当前位置:首页 » 基础知识 » 数学新颖的知识体系构建图
扩展阅读
水门经典动作怎么画教程 2025-01-23 09:25:08
b站有什么战争动漫 2025-01-23 09:19:08
小酒窝歌词从哪里下 2025-01-23 09:15:00

数学新颖的知识体系构建图

发布时间: 2022-09-08 15:31:46

⑴ 知识结构是什么意思 结构图怎么画

知识结构是指一个人经过专门学习培训后所拥有的知识体系的构成情况与结合方式。知识结构图是指把所学内容进行整理并制成比较系统完整的知识结构图示,它在心理学中被称为知识网络图。

什么是知识结构

所谓合理的知识结构,就是既有精深的专门知识,又有广博的知识面,具有事业发展实际需要的最合理、最优化的知识体系。建立起合理的知识结构,培养科学的思维方式,提高自己的实用技能,以适应将来在社会上从事职业岗位的要求。知识结构是指一个人经过专门学习培训后所拥有的知识体系的构成情况与结合方式。

合理的知识结构是担任现代社会职业岗位的必要条件,是人才成长的基础。现代社会的职业岗位,所需要的是知识结构合理、能根据当今社会发展和职业的具体要求,将自己所学到的各类知识,科学地组合起来的,适应社会要求的人才。

知识体系是什么

就是把一些零碎的,分散的相对独立的知识概念或观点加以整合,使之形成具有一定联系的知识系统。就像是一棵树,每片叶子都是独立的,但树干把他们联系在一起,形成了体系,你看那些辅导教材,总是有一些章末小结,把所有知识点整合,那就是知识体系的构建。

如何画整体结构图

(1)将相同的知识点,整理到一块.通常情况下是将,规律一样的知识点总结到一块,便于触类旁通.不管题型怎么变,它的知识点就是一样的,这就是归纳的要点.

(2)知识点之间的联系,通常,是一个桥梁形式的重要公式,或者思想;也就是从本质上理解知识的结构与联系.只要掌握,他们之间的内在联系,就很容易,将所有的知识串联起来,组成一个串联式的网络.它的找法:《1》通过中间公式(与他们都有关的公式),《2》思想方法(化归思想.方程思想.变换思想.等等.)《3》递推关系,掌握它的推导过程,寻求中间的变量.这些都是他们之间的联系.要善于去从本质上挖掘内在的关系.

(3)画整体机构图时,将每个知识点,用一个简单的词语或者短句,将其概括,然后用序列的形式,总结在一起,最后用大括号括起来,每一节,都应当作为一个单独的结构存在.节的内部,应用联系标注出来.在画图过程中,多用一些箭头,矩形,椭圆之类的数学符号.便于记忆.

(4)知识点在结构图中,要充分体现,它的简洁性和概括性.通常抓住一些关键词,重要公式,重要思想就行.

学习贵在精,你有如此良好的习惯,想必你一定理解,学到本质的东西,对学习来说是是多么的重要.善于总结,寻求本质,已经是个会学习的人才了!同时祝你,学有所成.

因为结构图 是你在理解过程中,总结出来的,每一层知识i结构有联系,只要这种联系,不中断,就能存在你的大脑中,所以,没必要死记硬背!万一不行的话,就用最后一招:重复。没事的时候,一直重复画这个结构图,时间久了,你就会发现,跟画画一样简单!知识不是靠背的,因为背过的会忘记,而理解了的东西,永远忘不掉!希望,以后改进一下记忆方法。不要只想着 把所有的背下来!重要的是理解,理解它的内在联系!

⑵ 最新实验人教版小学三年级数学上册知识结构体系图

自己看吧,该有的都有吧

数学知识网络图.doc" wealth="1" />

⑶ 高中各科知识体系构建方法

不同水平的同学,归纳整理知识体系是不一样的。同学水平越高,归纳整理起来越简单,越轻松。

我们先来讲讲都要归纳些什么东西。很多同学以为,归纳整理知识体系就是把重要的公式定理列出来。其实这是及其初级的。归纳整理知识体系其实有四个问题:

第一,考什么?确定哪些是非常重要的考点,哪些是一般重要的考点,哪些不考。把这些考点涉及到的公式定理列出来。没有理解的,记不住的,就趁着归纳整理的机会把这些尽量弄懂,搞明白。

第二,怎么考?这个考点常见的出题方式什么,选择题还是解答题。往往出现在高考题中的什么位置,前面还是后面,难度如何,常常的综合形式有哪些。

第三,怎么答?这个考点常用的答题方法有哪些,往往一个考点的解题方法不会多至一二十种,三五种已经比较厉害了。

第四,陷阱在哪?往往我在什么地方出错。别人错不错别管,关键是你自己错不错。顺便还可以编一些顺口溜,来提醒自己避免这些失误,拿到高分甚至满分。比如:“区间问题,端点第一”;“一求通项,验证首项”。这些都是我自己归纳出来提醒自己的话。

下面,我们来看不同级别的同学如何归纳整理知识体系。

1、基础比较一般的同学如何归纳。

翻开复习资料的目录,一节一节往下看,看能不能回忆出每一节到底有哪些重要的公式定理。回忆得出,就在笔记本上边按照复习资料章节的顺序往下写,回忆不出来,就翻开课本或者复习资料,看一看,尽量能多一些理解。如果能在这个过程中,发现哪些是常考点,每一个考点曾经考过什么样的题目,就已经很厉害了。

2、基础相对较好的同学如何归纳。

如果你基本知道一个学科有哪些章节,有哪些板块。你就试着在你的笔记本上开始写每个章节有哪些重要考点,公式定理,重要结论。如果回忆不出来,就翻开书好好看看。同时努力问自己上边提到的四个问题,尽量都能回答出来。

3、对基础很好的同学,也要归纳总结。

快速默写出每一个章节的重要考点,上边提到的四个问题。并在此基础上总结归纳,每一个章节能不能用一句话讲明白。这个学科能不能用一句话讲明白。比如数学,我就有这么几句话:“任何一道题就是依据条件,往所求(目标)逐渐推进的过程”;“简单题就是一眼能看出条件与所求之间逻辑联系的题,难题就是一眼看不出的题”;“难题往往是简单题的叠加”;“数学题就是列出题目中等与不等关系,加上公式定理,弄复杂,变简单,得答案的过程”。如果到了这个阶段,那就比较厉害了。

我们再来看看常见的归纳总结的方法有哪些。

1、以章节顺序展开的归纳。

上面提到的是以章节顺序展开的归纳,这种归纳方式是最常见的方式,也是最基础的方式,比较能够帮助我们迅速掌握一个学科的知识体系。

2、题+题的归纳。

比如我们把数列这一个章节历次考试的题目找出来,对比,问上边提到的四个问题。我们就能归纳出很多东西。这对于重点章节进行重点突破非常有效。以后,遇到这些章节的题目,就能迅速地从大脑这个数据库中提取有用的信息,帮助我们高效解题。

3、试卷归纳。

我们通过分析所在省份历年高考真题容易发现一些惊人的结论。试想,如果你在考前都已经知道哪些地方你一定能得分了,你对考试还会没有把握吗?同时,由于你非常清楚自己弱势在哪里,那你就很容易在最后冲刺阶段努力解决,从而整体拉伸你的学科成绩。

4、灵感性的归纳。

比如,对于逻辑联结词,我想,很多同学都觉的不容易把握。有一次我在校园里散步,在琢磨充要条件和集合有什么关系,结果还真的让我想出来了。我很多归纳总结就是在散步、吃饭、睡觉,甚至上厕所的时候归纳出来的。

⑷ 如何构建高中数学知识体系

数 学 公 理体系
十九世纪末到二十世纪初,数学已发展成为一门庞大的学科,经典的数学部门已经建立起完整的体系:数论、代数学、几何学、数学分析。数学家开始探访一些基础的问题,例如什么是数?什么是曲线?什么是积分?什么是函数?……另外,怎样处理这些概念和体系也是问题。
经典的方法一共有两类。一类是老的公理化的方法,不过非欧几何学的发展,各种几何学的发展暴露出它的许多毛病;另一类是构造方法或生成方法,这个办法往往有局限性,许多问题的解决不能靠构造。尤其是涉及无穷的许多问题往往靠逻辑、靠反证法、甚至靠直观。但是,哪些靠得住,哪些靠不住,不加分析也是无法断定的。
对于基础概念的分析研究产生了一系列新领域—抽象代数学、拓扑学、泛函分析、测度论、积分论。而在方法上的完善,则是新公理化方法的建立,这是希尔伯特在1899年首先在《几何学基础》中做出的。

⑸ 高中数学知识体系的构成与构建

一、高中数学知识体系的构成

一个完整的知识体系,主要由以下几部分构成:

1、全面完整的基础知识

包括但不限于课本中出现的公理、定理、性质、推论、公式,它们的来龙去脉。

某一章知识内部各节之间的相互联系。

各章知识之间的相互联系。

每一章知识的重难点。

每一章知识在高考中的地位,所占的分值。

2、各种典型题目的解决方法

在基础知识掌握扎实的基础上,重难点知识对应的题型种类,典型题目的处理方法。

遇到复杂题目时的思考方法和方向。

一些快速简便的解题技巧。

3、高中数学中涉及到的各种数学思想

对于函数思想、方程思想、数形结合思想的掌握和有意识的应用。

4、解题能力

快速准确的解题能力,主要是计算速度和准确度。

5、学习方法

适合自己特点的数学学习方法,包括但不限于听讲、复习、练习等,比如作息时间的安排,各科目的学习安排,侧重点,整块时间和零碎时间的应用,如何对待错题,听课的方法,考试的技巧等。

逐渐完成1—4所涉及内容的掌握。

二、如何构建高中数学知识体系

1、高中数学知识体系的素材

要构建一个知识体系,首先我们要有足够的素材,常见的有:大纲、课本、老师的授课笔记、资料、习题试题、网络上的各种资源。

(1)每年的12月份中国教育考试网会公布下一年高考的考试大纲。

与大纲配套的还有《考试说明》、《试题分析》,三者构成三件套,这个网上可能没有电子版,需要的话可以在京东等网站购买。

这三本书对于你掌握知识没有直接影响,一般是老师和教学研究人员看的。但是通过研究这些纲领性的内容,可以帮助你在脑子里大致构建出一个框架:高考考哪些知识,哪些是重点、难点,一般是如何命题的。

有了这个框架,我们就可以逐步向里面填充内容。

当然实际上我们也不需要这么做,很多教辅书中都会有提及,只需要我们留意即可。

(2)课本是最基本的素材。

在课本上有每一个知识点的来龙去脉最浅显的解释,当你某一个基础知识不够扎实的时候,回去看课本总是不坏的选择。课本上的例题、习题虽然难度都不大,但也是编写者精心编写,它起到的作用是让你会用所学的知识解决初步的问题。

如果是程度不太好的同学,真的建议你去把课本拿出来重新学一遍,注意不是看,是学!

(3)老师的授课笔记主要是指老师的授课过程。

每一节课都是老师根据所教学生的水平,对课本上的内容进行加工后的成品,引导着学生一步一步将新知识纳入既有的知识体系。它既包含了知识的发生、发展,也浓缩了老师对于这一章节的认识,可以说是最适合学生的素材。

(4)资料是重要的辅助素材。

严格来说,每一本优秀的学习资料都是一个完整的知识体系,都蕴含着编写者对于高中数学的认识和把握。但是很多同学做了一本又一本资料,却始终对于知识没有清晰的认识,知识体系仍然不够成形,原因在于这不是你自己思考总结出来的,你记不住。

就像是你看到一栋房子很漂亮,但是让你去盖的话,却很难原样复制,因为你不知道为什么要这样盖!

所以我们在使用资料的时候,要边用边思考,边总结,将资料上的知识内化为自己知识体系的一部分。资料也有很多种,有教材全解类的,有刷题类的,有针对某一个重点专题突破的,要根绝自身的情况去选择。

(5)习题试题是两种不同的类型。

试题是检验你学习成果、查漏补缺的重要工具,可以分成单元测试、期中期末考试、模拟考、高考这么几类。

对于试题要重视的是其查漏补缺的功能,不能仅仅满足于做完就算,也不能满足于做一个错题集,而是要学会去分析考试的侧重点,分析出卷老师认为哪些是重要知识。

习题是我们平时练习用的,习题的重要性毋庸置疑,通过习题我们可以更好的掌握知识,训练解题能力,而知识能力都是通过解决习题体现的。

要学会分析每一道题目是要考察什么知识,通过什么方式来考察,有什么惯用的出题类型,有什么常见的处理方法,有没有一些容易犯错的地方会被老师拿来挖坑。

(6)网络资源。

身为高中生要善于运用网络,在我们周围其实充斥着大量的学习资源,比如B站、知乎、网络文库,还有一些专业网站,QQ群,有很多学习资料可供我们使用。

2、知识框架的搭建

知识框架的搭建是一个动态的过程,从无到有,在学生学习的过程中,一点一滴的建立。一开始不会太顺遂,随着学习内容的增多,慢慢的会有一个模糊的印象,这时候就需要有意识的进行整理总结,使得知识框架变得完整,清晰。

具体的操作过程中,比如在学习某一章新课的时候,通过课本目录,或者资料,或者老师的点评讲解,对于本章节在整个高中知识中的地位有一个认识。

其次对于本章的知识有一个了解,有哪几节,可以分成几大部分,内在逻辑联系是什么样的?哪些章节是重点?

举个例子,必修一的函数部分,其基本框架就是函数的定义、函数的表示、函数的性质、学习新的函数并用之前学过的性质来研究,然后是一种新的函数——三角函数,使用之前所学来进行研究。

那么显然函数的性质就是重点和难点,也是考试的考察点,因为不管函数是什么样,最终落脚点都在它们的性质上。

3、知识体系的细化

向每一节里填充知识,比如指数函数,包含哪些内容,是如何来组织的?它的定义是什么,从何而来?图像是什么,有哪些性质,通过什么来组织会比较好记,有哪些重点知识、难点知识要标出来。

注意这个过程刚开始可以对着课本或者资料完成,之后可以自己用思维导图来尝试梳理。

当把知识填充完成之后,需要向里面继续填充习题。

比如指数函数最重要的是图像和单调性,一般对应的有什么题型?如何来解决?有什么需要注意之处?容易和哪些知识综合出题?

此时我们可以借用资料和笔记来辅助,尤其是资料上对于知识的重难点和典型题目是有详细解读以及展开的。

4、知识体系的内化

如果我们只做到第三步,这个知识体系仍然不是你自己的。

因为这些知识只是你写了出来,它与你还隔着两个过程,一个是用“嘴”,一个是用“脑”。

其实也是两个小经验。

第一个是去给别人讲,就像老师讲课一样,给别人去讲每一节知识的发生、发展,来龙去脉,有什么重难点,常见题型。

说的越详细越好。

第二个是要学会把题目做“慢”,做“全”。

每一次做题,都要思考这道题考察的是什么知识?如何去解决?有没有其他方法?如果换一种类型如何解决?

其实就是把自己当成老师去讲解这道题目。每一次都这样去考虑,刚开始可能会慢,也可能总结不到位,但是日积月累,你就会明白我所说的每一道题都是有其目的的,是为了通过特定的方法考察某一知识是个什么意思了。

这就相当于什么呢?

就相当于你看到一个画家画的很好,你也知道里面的理论,但是你仍然需要大量的练习才能达到他的水平。

而大量的练习其实是为了将知识内化为你自己的技能,对于题型——知识的对应有一个新的认识。

5、知识体系的拔高

当我们完成1——4步之后,应该对于这一章节的知识有了一个相对扎实全面的认识。

但我们所要做的并不仅仅如此,而是要将其进一步升华拔高,此时就不能不提所谓的数学思想。

数学思想有很多,高中比较常用的函数思想、数形结合思想、化归思想,而且在实际运用数学知识解决问题的过程中,其实也在不断的使用,只不过我们并未有意识的去运用它。

比如数形结合思想在某某题型中的应用。

还有一些本质性的东西,比如奇偶性实际上是对称性的特殊情况,单调性的本质其实是不等关系。

这些高观点的来源可以是自己的领悟,也可以是老师的讲解,或者来自某本资料,但有一个共同点,它们可以让你对于某个知识点,或者某一题型有本质的认识。

6、知识体系的检验和补充

知识体系的构建不是一劳永逸,受制于我们对于知识的掌握水平,我们所构建出来的知识体系会存在着这样那样的漏洞和缺陷,这就需要我们不断的检验,不断的补充。

检验是通过什么呢?无非是做题,通过做题查找到自己的缺陷,然后有意识的去组织力量突破。

比如某种题型,在解决过程中总是容易忽略掉某种特殊情况,那就不是马虎的问题,而是在某个知识点上盲区,才导致了学生在思考解题过程中会忽略掉。

7、解题能力的培养

解题能力也是知识体系的一部分,它所包含的内容有计算能力和题目分析能力,看到一道题目,能够快速把它与脑海中的模型题对应,找出题目的关键条件(突破口),分析出解题的路径,然后能够快速准确的把题目计算出来,解决掉。

解题能力的培养并不是孤立的,是和其他过程同时进行的。

虽然我们这篇文章将构建知识框架的过程拆分出来,这样做的好处是比较全面,但它们不是孤立的,而是综合在一起的。

⑹ 新课程初中数学知识结构体系知识点

初中数学基础知识点总汇

一、数与代数A:数与式:

1:有理数

有理数:①整数→正整数/0/负整数 ②分数→正分数/负分数

数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他本身/负数的绝对值是他的相反数/0的绝对值是0.
两个负数比较大小,绝对值大的反而小。

有理数的运算:

加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;
绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。

减法: 减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2:实数

无理数:无限不循环小数叫无理数

平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。 ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数/0的立方根是0/负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。

3:代数式

代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。 ②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

4:整式与分式
整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式/完全平方公式

整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:

把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式

方法:提公因式法/运用公式法/分组分解法/十字相乘法

分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

分式的运算:

乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。

加减法:①同分母的分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。

分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。

B:方程与不等式

1:方程与方程组

一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的方法:代入消元法/加减消元法。

2:不等式与不等式组

不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。

不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。②一个含有未知数的不等式的所有解,组成这个不等式的解集。③求不等式解集的过程叫做解不等式。

一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。③求不等式组解集的过程,叫做解不等式组。

3:函数

变量:因变量,自变量。

在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:
①若两个变量x,y间的关系式可以表示成y=kx+b(b为常数,k不等于0)的形式,则称y是x的一次函数。②当b=0时,称y是x的正比例函数。

一次函数的图象:
①把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数Y=KX的图象是经过原点的一条直线。③在一次函数中,当k<0,b<O,则经234象限;当k<0,b>0时,则经124象限;当k>0,b<0时,则经134象限;当k>0,b>0时,则经123象限。④当k>0时,y的值随x值的增大而增大,当x<0时,y的值随x值的增大而减少。

二、空间与图形

A:图形的认识:

1:点,线,面

点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

3视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧,扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。

2:角

线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。

比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。

角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。

3:相交线与平行线

角:①如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。②同角或等角的余角/补角相等。③对顶角相等。④同位角相等/内错角相等/同旁内角互补,两直线平行,反之亦然。

4:三角形

三角形:①由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。②三角形任意两边之和大于第三边。三角形任意两边之差小于第三边。③三角形三个内角的和等于180度。④三角形分锐角三角形/直角三角形/钝角三角形。⑤直角三角形的两个锐角互余。⑥三角形中一个内角的角平分线与他的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。⑦三角形中,连接一个顶点与他对边中点的线段叫做这个三角形的中线。⑧三角形的三条角平分线交于一点,三条中线交于一点。⑨从三角形的一个顶点向他的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。⑩三角形的三条高所在的直线交于一点。

图形的全等:全等图形的形状和大小都相同。两个能够重合的图形叫全等图形。

全等三角形:①全等三角形的对应边/角相等。②条件:SSS/AAS/ASA/SAS/HL。

勾股定理:直角三角形两直角边的平方和等于斜边的平方,反之亦然。

5:四边形

平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。②平行四边形不相邻的两个顶点连成的线段叫他的对角线。③平行四边形的对边/对角相等。④平行四边形的对角线互相平分。

平行四边形的判定条件:两条对角线互相平分的四边形/一组对边平行且相等的四边形/两组对边分别相等的四边形/定义。

菱形:①一组邻边相等的平行四边形是菱形。②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。

矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。②矩形的对角线相等,四个角都是直角。③对角线相等的平行四边形是矩形。④正方形具有平行四边形,矩形,菱形的一切性质。⑤一组邻边相等的矩形是正方形。

梯形:①一组对边平行而另一组对边不平行的四边形叫梯形。②两条腰相等的梯形叫等腰梯形。③一条腰和底垂直的梯形叫做直角梯形。④等腰梯形同一底上的两个内角相等,对角线星等,反之亦然。

多边形:①N边形的内角和等于(N-2)180度。②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)

平面图形的密铺:三角形,四边形和正六边形可以密铺。

中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

B:图形与变换:

1:图形的轴对称
轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

轴对称图形:①角的平分线上的点到这个角的两边的距离相等。②线段垂直平分线上的点到这条线段两个端点的距离相等。③等腰三角形的“三线合一”。

轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。

2:图形的平移和旋转

平移:①在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。

旋转:①在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。②经过旋转,图形商店每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

3:图形的相似

比:① ,那么AD=BC,反之亦然。② ,那么 。
③ 那么

黄金分割:点C把线段AB分成两条线段AC与BC,如果 ,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比( )。

相似:①各角对应相等,各边对应成比例的两个多边形叫做相似多边形。②相似多边形对应边的比叫做相似比。

相似三角形:①三角对应相等,三边对应成比例的两个三角形叫做相似三角形。②条件:AA/SSS/SAS。

相似多边形的性质:①相似三角形对应高,对应角平分线,对应中线的比都等于相似比。②相似多边形的周长比等于相似比,面积比等于相似比的平方。

图形的放大与缩小:①如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。②位似图形上任意一对对应点到位似中心的距离之比等于位似比。

C:图形的坐标

平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴与Y轴统称坐标轴,他们的公共原点O称为直角坐标系的原点。他们分4个象限。XA,YB记作(A,B)。

D:证明
定义与命题:①对名称与术语的含义加以描述,作出明确的规定,也就是给出他们的定义。②对事情进行判断的句子叫做命题(分真命题与假命题)。③每个命题是由条件和结论两部分组成。④要说明一个命题是假命题,通常举出一个离子,使之具备命题的条件,而不具有命题的结论,这种例子叫做反例。

公理:①公认的真命题叫做公理。②其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。③同位角相等,两直线平行,反之亦然;SAS/ASA/SSS,反之亦然;同旁内角互补,两直线;平行,反之亦然;内错角相等,两直线平行,反之亦然;三角形三个内角的和等于180度;三角形的一个外交等于和他不相邻的两个内角的和;三角心的一个外角大于任何一个和他不相邻的内角。④由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。

三、统计与概率

1:统计
科学记数法:一个大于10的数可以表示成 的形式,其中1小于等于A小于10,N是正整数。

扇形统计图:①用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。

各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

近似数字和有效数字:①测量的结果都是近似的。②利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。③对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。

平均数:对于n个数 ,我们把 叫做这个n个数的算术平均数,记为 。

加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。

中位数与众数:①n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。②一组数据中出现次数最大的那个数据叫做这个组数据的众数。③优劣:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。

调查:①为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。②从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。③抽样调查只考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间,人力,物力和财力,但其调查结果往往不如普查得到的结果准确。为了获得较为准确的调查结果,抽样时要主要样本的代表性和广泛性。

频数与频率:①每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。②当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。

数据的波动:①极差是指一组数据中最大数据与最小数据的差。②方差是各个数据与平均数之差的平方的平均数。③标准差就是方差的算术平方根。④一般来说,一组数据的极差,方差,或标准差越小,这组数据就越稳定。

2:概率

可能性:①有些事情我们能确定他一定会发生,这些事情称为必然事件;有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;必然事件和不可能事件都是确定的。②有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。③一般来说,不确定事件发生的可能性是有大小的。

概率:①人们通常用1(或100%)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。②游戏对双方公平是指双方获胜的可能性相同。③必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0 < P(A)< 1。

定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:
( ,b,c为常数, ≠0,且 决定函数的开口方向, >0时,开口方向向上, <0时,开口方向向下。 还可以决定开口大小, 越大开口就越小, 越小开口就越大。)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
x是自变量,y是x的函数

二次函数的三种表达式

一般式: ( ,b,c为常数, ≠0)
顶点式: [抛物线的顶点P(h,k)] 对于二次函数 其顶点坐标为
交点式: [仅限于与x轴有交点A(x₁ ,0)和 B(x₂,0)的抛物线
其中
注:在3种形式的互相转化中,有如下关系:
h= k=

二次函数的图像

在平面直角坐标系中作出二次函数 的图像,
可以看出,二次函数的图像是一条抛物线。

抛物线的性质

1.抛物线是轴对称图形。对称轴为直线x = h 。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为P
当 b=0时,P在y轴上;当Δ=b方-4ac=0时,P在x轴上。

3.二次项系数 决定抛物线的开口方向和大小。
当 a>0时,抛物线向上开口;当 a<0时,抛物线向下开口。
绝对值越大,则抛物线的开口越小。

4.一次项系数b和二次项系数 共同决定对称轴的位置。
当 a与b同号时(即 b>0),对称轴在y轴左;
当 a与b异号时(即 b<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数
Δ=b方-4ac >0时,抛物线与x轴有2个交点。
Δ=b方-4ac =0时,抛物线与x轴有1个交点。
Δ=b方-4ac <0时,抛物线与x轴没有交点。x的取值是虚数(x= 的值的相反数,乘上虚数i,整个式子除以2 )
当 a>0时,函数在x=-b/2a 处取得最小值f(y)=4ac-b方/4a ;

当b=0时,抛物线的对称轴是y轴.

二次函数与一元二次方程

特别地,二次函数(以下称函数) ,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),

即此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。

1.二次函数 , , , (各式中, )的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

顶点坐标
(0,0) (h,0) (h,k)
对 称 轴
x=0 x=h x=h x=-b/2a

当h>0时, 的图象可由抛物线 向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到.

当h>0,k>0时,将抛物线 向右平行移动h个单位,再向上移动k个单位,就可以得到图象;
当h>0,k<0时,将抛物线 向右平行移动h个单位,再向下移动|k|个单位可得到 的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到 的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到 的图象;

因此,研究抛物线的图象,通过配方,将一般式化为 的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

4.抛物线 的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△= >0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的 , 是一元二次方程
( ≠0)的两根.这两点间的距离AB=|x₂-x₁| 另外,抛物线上任何一对对称点的距离可以由
|2×( )-A |(A为其中一点)
当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点.当 >0时,图象落在x轴的上方,x为任何实数时,都有y>0;当 <0时,图象落在x轴的下方,x为任何实数时,都有y<0.

5.抛物线 的最值:如果 >0( <0),则当x= 时,y最小(大)值= .
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式: y=ax方+bx+c.(a不等于0)
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式: y=a(x-h)方+k.
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式: y=a(x-x1)(x-x2).

----------------------------

以上是我精心总结、排版的

可能后面二次函数部分有点乱。。那是我在网上找的,,凑合看吧

希望同学阅读愉快~~^_^

⑺ 数学函数思维导图怎么画

数学思维导图的构建模式,都是先确定一个中心主题,引出子主题,对子主题再分层次即可。具体操作步骤如下。

1、用最简洁的语言确定要画的数学主题。以“角的度量”为例。如下图所示。

注意事项:

上述思维导图里,由角引出了射线的定义角和射线之间,画一条关系线,方便我们把知识点串联起来即可。

⑻ 数学教学中如何使用思维导图

[摘要]在小学数学教学中,重在培养学生的数学思维。在新课程改革的今天,小学数学课堂中,新的教学理念不断出现,这对教师在教学方面也有了新的要求,教师不仅仅是知识的传授者,更是学生在知识学习过程中的引导者。结合小学数学教学的特点,在进行课堂教学时,采取思维导图法可以提高小学数学教学的实效性,培养学生的数学思维能力,从而提高学生的整体综合素质。
[关键词]思维导图;小学数学;运用
思维导图是一种思维工具,于20世纪60年代由托尼·博赞提出,其具体是一种以分类信息和层级组织为基础的,通过特定关联对中心主题进行展开,由图形标识和关键字组成的思维具象化方法,即一种笔记方法。作为一种笔记方法,思维导图的形式更加丰富,也更加符合小学生的认知发展规律,其在小学数学教学中,具有强化学生学习理解、培养学生学习兴趣、激发学生创造力等多种作用。
一、集中学生注意力,培养学生学习兴趣
兴趣在学生数学学习过程中承载着重要的促进作用,是一种最关键、最活跃的心理影响因素。相关科学研究表明,学生在对教学内容感兴趣的状态下,其注意力、记忆力以及思维敏捷性均会得到大幅度的提高,进而提高数学教学效率和质量。与传统的文字笔记方式相比,思维导图更加贴近儿童好奇、活泼、天真的心理特点,同

⑼ 关于数学的知识结构图怎么画说详细点。

其实很简单
就是画树状图。
你把这学期的章节分别写出来,然后这章里的重点列出来。
主要就是写成树状图的形式,也就是结构图了。


你现在是几年级啊,小学吧

这种需要自己理解与感悟和书上的知识进行归纳

我给你个参考图

按这个来吧

不懂再问,望采纳!