过的数学知识再进行学习,以达到深入理解、融会贯通、精练概括、牢固掌握的目的。学生对数学知识的学习,是包括一堂堂数学课累积起来的,因而所获得的知识往往是零碎的和片面的,时间一长,就会出现知识链条的断裂现象。基于这一点,单元复习和总复习都是很重要的。小学数学教学中,复习的方法主要有以下几点:
1.概括复习。学生每学完一个小单元或一个大单元,就组织他们对于知识体系进行一次再概括,理出纲目,记住轮廓,列出重点,帮助他们掌握单元的主要内容。
2.分类复习。引导学生把学过的知识和技能进行分类整理、分类比较,以加强知识的内在联系和知识的深度、广度,帮助学生加深理解与记忆。
3.区别复习。把学过的相似的概念、规则等,如以区别、比较,掌握知识的特征。总之,一方面,复习要在理解教材的基础上,沟通知识间的内在联系,找出重点、关键,然后提炼概况,组成一个知识系统,从而形成或发展扩大认知结构;另一方面,通过复习,不断地对知识本身或从数学思想方法角度进行提高与精炼,是有利于能力的发展与提高的。
四、教会学生整理与归纳的方法
整理知识是一项主要的学习方法。小学数学知识,由于学生认识能力的原因,往往分若干层次逐渐完成。一节课后、一个单元后或一个学期后,需要对所学知识进行整理与归纳,形成良好的认知结构,便于记忆和运用。
1.把知识串成“块”,形成知识网络。
小学几何初步知识涉及到五线(直线、线段、射线、垂线、平行线)、六角(锐角、直角、钝角、平角、周角、圆心角)、七形(长方形、正方形、三角形、平行四边形、梯形、圆形、扇形)五体(长方体、正方体等)教完几何后,把七种平面图形组成一个知识网络。
2.系统整理成表,便于记忆运用。按照数学知识的科学体系和小学生的认识规律,小学几何初步知识分散在小学各册实现教材中。在总复习中,教师应避免罗列和重复以往知识,而应恢复几何初步知识原有的知识体系和法则,按点、线(角)、面、体四大部分知识认真系统地归纳整理成表,使之在学生头脑中条理化、系统化、网络化,便于记忆与运用。
五、教给学生知识迁移的方法
迁移是指已获得知识、技能乃至方法和态度对学习新知识新技能的影响。先前学习对后继学习起积极、促进作用的,纠正迁移,反之纠负迁移。人们在解决新课题时,总是利用已有的知识技能去寻找解决问题的方法。数学是一门逻辑性、严密性极强的学科,它的知识系统性强,前面的知识是后面的基础,后面的知识是前面知识的延伸与发展。所以教师必须紧紧抓住前后知识的内在联系,教给学生知识迁移的方法。
⑹ 高中数学函数的分类以及定义图像等是什么
幂函数:形如y=x^a(a为常数)的函数,即以底数x为自变量,幂a为因变量,其中a为常量的函数称为幂函数。幂函数的图像随a的取值不同呈现出不同的样子,需具体问题具体分析。下面是几种常见的幂函数图像。
指数函数:一般形式为y=a^x(a>0且≠1)(x∈R).它是初等函数中的一种。其中a为常数,x为变量。
一次函数:也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。如y=ax+b,其中a,b为常数,x为变量。
二次函数:是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。
对数函数:一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数,它实际上就是指数函数的反函数。即指数函数和对数函数关于直线y=x对称。
后面四种函数图像教材中都有,你可以查阅,或者在网上搜索也可以看到。
⑺ 高中数学知识有哪些
2020蔡德锦数学全年联报(高清视频33.5G有水印)网络网盘
链接:
若资源有问题欢迎追问~