Ⅰ 数学三年级下册内容有哪些
数学三年级下册内容有如下:
1、因数:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找,或用除法找。
2、倍数:一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘自然数。
3、自然数按能不能被2整除分为:奇数、偶数。
奇数:不是2的倍数的数叫做奇数。
偶数:是2的倍数的数叫做偶数。
最小的奇数是1,最小的偶数是0。
4、合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。如4、6、8、9、10、12、14、15、16、18、20、22都是合数。
5、公因数、最大公因数。
几个数公有的因数叫这些数的公因数。其中最大的那个因数就叫它们的最大公因数。用短除法分解质因数(一个合数写成几个质数相乘的形式)例:12=2×2×3。
Ⅱ 三年级下册数学的知识点
三年级数学(下册)知识要求归纳
第一单元 位置与方向
1、(东与西)相对,(南与北)相对,
(东南与西北)相对,(西南与东北)相对。
面南左为东,面北左为西,面东左为北,面西左为南。
2、地图通常是按(上北、下南、左西、右东)来绘制的。
通常所说的八个方向:东、西、南、北、东南、西北、西南、东北。
3、会看简单的路线图,会描述行走路线。(做题时先标出东 南 西 北。)
一定写清楚从哪儿向哪个方向走,走了多少米,到哪儿再向哪个方向走就到了哪里。(在转弯处要注意方向的变化)
判断一个地方在什么方向,先要找到一个为中心点(观测点) 处画“米”字符号,再进行判断。
4、指南针是用来指示方向的,它的一个指针永远指向(南方),另一端永远指向(北方)。
5、生活中的方位知识:
①北斗星永远在北方。 ②影子与太阳的方向相对。
③早上太阳在东方,中午在南方,傍晚在西方。
④风向与物体倾斜的方向相反。
(刮风时的树朝风向相对的方向弯,烟朝风向相对的方向飘……)
我国地处北半球,树叶茂盛的一面是南方,树叶稀疏的一面是北方。
第二单元 除数是一位数的除法
1、只要是平均分就用(除 法)计算。
2、除数是一位数的竖式除法法则:
(1)从被除数的高位除起,每次用除数先试被除数的前一位数,如果它比除数小,再试除前两位数。
(2)除到被除数的哪一位,就把商写在那一位上。
(3)每求出一位商,余下的数必须比除数小。
顺口溜:除数是一位,先看前一位,一位不够看两位,除到哪位商那位,每次除后要比较,余数要比除数小。
3、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5 = 6)
4、笔算除法:
(1)余数一定要比除数小。在有余数的除法中:最小的余数是1;最大的余数是除数减去1;最小的除数是余数加1;
最大的被除数=商×除数+最大的余数; 最小的被除数=商×除数+1;
(2)除法验算:→ 用乘法
没有余数的除法 有余数的除法
被除数÷除数=商 被除数÷除数=商……余数
商×除数=被除数 商×除数+余数=被除数
被除数÷商=除数 (被除数-余数)÷商=除数
0除以任何不是0的数(0不能为除数)都等于0;0乘以任何数都得0;
0加任何数都得任何数本身,任何数减0都得任何数本身。
5、笔算除法顺序:确定商的位数,试商,检查,验算。
6、笔算除法时,哪一位上不够商1,就添0占位。(最高位不够除,就向后退一位再商。)
7、多位数除以一位数(判断商是几位数):
用被除数最高位上的数跟除数进行比较,当被除数最高位上的数大于或等于除数时,被除数是几位数商就是几位数;当被除数最高位上的数小于除数时,商的位数就是被除数的位数减去1。
第三单元 复式统计表
复式统计图的特点:有利于数据的比较,更容易分辨相同项目的区别。
第四单元 两位数乘两位数
1、两位数乘两位数,积可能是(三)位数,也可能是(四)位数。
2、口算乘法:整十、整百的数相乘,只需把前面数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。
3、估算:18×22,可以先把因数看成整十、整百的数,再去计算。
→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)
4、有大约字样的一般要估算。
5、凡是问够不够,能不能等的题目,都要三大步:
①计算、②比较、③答题。→ 别忘了比较这一步。
6、笔算乘法:先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘。
7、相关公式: 因数×因数=积 积÷因数=另一个因数
运算顺序:先乘除,再算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的运算。
第五单元 面 积
1、物体的表面或封闭图形的大小,就是它们的面积。
封闭图形一周的长度叫周长。长度单位和面积单位的单位不同,无法比较。
2、比较两个图形面积的大小,要用统一的面积单位来测量。
3、①边长1厘米的正方形,面积是1平方厘米;
②边长1分米的正方形,面积是1平方分米;
③边长1米的正方形,面积是1平方米;
4、长方形:
长方形的面积=长×宽 长方形的周长=(长+宽)×2
求长:长=长方形面积÷宽 已知周长求长:长=长方形周长÷2-宽
求宽:宽=长方形面积÷长 已知周长求宽:宽=长方形周长÷2-长
正方形:
正方形的面积=边长×边长 正方形的周长=边长×4
边长:边长=正方形面积÷边长 已知周长求边长:边长=正方形周长÷4
5、长度单位之间的进率:
1厘米=10毫米 1分米=10厘米 1米=10分米 1千米=1000米
6、周长相等的两个长方形,面积不一定相等。面积相等的两个长方形,周长也不一定相等。
7、在生活中找出接近于1平方厘米、1平方分米、1平方米的例子。例如1平方厘米(指甲盖)、1平方分米(电脑A盘或电线插座)、1平方米(教室侧面的小展板)。
8、区分长度单位和面积单位的不同:长度单位测量线段的长短,面积单位测量面的大小。
(二)长方形、正方形的面积计算
1、归类:
什么样的问题是求周长?(缝花边、围栅栏、围栏杆、池塘或花坛周围小路长度、围操场跑步的长度等等)
什么样的问题是求面积?或与面积有关?(课本等封面大小、刷墙、花坛周围小路面积、给餐桌配玻璃、给课桌配桌布、洒水车洒到的地面、某物品占地面积、买玻璃、买镜子、买布、买地毯、铺地砖、裁手帕等等)
2、长方形或正方形纸的剪或拼。
有两个或两个以上长方形或正方形拼成新的图形后的面积与周长。从一个图形中(通常是长方形)剪掉一个图形(最大的正方形等)求剪掉部分的面积或周长、求剩下部分的面积或周长。要求先画图,再标上所用数据,最后列式计算。
3、刷墙的(有的中间有黑板、窗户等):求要用到的面积等于大面积减去小面积。
4、常用的面积单位有:平方厘米、平方分米、平方米。
相邻两个常用的面积单位之间的进率是 100 。
测量房间、菜园、教室、操场的面积通常用平方米为单位 。
6、面积单位换算:1平方米 = 100平方分米
1平方分米 = 100平方厘米 1平方米 = 10000平方厘米
第六单元 年、月、日
1、重要的日子:1月1日元旦节,3月8日妇女节,3月12日植树节,5月1日劳动节,5月4日青年节,6月1日儿童节,7月1日建党节,8月1日建军节,9月10日教师节,10月1日国庆节。
2、一、三、五、七、八、十、腊,三十一天永不差,四、六、九、冬三十整,平年二月二十八,闰年二月把一加。
3、季度: 一年分四季度,每3个月为一季度。
一、二、三月是 第一季度(平年有90天,闰年有91天)
四、五、六月是 第二季度(有91天)
七、八、九月是 第三季度(92天)
十、十一、十二月是 第四季度(有92天)。
平年上半年181天,闰年上半年182天,下半年都是184天。
4、求有多少个星期?用天数÷7。→ 如:31天 31÷7=4(个)……3(天)
平年一年有52个星期零1天,闰年一年有52个星期零2天。
5、判断平年、闰年的方法:
① 一般用公历年份÷4,正好余数是0,就是闰年;
② 公历年份是整百的÷400,余数是0,就是闰年。
公历年份是整百的闰年有:1200年,1600年,2000年,2400年;
6、经过的天数的计算:公式→结束时间—开始时间+1=经过的天数;
(二)24计时法
1、普通计时法转化为24时计时法: ①从凌晨0时到中午12时,时刻相同,去掉时刻前的时间限制词。 ②下午1时到晚上12时,时刻加上12,并去掉时刻前的时间限制词。 2、24时计时法转化为普通计时法: ①从凌晨0时到中午12时在时间前加上凌晨、早上或上午等时间限制词。 ②13时到24时,用时刻减去12,再加下午、傍晚或晚上等时间限制词。 3、计算经过时间:用结束时刻—开始时刻=经过时间。时刻—时刻=时间段
4、时间单位进率:1世纪=100年 1年=12个月 1天=24小时
1时=60分 1分=60秒
第七单元 小数的初步认识
1、比较两个小数的大小,先比较小数的整数部分,整数部分大的数就大,如果整数部分相同就比较小数的小数部分,小数部分要从小数点后最高位比起,十分位上的数大的小数就大;十分位上的数相同的,再比较百分位上的数,以此类推。
2、计算小数加、减法时,一定要先对齐小数点再相加、减。
3、分母是10的分数写成一位小数,分母是100的分数写成两位小数。
4、小数读写法:① 读法→汉字形式;② 写法→阿拉伯数字。
5、小数不一定比整数小。
第八单元 数学广角----搭配
有顺序地组数、搭配连线,才能保证不重复、不遗漏。
Ⅲ 三年级下册数学第一单元《位置与方向》有哪些知识点
1、根据一个确定的方向,找其他三个方向:面南背北、左东右西。
2、平面图一般是按照上北下南、左西右东绘制的。先选好观察点,把选好的观察点画在平面图的中心位置,再确定各物体相对于观察点的方向,在纸上按上北下南,左西右东绘制。
3、描述行走路线,首先要确定好自己的位置,以自己为中心,按上北下南、左西右东的规则来确定目标和周围事物所处的方向,根据目的地的方向和路程,确定行走的路线。
4、东与北之间的方向是东北;东与南之间的方向是东南;西与南之间的方向是西南;西与北之间的方向是西北。
5、以出发点为中心,先确定目的地所在的方向,看哪条路能到达目的地,然后按照先后顺序,用八个方位词来描述。
Ⅳ 三年级下册数学内容有哪些
三年级下册的教学内容主要包括:除数是一位数的除法,两位数乘两位数,小数的初步认识,位置与方向(一),面积,年、月、日,复式统计表,用数学解决问题,数学广角和综合与实践活动等。下面基本按单元顺序对本册教材的修订情况进行简要说明。
一、位置与方向(一)
本单元内容包括:在现实情境中认识东、南、西、北、东北、西北、东南和西南八个方向,并能用这些词语描述物体所在的方向;了解在平面图上如何表示方向,并能描述平面图上物体的相对位置;第让学生利用所学习的方向的知识解决生活中的实际问题。与实验教材相比,主要有以下几个方面的变化。
1.根据《义务教育数学课程标准(2011版)》的要求,降低了难度
《义务教育数学课程标准(2011版)》对第一学段“图形与位置”的课程内容做了修改:一是删去了“会看简单的路线图”的内容和要求;二是降低了对“东北、东南、西北、西南”这四个方向的教学要求,不再要求根据一个方向(东、南、西或北)辨认出这四个方向,只要知道这四个方向就可以了。因此,修订后的教材删去了实验教材中有关路线图的内容,同时,在需要辨认“东北、东南、西北、西南”这四个方向的时候,都采用标准的地图的画法,并给出指“北”的方向标,以便于学生先判断出四个基本方向,再进一步辨认这四个方向。
2.根据对实验教材的意见,将例3和例5整合为例4,让学生综合应用所学的方位知识解决问题,培养学生提出问题的意识,提高解决问题的能力
对三年级的学生来说,东、南、西、北等方位概念还是比较抽象的,学生需要大量的感性材料支撑和丰富的表象积累,才能较好地掌握这些概念。因此,教学时要以学生已有的知识和生活经验为基础,创设大量的体验方位的活动,让所有的学生都参与到活动中来。鼓励学生独立思考,敢于发表自己的意见,并能与同伴交流自己的想法。使学生在多样的活动中进行观察、操作、想象、描述、表示和交流,丰富对方位知识的体验,积累活动经验,进一步发展良好的空间观念。
二、除数是一位数的除法
本单元的主要内容有:口算除法、笔算除法和用估算解决问题。“除数是一位数的除法”口算和笔算是小学生应该掌握和形成的基础知识和基本技能,也是进一步学习多位数笔算除法的基础。与实验教材相比,修订后的教材仍然十分重视落实双基,同时注重在使学生获得基本数学思想和基本数学活动经验方面及培养学生解决问题的能力方面有所突破。
1.调整例题设计,使教学内容和教学顺序更为合理
本单元的教学内容安排体现了“由简到繁,由易到难”的认知规律,按照“口算—笔算—用估算解决问题”的顺序分为三个层次编排。第一个层次是口算除法。根据《义务教育数学课程标准(2011版)》的要求,在实验教材的基础上,增加了几十几除以一位数(每一位都能除尽)的例题口算方法。在让学生用已有的口算方法解决新问题的同时,为理解笔算算理作铺垫。第二个层次是笔算除法(例1~例7)。(1)按照“由一般到特殊”的原则,先安排“商中没有0”的除法,再安排“商中有0”的除法,便于学生在掌握一般方法的基础上,自主探究特殊的计算方法。(2)按照“由易到难”的原则,先安排“两位数除以一位数”再安排“三位数除以一位数”;先安排“首位能除尽”的除法,再安排“首位不能被除尽”的除法。根据实验教材的反馈意见,增加了例3,教学三位数除以一位数,首位上能除尽的题目,减小教学的坡度。第三个层次是解决问题(例8和例9,重点教学如何将估算作为的一个有效策略来解决问题),这是整套修订后教材关于估算教学的一大特色。
2.重视对算理的理解和计算方法的总结和概括
(1)加强对算理的理解,沟通算理和算法的联系。第一,无论在教学口算还是笔算时,教材都注重通过直观操作帮助学生理解算理。例如,在“口算除法”的小节中创设了平均分彩色手工纸的情境,将手工纸设计为10张一沓,给出直观图展示分的过程和结果,为学生理解算理提供直观支撑。第二,在笔算除法中,重视沟通算理与算法的联系。分步给出了竖式的演算过程,并配合给出小棒图展示平均分的过程,还标注了每一个结果的含义或每一个结果的计算方法,帮助学生理解除法竖式的每一步的算理,实现了从算理到算法的自然过渡。
(2)重视对计算方法的总结和概括,培养归纳推理的能力。在学生获得大量计算活动经验的基础上,教材重视让学生对计算法则进行归纳和总结。在进一步掌握算法,形成计算技能的同时,培养学生归纳推理的能力。例如,在探索了大量的除数是一位数的除法笔算后,教材在第18页安排了学生通过讨论交流,总结计算方法的场景,虽然教材没出给出完整的计算法则的文本,但是通过学生的对话了突出了计算的基本步骤和要点。
在教学中,应重视对算理和计算规律的探求,培养学生的数学交流能力。首先,应充分利用学生已掌握的除法口算的经验,引导学生探索笔算除法的算理和算法,结合一定的直观操作活动,使学生理解算理。并通过让学生说一说每一个结果的含义及计算方法,沟通算理和算法的联系。再让学生说一说计算的程序,养成一种有序地操作和思考的习惯,并能自主概括出笔算除法的计算要点。其次,应给学生创造一个宽松的表达环境,先让学生在思考每个例题时,轻声地说出自己的思考过程;再让学生在小组(或与同桌)内说自己的思考过程;之后请能够清晰地、有条理地表达自己的思路的学生在班上交流,提供表达的范例。通过有层次地说过程、说算理,使学生自主归纳出口算或笔算除法的基本方法,同时学会用简洁的语言表述自己的思考过程,培养学生的数学交流能力。
三、复式统计表
根据《义务教育数学课程标准(2011版)》的要求,统计知识的教学整体后移,将原来安排在二年级下册的复式统计表移至本册教学,引导学生进一步体验统计的方法和意义。尤其是借助复式统计表的学习,进一步体会数据收集与整理的必要性以及数据分析方法的多样性,体会数据中蕴含的丰富信息及其应用价值。本单元教学内容的编排,将数据分析观念的培养贯穿于教学过程的各个环节。例如,例1,首先提出活动任务“要知道本班同学最喜欢的活动情况”——需要进行调查,获取数据;接着让学生用以前学习过的知识(单式统计表)来呈现数据,讨论两个统计表的共同点,发现还有更简洁的形式——合成一个表,形成复式统计表;最后通过回答问题,让学生感受复式统计表的优越性——表中包含的信息内涵更丰富;可直接看出男、女生每一项活动喜欢的人数,更便于比较;并可从不同的角度去解读或分析问题。以上三个环节环环相扣,层层递进,让学生完整地经历统计分析的全过程,经历“复式统计表”产生的过程并体会其必要性,有效地发展学生的数据分析观念。
尽管一、二年级时,学生已有过数据收集、整理、分析的经历,但是,统计方法和意义的体验、数据分析观念的发展不是一蹴而就,需要在多次的经历中不断积淀,逐步内化。因此,本单元教学时,切不可单纯地将复式统计表的认识和填写作为唯一目标,而应以更宽广的视角来审视与设计教学的过程。在学生应用已有的知识解决问题的基础上,引导学生从解决问题的角度,发现单式统计表存在的局限性,自主“创造”出功能更强的复式统计表,体会复式统计表的优越性,体验数据整理方法的多样性。最后,教师还要引导学生通过对复式统计表的多角度解读,获得对数据分析方法的切身体验,体会数据中包含的丰富信息。通过以上教学活动,让学生亲身经历、主动探究的过程,有利于学生进一步体验统计方法和意义。
四、两位数乘两位数
本单元包括口算乘法、两位数乘两位数的笔算乘法及运用连乘、连除两步计算解决问题。与实验教材相比,主要有以下几个方面的变化。
1.借助几何直观,帮助学生理解算理,掌握算法
在教学两位数乘一位数口算、两位数乘两位数(不进位)的计算方法时,教材安排了通过摆方块学习口算两位数乘一位数,利用点子图探索两位数乘两位数的算法。借助直观手段(方块、点子图)与算式相对应,数形结合,引导学生亲历建构两位数乘一位数口算、两位数乘两位数数学模型的过程,不仅能够帮助学生理解算理,掌握算法;而且为学生提供了数学思考、倾听、交流的机会,培养学生的数感和推理能力。
教学时,要留有充裕的时间,放手让学生尝试、探讨两位数乘两位数的笔算方法。在自主探索的基础上,适时组织讨论交流,以完善学生对计算过程与算理的理解。应为学生提供充分的从事数学活动的机会,让学生主动探索计算方法。例如,在探索两位数乘两位数(不进位)笔算乘法的算理时,首先要让学生尝试用已有的知识解决新的问题,并要求学生用点子图把自己的方法表示出来,让学生经历用图示表征解释算法的过程;然后,再交流展示多种解决问题的方法,并通过学生的汇报使学生明确如何划分点子图、算式表征了哪种计算方法,沟通图形表征、算式表征与计算方法之间的联系;最后,在理解竖式计算的算理时,可以让学生再次利用点子图,表示出竖式计算中每一步的结果,进而更好地理解其含义,掌握好算法。借助点子图,在加深学生对计算方法理解的同时,使学生逐步学会借助几何直观去解决问题,去表达和交流,有效地促进学生的全面发展。
2.注重运算规律的探索,培养数学思维能力
第一,有些计算的算法是一致或相似的,教材通过例题和练习的设计启发学生体会这些题目在算法上的一致性,促进计算方法的有效迁移。例如,口算乘法例1中,在学生学习了15×3
的口算方法后,接着呈现150×3,让学生体会这两道口算之间的联系和区别,利用旧知探究几百几十乘一位数的口算方法。
第二,练习中也设计了一类计算题(如练习十的第9题、练习十一的第10题),让学生通过一组题的计算,发现其中蕴含的计算规律,再直接写出其他各题的得数。让学生经历“猜想——计算——验证”的探究过程,为积累探索数学规律的活动经验提供机会。这样的练习既可提高学生的学习兴趣,又能渗透数学思想方法,培养学生的数学思维能力。
五、面积
本单元的主要学习内容包括四部分:面积和面积单位,长方形、正方形的面积计算,面积单位之间的进率,用所学的知识解决简单的实际问题。与实验教材相比,主要有以下几个方面的变化。
1.关注学生对面积概念的真正理解
教材在修订过程中删去了面积的定义,其目的是避免学生死记硬背,也避免教师将功夫用在指导学生叙述面积的定义上,而忽视了学生对面积含义的真正理解。从让学生观察身边熟悉的一些物体(黑板和国旗)的表面入手,明确“面”的概念;然后让学生通过观察比较两个面的大小,进而形成对“面”的大小的直观感受。在此基础上,教材采用描述的方式,借助具体事例说明“面积”的概念,并让学生依此说出其他一些物体表面的面积。
2.注重对面积概念认识的全面性
由于学生常常误认为只有向上摆放的“面”才有面积,因此教材在例1下面增加了“做一做”中,要求学生摸摸字典的封面和侧面,并比较这两个面的面积大小,使学生认识到侧面的大小就是侧面的面积。为避免学生一提到面积就想到长方形、正方形的面积,教材在练习十四中增加了不规则图形面积的比较,包括线段围成的图形和曲线围成的图形,其目的是突出面积概念的本质,让学生更全面地理解面积概念。
教师应结合具体教学内容,让学生不断感悟度量的本质,发展度量的意识。在教学中,可以从以下几方面加以落实。一是,制造认知冲突,使学生感受学习“面积单位”的必要性;二是,借助学生身边熟悉的事物,使学生建立面积单位的表象;三是,让学生经历用面积单位度量面积的过程,体验单位的价值;四是,梳理面积单位,形成结构化认识;五是,让学生结合实际选择和运用合适的面积单位解决问题。另外,在学生经历用面积单位度量长方形面积的基础上,应沟通长方形的长、宽与每行面积单位个数和行数之间的对应关系,适时进行长方形面积公式的抽象概括,帮助学生深入理解面积公式。
六、年、月、日
本单元主要包括:1.认识年、月、日,了解它们之间的关系;知道平年、闰年,了解24时计时法,会用24时计时法表示时刻;初步理解时间和时刻的意义,会计算简单的经过时间。在编排时,仍然注意精心选取和学生生活联系密切的素材,让学生直观地感受到了时间与人们的生活密不可分,对学生本单元的学习起到有效的支撑和促进作用。并注意为学生搭建自主学习、主动建构知识的平台,为学生提供较为充分的探究和思考的空间。与实验教材相比,加强几何直观,帮助学生理解抽象的概念。24时计时法比较抽象,教材借助多种直观方法帮助学生理解。在实验教材在钟面上标出内、外圈数呈现24时计时法的基础上,增加了“时间轴”,将一日经过的时间展开,在时间轴上对比给出一日内12时计时法和24时计时法所表示的整点的时间。将抽象的、不断流逝的时间与直观的数轴建立起联系,将“时刻”与数轴上的点建立联系,借助几何直观进一步帮助学生理解抽象的24时计时法。
在教学中,应关注学生的生活经验,让学生在生动具体的情境中感受时间,并采用多种途径引导学生探究、理解知识,发展应用能力。应当通过创设一些现实性情境,布置一些实践性任务或具有挑战性的问题,多途径地引导学生经历观察、记录、猜想、交流、推理等学习过程,使学生在自主建构知识、积累活动经验的同时,提升思维水平,发展应用能力。还可以设计一些观察、记录、归纳等学习活动,也可以尝试解决以实际问题为任务驱动,以便更好地挖掘教材资源,帮助学生积累解决问题的经验。
由于学生平时很少使用24时计时法,因此在用24时计时法表示下午几时或晚上几时时,学生往往感到不太习惯。教学时,应使用钟表模型等教具或学具,加强对钟面的观察和操作,引导学生观察一日时针正好走两圈,体会钟面数字、时间及圈数之间的关系,让学生积累丰富的表象;并适时出示时间轴,教学时可给出12时计时法表示的时刻,让学生在标出相应的24时计时法表示的时刻,借助几何直观帮助学生理解24时计时法。在教学计算简单的经过时间时,可以让学生通过观察钟面和直观演示,从出发时刻开始,让指针转动到到达时刻,把直观观察和线路图对应起来,并口算得出经过的时间;还可以出示时间轴,让学生在上面标出出发时刻和到达时刻,将抽象的时刻与直线上的点对应起来,将“经过时间”与两点间的距离建立联系,帮助学生思考。
七、小数的初步认识
本单元的学习内容主要包括认识小数和简单的小数加、减法两部分,与实验教材相比,降低了要求,小数的含义、大小比较和小数加、减法,仅限于一位小数。在实验教材以学生熟悉的日常事物和活动为场景,通过人民币、米制系统这些具体的量帮助学生认识小数的基础上,增加了面积、数尺或数轴这样的直观、半直观模型来帮助学生进一步认识小数。
本单元是小数的初步认识教学应把握以下两点:一是本单元是“小数的初步认识”,不要把小数作为一个抽象的“数”来研究,不要出现数位、计数单位等概念,应结合具体的“量”和面积、数轴等直观模型来认识;二是小数的大小比较和小数加、减法,仅限于一位小数。
八、数学广角——搭配(二)
学生在二年级上册“数学广角”的学习中已经接触了简单的排列和组合内容,在此基础上,本单元内容难度稍有提升,不仅数据加大了,而且问题情况也更加复杂,同时给出了更简洁、更抽象的表达方式,进一步培养学生有序、全面思考问题的能力。
例1,要求学生用4个数字(含0)组成没有重复数字的两位数,教学稍复杂的排列问题。与二年级上册的例1相比,不仅元素要(排列的数字)多了1个,而且增加的是0这个特殊元素。例2,通过搭配服装的问题,教学分步乘法计算原理。例3,要求找出4支球队的比赛(每两个队赛一场)次数,教学组合问题。与二年级上册的例2相比,素材不同,且多了一个元素。在二年级时,学生主要通过具体操作、观察、猜测等活动初步感受排列组合的思想和方法。本单元教学的重点应放在引导学生用更简洁、更抽象的方式把思考的过程和结果表达出来,培养学生有序、全面思考问题的能力。
排列和组合是很抽象的数学知识,教学中,需要通过多种活动把这些抽象的知识直观化、具体化,并鼓励学生用自己喜欢的方式表达思维过程和结果。既要指导学生根据实际问题采取枚举、连线等形式有序地、不重不漏地找出事物的排列数和组合数,还要注意不要拔高要求。只要求学生用图示的方式把所有的排列或组合情况列举出来(即有哪些排列或组合)即可,不要求抽象地计算出一共有多少种排列数或组合数,诸如排列、组合、分类计数原理、分步计数原理等名词,不必出现。
Ⅳ 三年级下册数学内容有哪些呢
三年级下册数学内容如下:
1、从被除数的高位除起,每次用除数先试被除数的前一位数,如果它比除数小,再试除前两位数。
2、在有余数的除法中:最小的余数是1;的余数是除数减去1;最小的除数是余数加1。
3、商×除数=被除数商×除数+余数=被除数。
4、除法的估算:在实际生活中有时候不必算出准确的结果,而是把一些数看成和它接近的整十、整百、整千,然后进行计算,这样的计算就叫做估算。
5、角、五角星、等腰三角形、等边三角形、等腰梯形、正方形、长方形、圆和正多边形等都是轴对称图形等。
Ⅵ 三年级数学下册位置与方向是什么
三年级数学下册位置与方向知识点如下。
1、(东与西)相对,(南与北)相对,(东南与西北)相对,(西南与东北)相对。面南左为东,面北左为西,面东左为北,面西左为南。
2、地图通常是按(上北、下南、左西、右东)来绘制的。通常所说的八个方向:东、西、南、北、东南、西北、西南、东北。
3、会看简单的路线图,会描述行走路线,做题时先标出东南西北。一定写清楚从哪儿向哪个方向走,走了多少米,到哪儿再向哪个方向走就到了哪里,在转弯处要注意方向的变化。判断一个地方在什么方向,先要找到一个为中心点(观测点)处画米字符号,再进行判断。
4、指南针是用来指示方向的,它的一个指针永远指向(南方),另一端永远指向(北方)。
5、生活中的方位知识:北斗星永远在北方。影子与太阳的方向相对。早上太阳在东方,中午在南方,傍晚在西方。风向与物体倾斜的方向相反。我国地处北半球,树叶茂盛的一面是南方,树叶稀疏的一面是北方。
Ⅶ 小学三年级数学下册知识点梳理
一、 植树问题:
这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。
解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。
解题规律:
沿线段植树
棵树=总路程÷株距+1
棵树=段数+1
株距=总路程÷(棵树-1)
总路程=株距×(棵树-1)
沿周长植树
棵树=总路程÷株距
棵树=段数
株距=总路程÷棵树
总路程=株距×棵树
例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201 根。求改装后每相邻两根的间距。
分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为 50 ×( 301-1 )÷( 201-1 ) =75 (米)
二、分数和百分数的应用
1 分数加减法应用题:
分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。
2分数乘法应用题:
是指已知一个数,求它的几分之几是多少的应用题。
特征:已知单位“1”的量和分率,求与分率所对应的实际数量。
解题关键:准确判断单位“1”的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。
3 分数除法应用题:
求一个数是另一个数的几分之几(或百分之几)是多少。
特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,也就是求他们的倍数关系。
解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。
甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。
甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数 。
已知一个数的几分之几(或百分之几 ) ,求这个数。
特征:已知一个实际数量和它相对应的分率,求单位“1”的量。
解题关键:准确判断单位“1”的量把单位“1”的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际
数量。
三、度量
一、 长度
(一) 什么是长度
长度是一维空间的度量。
(二) 长度常用单位
公里(km) 、 米(m) 、 分米(dm)、 厘米(cm)、毫米(mm) 、 微米(um)
(三) 单位之间的换算
1毫米 =1000微米 , 1厘米 =10 毫米 , 1分米 =10 厘米 , 1米 =1000 毫米 , 1千米 =1000 米
二、 面积
(一)什么是面积
面积,就是物体所占平面的大小。对立体物体的表面的多少的测量一般称表面积。
(二)常用的面积单位
平方毫米 、平方厘米 、 平方分米、平方米 、平方千米
(三)面积单位的换算
1平方厘米 =100 平方毫米 , 1平方分米=100平方厘米 ,1平方米 =100 平方分米
1公倾 =10000 平方米 , 1平方公里 =100 公顷
三、 体积和容积
(一)什么是体积、容积
体积,就是物体所占空间的大小。
容积,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。
(二)常用单位
1、 体积单位
立方米 、 立方分米、立方厘米
2 、容积单位: 升、毫升
(三)单位换算
(1) 体积单位
1立方米=1000立方分米
1立方分米=1000立方厘米
(2) 容积单位
1升=1000毫升
1升=1立方米
1毫升=1立方厘米
四、 质量
(一)什么是质量
质量,就是表示表示物体有多重。
(二)常用单位
吨 :t 千克: kg 克: g
(三)常用换算
一吨=1000千克
1千克=1000克
五、 时间
(一)什么是时间
是指有起点和终点的一段时间
(二)常用单位
世纪、 年 、 月 、 日 、 时 、 分、 秒
(三)单位换算
1世纪=100年
1年=365天 (平年)
1年=366天 (闰年)
一、三、五、七、八、十、十二是大月, 大月有31 天
四、六、九、十一是小月,小月有30天
平年2月有28天, 闰年2月有29天
1天= 24小时
1小时=60分
1分=60秒
六、 货币
(一)什么是货币
货币是充当一切商品的等价物的特殊商品。货币是价值的一般代表,可以购买任何别的商品。
(二)常用单位
元 、 角 、 分
(三)单位换算
1元=10角
1角=10分
Ⅷ 北师大版小学三年级数学下册教学重点知识有哪些
一、教学内容与教学目标:
本册教材采用数与代数、空间与图形、统计与概率和实践与综合运用四个领域的内容同时混编的方式,各个领域包括以下内容:
数与代数:第一单元"元、角、分与小数"。结合购物的具体情境初步理解小数的意义,能认、读、写简单的小数;感受比较小数大小的过程;会进行一位小数的 加减运算,能解决一些相关的简单问题;能运用小数表示日常生活中的一些事物,并进行交流。第三单元"乘法"。会计算两位数乘两位数的乘法;能结合具体情境进行估算,并解释估算的过程;能灵活运用不同的方法解决生活中的简单问题,并能对结果的合理性进行判断。第五单元"认识分数"。能结合具体情境与直观操作初步理解分数的意义,能认、读、写简单的分数;感受比较分数大小的过程;会计算同分母分数的加减运算, 能解决一些相关的简单问题。
空间与图形:第二单元"对称、平移和旋转"。结合实例,感知平移、旋转、轴对称现象;能在方格纸上画出一个简单图形沿水平、竖直方向平移后的图形;通过观察、操作,认识轴对称图形,并能在方格纸上画出简单是轴对称图形。第四单元"面积"。结合实例认识面积的含义,能用自选单位估计和测量图形的面积,体会统一面积单位的必要性,体会并认识面积单位,会进行简单的面积单位的换算;探索并掌握长方形、正方形的面积公式, 能估算给定的长方形、正方形的面积。
统计与概率:第六单元"统计与可能性"。通过丰富的实例,了解平均数的意义,体会学习平均数的必要性,会求简单数据的平均数;能对一些简单事件发生的可能性做出描述,并和同伴交换想法。
实践活动: 到商店调查三种商品的价格,做好记录。与同学比一比同一种商品的价格。找一找生活中的小数,并与同伴说一说。用纸剪出一个你喜欢的图形,通过平移或旋转绘制一幅图案。设计旅游计划。厨房铺地转的选择方案 制作七巧板。调查小组同学的身高,并计算小组的平均身高,并计算小组的平均身高。在报刊上找出与平均数有关的信息,并与同伴说一说。
二、教学重点:
本册教材中的小数与分数、图形的变换与面积等概念,都是学生初次接触的重要基础知识,让学生在具体生动的情境中学习和理解它们是至关重要的。
三、教学难点:
培养学生应用数学的意识与独立解决问题的能力。要把数学学习与解决生活中的数学 问题结合起来,充分利用教材所提供的数学与生活紧密联系的线索,培养学生学会用数学的眼光观察现实生活,从中发现数学问题、提出数学问题、并解决数学问题,体会数学的广泛应用与实际价值,获得良好的情感体验。
四、学情分析:
本学期我所任教的三班,大部分学生对数学比较感兴趣,接受能力较强,学习态度较端正。尤其是男同学,学习基础也还比较好,但是有部分学生自觉性不够,不能及时完成作业,或者作业质量较差,对于学习数学有一定困难。所以在新的学期里,在端正学生学习态度的同时,应加强培养他们的各种学习数学的能力,以提高成绩。
五、教学资源分析:
重视学生的生活经验,密切数学与现实的联系,引导学生在理解的基础上学习数学,促进学生对数学的认识。教材通过"数与计算、量与计量、空间与图形、统计与概率、实践与综合应用"基本领域反映运用数学研究现实世界的基本过程,有机的渗透数感、符号感、空间观念、统计思想、推理意识等重要的数学思想和思维方式,并以此为主线选择和安排教学内容。
展现知识的产生和应用过程,形成"问题情境--建立模型--解释与应用"的基本叙述模式,引导学生逐步形成多样化的、科学合理的学习方式。通过上述的过程,学生将逐步掌握基本的数学知识和方法,形成良好的数学思维习惯和应用意识,提高自己解决问题的能力,感受数学思考的乐趣,增进学好数学的信心,获得对数学较为全面的体验与理解。
以数学活动为线索安排教材内容,促进学生自主地参与、探索和交流。按照《标准》的要求,教材突破了以往的以例题为中心的呈现方式,以学生的数学活动为线索,展开相关知识的学习。教材设立了"看一看、做一做、想一想、说一说、读一读、我的成长足迹、问题银行"等栏目,促进学生在观察、操作、思考、交流、反思等活动中,掌握基本的知识和技能,发展数学思考和解决问题的能力,初步形成良好的情感、态度与价值观。
六、提高教学质量的具体措施:
(一)切实加强基础知识和基本技能的教学。
数学基础知识的理解。教学时在使学生掌握数学概念、法则、数量关系的同时,应更重视数学方法的训练,逐步形成良好的思维方式和运用数学的意识。处理好基本训练与创造性思维发展及后继学习的关系。小学生的创造性思维是在数学学习的"再创造"过程中逐步得到发展的,而 "再创造"的前提是通过必要的基本训练使学生形成扎实的基本功。
(二)重视引导学生自主探索,培养学生的创新意识和学习数学的兴趣。
本册教材设计了适量探索性和开放性的数学问题,给学生提供自主探索的机会和一个比较充分的思考空间。培养学生肯于钻研、善于思考、勤于动手的科学态度。教师要关注学生的个体差异,尊重学生的创造精神。对学生在探索过程中遇到的问题,要适时,有效的帮助和引导。
(三)重视培养学生的应用意识和实践能力。
数学教学应体现"从问题情境出发,建立模型,寻求结论,应用与推广"的基本过程。在日常的数学活动中要注意小课题研究和实习作业等实践活动,对这方面的内容不但不能随意删减,而且要加强这方面内容安排的密度和强度。
(四)把握教学要求,促进学生发展。
教师要善于驾驭教材,把握知识的重点和难点以及知识间的内在联系,根据学生的年龄特点和教学要求,开展教学活动。要注意在直观感知广泛的背景下,通过自身体验在分析、整理的过程中学习概念,不要用死记硬背的方法。
七、促进教学评估方法。
教学评估要有利于学生的发展,注重对学生学习过程的考察。知识和技能的评估,试题类型要多样化。评价应体现激励的作用。
Ⅸ 初三数学下册知识点
学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目 学习 方法 其实都是一样的,不断的记忆与练习,使知识刻在脑海里。下面是我给大家整理的一些初三数学知识点,希望对大家有所帮助。
九年级下册数学知识点归纳
知识点1.概念
把形状相同的图形叫做相似图形。(即对应角相等、对应边的比也相等的图形)
解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.
(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.
(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.
知识点2.比例线段
对于四条线段a,b,c,d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.
知识点3.相似多边形的性质
相似多边形的性质:相似多边形的对应角相等,对应边的比相等.
解读:(1)正确理解相似多边形的定义,明确“对应”关系.
(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.
知识点4.相似三角形的概念
对应角相等,对应边之比相等的三角形叫做相似三角形.
解读:(1)相似三角形是相似多边形中的一种;
(2)应结合相似多边形的性质来理解相似三角形;
(3)相似三角形应满足形状一样,但大小可以不同;
(4)相似用“∽”表示,读作“相似于”;
(5)相似三角形的对应边之比叫做相似比.
知识点5.相似三角的判定方法
(1)定义:对应角相等,对应边成比例的两个三角形相似;
(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.
(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.
(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.
(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.
(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.
知识点6.相似三角形的性质
(1)对应角相等,对应边的比相等;
(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;
(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.
(4)射影定理
九年级下册数学知识点 总结
直线与圆的位置关系
①直线和圆无公共点,称相离。AB与圆O相离,d>r。
②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d
③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)
平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程
如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1
当x=-C/Ax2时,直线与圆相离;
旋转变换
1.概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
说明:(1)图形的旋转是由旋转中心和旋转的角度所决定的;(2)旋转过程中旋转中心始终保持不动.(3)旋转过程中旋转的方向是相同的.(4)旋转过程静止时,图形上一个点的旋转角度是一样的.⑤旋转不改变图形的大小和形状.
2.性质:(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等.
3.旋转作图的步骤和方法:(1)确定旋转中心及旋转方向、旋转角;(2)找出图形的关键点;(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形.
说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角.
初三 数学学习方法
1、“方程”的思想
数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度.时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。初二、初三我们还将学习解一元二次方程、二元二次方程组、简单的三角方程;到了高中我们还将学习指数方程、对数方程、线性方程组、、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好 其它 形式的方程。
所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
2、“数形结合”的思想
大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支枣-代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。在初三,建立平面直角坐标系后,研究函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的 思维训练 ,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人慢慢会养成一种“数形结合”的好习惯。
3、“对应”的思想
“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。比如我们在计算或化简中,将对应公式的左边,对应a,y对应b,再利用公式的右边直接得出原式的结果即。这就是运用“对应”的思想和方法来解题。初二、初三我们还将看到数轴上的点与实数之间的一一对应,直角坐标平面上的点与一对有序实数之间的一一对应,函数与其图象之间的对应。“对应”的思想在今后的学习中将会发挥越来越大的作用
初三数学下册知识点相关 文章 :
★ 九年级数学知识点下册
★ 九年级下册数学知识点归纳
★ 最新初三数学知识点总结大全
★ 九年级数学下册圆的知识点整理
★ 人教版初三数学知识点
★ 初三数学知识点总结
★ 九年级下学期期末数学复习资料
★ 初三年级下册数学知识点归纳总结
★ 人教版初三数学知识点复习资料备战中考
★ 初三数学学习方法指导与学习方法总结
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();Ⅹ 三年级下册数学思维导图
三年级下册数学思维导图如下:
对于乘、除法和加、减法的混合运算式题,应该先算乘、除法,后算加、减法;有括号的试题,首先要算括号内的运算,这里不能以是否简便为标准,而一定要遵循正确的运算顺序。
有的算式,表面一看,有一步运算能凑整,便先计算出来。比如32+68×14,看上去先算加法简便,就会忘掉运算顺序,先算加法后算乘法。
数学思维导图对三年级数学学习的帮助
数学思维导图在三年级数学当中针对各个章节的知识总结和分析,除了对基础的概念,学习方法,解决问题技巧的总结,其中重点和难点内容的突出也是在不断地提醒大家要注意这些重点的内容。
同时增强了各知识点之间的联系,让同学们在学习当中能够从总体上把握知识这种学习的结构模式能够为同学们节省不少的时间在学习和复习当中都是不错的选择,知识点之间环环相扣,循序渐进,能够提高同学们的思维能力。