⑴ 小学六年级上册数学必考知识点有哪些
小学六年级上册数学必考知识点如下:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2、分数乘整数的运算法则是:分子与整数相乘,分母不变。
3、在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
4、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。
5、假分数的倒数小于或等于1。
⑵ 小学六年级数学毕业考必考的知识点是什么
一、整数和小数
1、最小的一位数是1,最小的自然数是0。
2、小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。
3、小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……
4、整数和小数都是按照十进制计数法写出的数。
5、小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。
6、小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……
小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……
二、数的整除
1、倍数、因数:A÷B=C,A、B、C均为整数,我们就说A能被B整除或B能整除A。如果数a能被数b整除,a就叫做b的倍数,b就叫做a的因数。
2、一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。一个数因数的个数是有限的,最小的因数是1,最大的因数是它本身。一个数既是它本身的因数,也是它本身的倍数。
3、按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
4、按一个数因数的个数,非0自然数可分为1、质数、合数三类。
质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数。质数都有2个因数。合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。合数至少有3个因数。最小的质数是2,最小的合数是4
5、1~20以内的质数有:2、3、5、7、11、13、17、19
1~20以内的合数有“4、6、8、9、10、12、14、15、16、18
“1”既不是质数,也不是合数。
6、2的倍数的数的特征:个位上的数是0、2、4、6、8。
5的倍数的数的特征:个位上的数是0或者5。
3的倍数的数的特征:各个数位上的数的和是3的倍数。
既是3的倍数又是5的倍数的数的特征:个位上的数是“5”。
7、公因数、公倍数:几个数公有的因数,叫做这几个数的公因数;其中最大的一个,叫做这几个数的最大公因数。几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
8、一般关系的两个数的最大公因数、最小公倍数用短除法来求;互质关系的两个数最大公约数是1,最小公倍数是两数之积;倍数关系的两个数的最大公因数是小数,最小公倍数是大数。
11、互质数:公因数只有1的两个数叫做互质数。
12、两数之积等于最小公倍数和最大公约数的积。
三、四则运算
1、一个加数=和—另一个加数被减数=差+减数减数=被减数-差
一个因数=积÷另一个因数被除数=商×除数除数=被除数÷商
2、在四则运算中,加、减法叫做第一级运算,乘、除法叫做第二级运算。
3、运算定律:
(1)加法交换律:a+b=b+a乘法交换律:a×b=b×a
两个数相加,交换加数的位置,它们的和不变。
两个数相加,交换因数的位置,它们的积不变。
(2)加法结合律:(a+b)+c=a+(b+c)乘法结合律:(a×b)×c=a×(b×c)
三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。
三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变。
(3)乘法分配律:(a+b)×c=a×c+b×c
两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
(4)减法的性质:a-b-c=a-(b+c)除法的性质:a÷b÷c=a÷(b×c)
从一个数里连续减去两个数,等于从这个数里减去两个减数的和。
一个数连续除以两个数,等于这个数除以两个除数的积。
四 、两个规律
1、除法的商不变规律:被除数和除数同时乘或除以相同的数(0除外),商不变。
2、乘法的积不变规律:如果一个因数乘几,另一个因数则除以几,那么它们的积不变。
3、一个因数乘以比1大的数,积比这个数大,乘以比1小的数,积比这个数小
一个因数除以比1大的数,商比这个数小,除以比1小的数,商比这个数大
五、关系式
速度×时间=路程
路程÷时间=速度
路程÷速度=时间
工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
单价×数量=总价
总价÷数量=单价
总价÷单价=数量
⑶ 六年级数学必考知识点
六年级数学必考知识点:
1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、速度×时间=路程路程÷速度=时间路程÷时间=速度
4、单价×数量=总价总价÷单价=数量总价÷数量=单价
5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、加数+加数=和和-一个加数=另一个加数
7、被减数-减数=差被减数-差=减数差+减数=被减数
8、因数×因数=积积÷一个因数=另一个因数
⑷ 小学六年级数学必考知识点总结
很多同学都需要整理自己学习过的知识,我整理了一些小学六年级的数学知识点,大家一起来看看吧。
常用的数量关系式
1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、速度×时间=路程路程÷速度=时间路程÷时间=速度
4、单价×数量=总价总价÷单价=数量总价÷数量=单价
5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、加数+加数=和和-一个加数=另一个加数
7、被减数-减数=差被减数-差=减数差+减数=被减数
8、因数×因数=积积÷一个因数=另一个因数
9、被除数÷除数=商被除数÷商=除数商×除数=被除数
表面积和体积
1.三角形的面积=底×高÷2。公式S=a×h÷2
2.正方形的面积=边长×边长公式S=a2
3.长方形的面积=长×宽公式S=a×b
4.平行四边形的面积=底×高公式S=a×h
5.梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2
6.内角和:三角形的内角和=180度。
7.长方体的表面积=(长×宽+长×高+宽×高)×2公式:S=(a×b+a×c+b×c)×2
8.正方体的表面积=棱长×棱长×6公式:S=6a2
9.长方体的体积=长×宽×高公式:V=abh
10.长方体(或正方体)的体积=底面积×高公式:V=abh
11.正方体的体积=棱长×棱长×棱长公式:V=a3
12.圆的周长=直径×π公式:L=πd=2πr
13.圆的面积=半径×半径×π公式:S=πr2
14.圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
15.圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2
16.圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
17.圆锥的体积=1/3底面×积高。公式:V=1/3Sh
求倒数的方法
①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
以上就是一些小学数学知识点的相关信息,供大家参考。
⑸ 小学六年级数学必考知识点总结归纳
小学数学是初中数学的基础,一定要把基本概念牢记,我整理了一些六年级必背的知识点。
数与计算
1、分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零.。
3、分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4、分数乘整数:数形结合、转化化归
5、倒数:乘积是1的两个数叫做互为倒数。
比和比例
1、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。
比的性质用于化简比。
比表示两个数相除;只有两个项:比的前项和后项。
2、比和比例的区别
(1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。如:a:b这是比。比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。a:b=3:4这是比例。
(2)比的基本性质和比例的基本性质意义不同、应用不同。
比的性质:比的前项和后项都乘或除以一个不为零的数。比值不变。
比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。比例的性质用于解比例。联系:比例是由两个相等的比组成。
常用的数量关系
1、每份数×份数=总数;总数÷每份数=份数;总数÷份数=每份数
2、1倍数×倍数=几倍数;几倍数÷1倍数=倍数;几倍数÷倍数=1倍数
3、速度×时间=路程;路程÷速度=时间;路程÷时间=速度
4、单价×数量=总价;总价÷单价=数量;总价÷数量=单价
5、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间
以上是我整理的六年级必考知识点,希望能帮到你。
⑹ 6年级数学重点知识是什么
六年级数学必考知识点:
1、分数乘法
分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。
3、分数乘法意义
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
简介
同分母分数加法。同分母分数相加,分子相加,分母不变,能约分的要约分。
同分母分数减法。同分母分数相减,分子相减,分母不变,能约分的要约分。
异分母分数加法。异分母分数相加,先通分,再按照同分母分数加法的法则进行计算。
异分母分数减法。异分母分数相减,先通分,再按照同分母分数减法的法则进行计算。
⑺ 小学六年级数学必考知识点有哪些
小学六年级数学必考知识点有如下:
1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。
2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
3、能借助数轴初步学会比较正数、0和负数之间的大小。
4、16℃读作十六摄氏度,表示零上16℃;-16℃读作负十六摄氏度,表示零下16℃。
5、如果2000表示存入2000元,那么-500表示支出了500元。向东走3m记作+3,向西4m记作-4。
6、在数轴上,从左到右的顺序就是数从小到大的顺序。0是正数和负数的分界点,所有的负数都在0的左边,也就是负数都比0小,而正数都比0大,负数都比正数小。负号后面的数越大,这个数就越小。
⑻ 小学六年级数学知识点梳理
求学的三个条件是:多观察、多吃苦、多研究。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,也是要记、要背、要讲练的。下面是我给大家整理的一些 六年级数学 的知识点,希望对大家有所帮助。
六年级数学知识点
分数混合运算
1、分数混合运算的运算顺序与整数混合运算的运算顺序完全相同,都是先算乘除,再算加减,有括号的先算括号里的。
①如果是同一级运算,按照从左到右的顺序依次计算。
②如果是分数连乘,可先进行约分,再进行计算;
③如果是分数乘除混合运算时,要先把除法转换成乘法,然后按乘法运算。
2、解决问题
(1)用分数运算解决“求比已知量多(或少)几分之几的量是多少”的实际问题,方法是:
第①种方法:可以先求出多或少的具体量,再用单位“1”的量加或减去多或少的部分,求出要求的问题。
第②种方法:也可以用单位“1”加或减去多或少的几分之几,求出未知数占单位“1”的几分之几,再用单位“1”的量乘这个分数。
(2)“已知甲与乙的和,其中甲占和的几分之几,求乙数是多少?”
第①种方法:首先明确谁占单位“1”的几分之几,求出甲数,再用单位“1”减去甲数,求出乙数。
第②种方法:先用单位“1”减去已知甲数所占和的几分之几,即得未知乙数所占和的几分之几,再求出乙数。
(3)用方程解决稍复杂的分数应用题的步骤:
①要找准单位“1”。
②确定好其他量和单位“1”的量有什么关系,画出关系图,写出等量关系式。
③设未知量为X,根据等量关系式,列出方程。
④解答方程。
(4)要记住以下几种算术解法解应用题:
①对应数量÷对应分率=单位“1” 的量
②求一个数的几分之几是多少,用乘法计算。
③已知一个数的几分之几是多少,求这个数,用除法计算,还可以用列方程解答。
3、要记住以下的解方程定律:
加数 +加数 = 和;
加数 = 和–另一个加数。
被减数–减数 = 差;
被减数=差+减数;
减数=被减数–差。
因数×因数 = 积;
因数 = 积÷另一个因数。
被除数÷除数 = 商;
被除数=商×除数;
除数=被除数÷商。
4、绘制简单线段图的方法:
分数应用题,分两种类型,一种是知道单位“1”的量用乘法,另一种是求单位“1”的量,用除法。这两种类型应用题的数量关系可以分成三种:(一)一种量是另一种量的几分之几。(二)一种量比另一种量多几分之几。(三)一种量比另一种量少几分之几。绘制时关键处理好量与量之间的关系,在审题确定单位“1”的量。绘制步骤:
①首先用线段表示出这个单位“1”的量,画在最上面,用直尺画。
②分率的分母是几就把单位“1”的量平均分成几份,用直尺画出平均的等分。标出相关的量。
③再绘制与单位“1”有关的量,根据实际是上面的三种关系中的哪一种再画。标出相关的量。
④问题所求要标出“?”号和单位。
5、补充知识点
分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
分数乘法的计算法则
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零.。
分数乘法意义
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
分数乘整数:数形结合、转化化归
倒数:乘积是1的两个数叫做互为倒数。
分数的倒数
找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。
整数的倒数
找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12 ,12是1/12的倒数。
六年级数学知识点归纳
体积和表面积
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a2
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的表面积=(长×宽+长×高+宽×高 ) ×2 公式:S=(a×b+a×c+b×c)×2
正方体的表面积=棱长×棱长×6 公式: S=6a2
长方体的体积=长×宽×高 公式:V = abh
长方体(或正方体)的体积=底面积×高 公式:V = abh
正方体的体积=棱长×棱长×棱长 公式:V = a3
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
数量关系计算公式
单价×数量=总价 2、单产量×数量=总产量
速度×时间=路程 4、工效×时间=工作总量
加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
六年级数学必考知识点
1.比和比例的意义
比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。因此,比和比例的意义也有所不同。而且,比号没有括号的含义而另一种形式,分数有括号的含义!
2.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。用于化简比。
3.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。
4.比和比例的联系:
比和比例有着密切联系。比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。比例是由比组成的,成比例的两个比的比值一定相等。
5.比和比例的区别
(1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。如:a:b这是比比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。a:b=3:4这是比例。
(2)比的基本性质和比例的基本性质意义不同、应用不同。联系:比例是由两个相等的比组成。
6.正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B成正比。反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B成反比。比例尺:图上距离与实际距离的比叫做比例尺。
六年级 数学学习方法
良好的学习习惯是一种良好的非智力因素,是学生必备的素质,是学好数学的最基本保证。小学数学学习习惯的培养,需要坚持不懈,持之以恒。
1. 课前预习 的习惯。
有效的预习,能提高学习新知识的目的性和针对性,可以提高学习的质量。通过布置预习提纲的方法来进行,以后逐步过渡到只布置预习内容,让学生自己去读书、去发现问题,让学生课前对新知识有所了解。有些课上没有条件、没有时间做的活动,也可以让学生课前去做。如讲统计表时,就可以让学生课前调查好同组同学的身高、体重等数据。
2.认真听“讲”的习惯。
这里的听“讲”,应包括两方面的意思:一是说课堂上,精力要集中,不做与学习无关的动作,要认真倾听老师的点拨、指导,要抓住新知识的生长点,新旧知识的联系,弄清公式、法则的来龙去脉。二是说要认真地听其他同学的发言,对他人的观点、回答能做出评价和必要的补充。
3.认真完成作业的习惯。
完成作业,是学生最基本、最经常的学习实践活动。要求学生从小就养成:(1)规范书写,保持书写清洁的习惯。作业的格式、数字的书写、数学符号的书写都要规范。(2)良好的行为习惯。要独立思考,独立完成作业,不要跟别人对算式和结果,更不要抄袭别人的作业。(3)认真审题,仔细运算的习惯。(4)验算的习惯。
小学六年级数学知识点梳理相关 文章 :
★ 小学六年级数学知识点总结
★ 小学六年级数学上册知识点总结
★ 六年级数学知识点梳理
★ 小学六年级数学学习方法和技巧大全
★ 六年级数学总复习知识点整理(完整版)
★ 六年级数学期末复习知识点汇总
★ 小学六年级数学知识点、难点及学习方法
★ 六年级数学知识点归纳
★ 六年级数学期末复习知识点汇总
★ 六年级上册数学知识点整理归纳
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();⑼ 小学六年级数学知识点归纳
小学六年级数学知识点归纳 篇1
位置与方向:
1、什么是数对?
数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。
数对的作用:确定一个点的位置。经度和纬度就是这个原理。
2、确定物体位置的方法:
(1)先找观测点;
(2)再定方向(看方向夹角的度数);
(3)最后确定距离(看比例尺)。
描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
相对位置:东——西;南——北;南偏东——北偏西。
小学六年级数学知识点归纳 篇2
分数乘法
(一)分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)规律:(乘法中比较大小时)
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)分数混合运算的运算顺序和整数的运算顺序相同。
(四)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:axb=bxa
乘法结合律:(axb)xc=ax(bxc)
乘法分配律:(a+b)xc=ac+bc ac+bc=(a+b)xc
小学六年级数学知识点归纳 篇3
1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的.简单实际问题。
3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
4、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面。
5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。
6、圆柱的表面积=圆柱的侧面积+底面积x2即S表=S侧+S底x2或2πrxh+2xπ。
7、圆柱的侧面积=底面周长x高即S侧=Ch或2πrx。
8、圆柱的体积=圆柱的底面积x高,即V=sh或πr2x。进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。
9、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。
10、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离)
11、把圆锥的侧面展开得到一个扇形。
12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2xh÷。
13、常见的圆柱圆锥解决问题:
①压路机压过路面面积(求侧面积);
②压路机压过路面长度(求底面周长);
③水桶铁皮(求侧面积和一个底面积);
④厨师帽(求侧面积和一个底面积);通风管(求侧面积)
小学六年级数学知识点归纳 篇4
1.1 整数和整除的意义
1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,??,叫做整数
2.在正整数1,2,3,4,5,??,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,??,叫做负整数
3. 零和正整数统称为自然数
4.正整数、负整数和零统称为整数
5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
1.2 因数和倍数
1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数
3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身
4.一个数的倍数的个数是无限的,其中最小的倍数是它本身
1.3能被2,5整除的数
1.个位数字是0,2,4,6,8的数都能被2整除
2.在正整数中(除1外),与奇数相邻的两个数是偶数
3.在正整数中,与偶数相邻的两个数是奇数
4.个位数字是0,5的数都能被5整除
5. 0是偶数
1.4 素数、合数与分解素因数
1.只含有因数1及本身的整数叫做素数或质数
2.除了1及本身还有别的因数,这样的数叫做合数
3. 1既不是素数也不是合数
4.奇数和偶数统称为正整数,素数、合数和1统称为正整数
5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数
6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
7.通常用什么方法分解素因数: 树枝分解法,短除法
1.5 公因数与最大公因数
1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数
4.如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数
5.如果两个数是互素数,那么这两个数的最大公因数是
小学六年级数学知识点归纳 篇5
1、简单应用题
(1) 简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。
(2) 解题步骤:
a 审题理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。也可以复述条件和问题,帮助理解题意。
b选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。
C检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。
2、复合应用题
(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。
(2)含有三个已知条件的两步计算的应用题。
求比两个数的和多(少)几个数的应用题。
比较两数差与倍数关系的应用题。
(3)含有两个已知条件的两步计算的应用题。
已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。
已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。
(4)解答连乘连除应用题。
(5)解答三步计算的应用题。
(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。
(7)常见的数量关系:
总价= 单价×数量
路程= 速度×时间
工作总量=工作时间×工效
总产量=单产量×数量
3、典型应用题
具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。
(1)平均数问题:平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。
(2) 归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
数量关系式:单一量×份数=总数量(正归一)
总数量÷单一量=份数(反归一)
(7)行程问题:
关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
(13)鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题
解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。
解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数
兔子只数=(总腿数-2×总头数)÷2
如果假设全是兔子,可以有下面的式子:
鸡的只数=(4×总头数-总腿数)÷2
兔的头数=总头数-鸡的只数
例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?
兔子只数 ( 170-2 × 50 )÷ 2 =35 (只)
鸡的只数 50-35=15 (只)
⑽ 小学六年级数学必考知识点
小学六年级数学内容多,是小学阶段所学数学知识的综合。本文整理了六年级必背考点,欢迎阅读。
六年级数学考点
数与计算
(1)分数的乘法和除法,分数乘法的意义,分数乘法,乘法的运算定律推广到分数,倒数,分数除法的意义,分数除法。
(2)分数四则混合运算,分数四则混合运算。
(3)百分数,百分数的意义和写法,百分数和分数、小数的互化。
比和比例
比的意义和性质,比例的意义和基本性质,解比例,成正比例的量和成反比例的量。
几何初步知识
圆的认识,圆周率,画圆,圆的周长和面积,扇形的认识,轴对称图形的初步认识,圆柱的认识,圆柱的表面积和体积,圆锥的认识,圆锥的体积,球和球的半径、直径的初步认识。
求倒数地方法
①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
按比例分配解题技巧
小技巧:a.把比转化成为分数,用分数方法解答,即先求出总分数,然后求出各部分量占总量的几分之几,最后按照求一个数的几分之几多少的解题方法,分别求出各部分的量是多少
b.把比看做分得的分数,先求出各部分的总分数,然后再用“总量总份数=平均每份的量(归一)”,再用“一份的量各部分量所对应的份数”,求出各部分的量。
c.用比例知识解答:首先设未知量为。再根据题中“已知比等于相对应的量的比”作为等量关系式列出含有x的比例式,再解比例求出x。
用正、反比例知识解答应用题的步骤
小技巧:(1)分析数量关系。判断成什么比例。(2)找等量关系。如果成正比例,则按等比找等量关系式;如果成反比例,则按等积找等量关系式。(3)解比例式。设未知数为x,并代入等量关系式,得正比例式或反比例式。(4)解比例。(5)检验并写出答语。
知识体系
一、整除问题:
(1)数的整除的特征和性质(小学六年级常考内容)
(2)位值原理的应用(用字母和数字混合表示多位数)
二、质数合数:
(1)质数、合数的概念和判断(2)分解质因数(重点)
三、约数倍数:
(1)最大公约最小公倍数(2)约数个数决定法则(小学六年级常考内容)
四、余数问题:
1、带余除式的理解和运用;
2、同余的性质和运用;
3、中国剩余定理奇偶问题:
(1)奇偶与四则运算;
4、奇偶性质在实际解题过程中的应用完全平方数:
(1)完全平方数的判断和性质
(2)完全平方数的运用整数及分数的分解与分拆(重点、难点)