⑴ 全部关于太阳的知识
1.太阳只是银河系2000亿星球中的一员。
13.太阳每2.4亿年绕银河系转一圈。
⑵ 关于太阳的9个小知识你了解几个
1.太阳的特征
质量: 1.98892 x 10^30 千克
直径: 1391000 千米
半径: 695500 千米
太阳的表面重力: 27.94 g
太阳的体积: 1.412 x 10^18 立方千米
太阳的密度: 1.622 x 10^5 千克/立方米
2.太阳有多大?
太阳是太阳系中最大的天体,占总质量的99.86%。
作为恒星来说,太阳实际上是一颗中等,甚至更小的恒星。质量比太阳大得多的恒星可以比他(看起来)更大。例如,猎户座中的红巨星参宿四被认为比太阳大1000倍。我们所知道的最大的恒星是大犬座VY,大约比太阳大2000倍。如果你能把大犬座VY放入我们的太阳系,它将会陈伸展到土星的轨道之外。
图解:从左到右分别是相当于一个画素大小的太阳、手枪星、黄特超巨星仙后座ρ、参宿四和大犬座VY
太阳的大小在变化。当未来它的核心内可用的氢燃料耗尽时,它也将成为一颗红巨星。它将吞噬水星和金星的轨道,甚至有可能一并吞噬地球的轨道。在将来的几百万年时间里,太阳的体积将是现在的200倍。
当太阳变成一颗红巨星后,它会缩小成一颗白矮星。那么太阳的大小将只是地球的大小。
图解:比较当前作为主序星的太阳和将来成为红巨星的太阳。
3.太阳质量
太阳的质量是1.98892 x 10^30千克。这是一个很大的数字,很难把它放到实际环境中,所以我们把太阳的质量里的0全部写出来。
公斤。
还需要继续思考吗?让我们做一些比较,可能就比较明朗了。太阳的质量是地球质量的333000倍。它的质量是木星的1048倍,是土星的3498倍。
事实上,太阳的质量占整个太阳系质量的99.8%;大部分非太阳质量的是木星和土星。甚至可以毫不客气地说地球是一个微不足道的小点。
当天文学家试图测量另一个类星物体的质量时,他们用太阳的质量来进行比较。这就是所谓的“太阳质量”。所以物体的质量,比如黑洞,是用太阳质量来测量的。一颗大质量恒星可能有5到10个太阳质量。一个超大质量黑洞可能有数亿个太阳质量。
天文学家用M这个符号来表示太阳质量,它看起来像一个圆圈,中间有一个点——M⊙。如果要表示一颗恒星的质量是太阳的5倍,或者说是5倍太阳质量,那么它的质量就是5M⊙。
太阳质量虽然很大,但它并不是最大的恒星。事实上,我们所知道的最大的恒星是船底η星云,它的质量是太阳质量的150倍。
太阳的质量实际上是随着时间在慢慢减小的。这里有两个(物理)过程在起作用。第一种是太阳核心的聚变反应,将氢原子转化为氦原子。当氢原子转化为能量时,太阳的一些质量会在聚变过程中损失。我们从太阳那里感受到的温暖就是太阳失去的质量。第二种方式是太阳风,它不断地把质子和电子吹到外层空间里。
太阳的质量(千克):1.98892 x 10^30千克
太阳质量(磅):4.38481 x 10^30磅
太阳的质量(吨):2.1924 x 10^27吨
4.太阳直径
太阳的直径是139.1万公里或87万英里。
让我们再一次从另一个角度来看待这个数字。太阳的直径是地球直径的109倍。它的直径是木星的9.7倍。真的,真的是太大了。
请原谅这句双关语,但是太阳和宇宙中一些最大的恒星相比并没有什么可比性。我们所知道的最大的恒星叫做大犬座VY,天文学家认为它的直径可能是太阳的2100倍。
地球与太阳黑子大小的对比。来源:罗恩·科特雷尔。
太阳的直径(千米):139.1万千米
太阳的直径(英里):86.4万英里
太阳直径(米):1391000000米
太阳与地球的直径之比:109个地球
5.太阳半径
太阳的半径,即从太阳的准确中心到太阳表面的距离,是695500千米。
无论你怎么测量,从中心到赤道,或者从中心到太阳两极,这个半径基本上是相同的。然而你需要注意其他物体,因为它们的旋转速度会影响半径。
太阳自转一周大约需要25天。因为自转相对较慢,太阳根本不会变扁平。从中心到两极的距离几乎完全等于从中心到赤道的距离。
图解:木星的大小比太阳小一个数量级(×0.10045),但仍比地球大一个数量级(×10.9733),大红斑大约有二到三个地球大(数量级相同)
尽管如此,还是有一些恒星有着显着的不同点。例如,位于波江 星座 的水委一星被压扁了50%。其实就是从两极到赤道的距离是赤道距离的一半。在这种情况下,恒星实际上看起来像陀螺玩具。
所以,相对于外面的恒星来说,太阳几乎是一个完美的球体。
天文学家使用太阳的半径,或“太阳半径”来比较恒星和其他天体的大小。例如,一个有两个太阳半径的恒星是太阳的两倍大。有10个太阳半径的恒星是太阳的10倍,以此类推。
图解:大犬座VY,已知的最大恒星
北极星是小熊 星座 (小熊座)中最亮的一颗星,由于它靠近北极点,目前就被认为是北极星。北极星主要用于导航,它的太阳半径为30。也就是说,它比太阳大30倍。
天狼星是夜空中最亮的星。第二亮的天王星只有天狼星一半的视星等。难怪它真的很眼亮眼了。天狼星实际上是一个双星系统,天狼星A的太阳半径为1.711,而B的太阳半径要小得多,大约为0.0084。
太阳半径(公里):695,500公里
太阳半径(英里):432,200英里
太阳半径(米):695,500,000米
太阳相对地球的半径:109个地球
6.太阳引力
太阳有巨大的质量,所以它有很大的引力。事实上,太阳的质量是地球质量的333000倍。忘掉太阳表面800开尔文的温度和它由氢构成的这件事吧——如果你能在太阳表面行走,你会有什么感觉?猜猜看,(温馨提示)太阳表面的重力是地球重力的28倍。
换句话说,如果在地球上你的秤出来100公斤,那么当你试着在太阳表面行走时,它就能测出2800公斤。不用说,你很快就会死于地心引力,更不用说热啊什么的了。
太阳的引力把它所有的质量(主要是氢和氦)拉进一个几乎完美的球体。在太阳的核心,温度和压力高到能够发生聚变反应。大量的光和能量从太阳中倾泻而出,抵消了那些试图使太阳坍缩的引力。
图解:太阳系(包括卵状云)在对数尺度上的布局。来源:美国国家航空航天局
天文学家将太阳系定义为受太阳引力影响的距离。我们知道,太阳把遥远的冥王星置于轨道上(平均距离59亿千米)。但是天文学家们认为奥尔特云的距离可以达到50000天文单位(1单位是地球到太阳的距离),或者说1光年。事实上,太阳引力的影响可能会延伸到2光年之外,直指其他恒星引力更大的地方。
太阳表面重力:27.94 g
7.太阳密度
太阳的密度是1.4克/立方厘米。给你们打个比方,水的密度是1克/立方厘米。换句话说,如果你能找到一个足够大的水池,太阳就会沉下去而不是漂浮。这似乎有点违反常规。太阳不是由氢和氦组成的吗?氢和氦是宇宙中最轻的两种元素。怎么太阳的密度会这么高呢?
这一切功劳都归结于重力。但首先,让我们先计算一下太阳的密度。
密度的公式是把质量除以体积。太阳的质量是2 x 10^33克,体积是1.41 x 10^33立方厘米。如果你计算一下,太阳的密度是1.4克/立方厘米。
图解:太阳的内部。来源:美国国家航空航天局
太阳靠引力把维持自己聚在一起。虽然太阳的最外层可能密度较小,但强大的重力会将内部区域挤压产生巨大的压力。在太阳的核心,压力超过100万公吨/平方厘米,这相当于地球大气的100多亿倍。你一旦有了这些压力,就会发生聚变。
太阳密度:1.622 x 10^5千克/立方米
8.太阳体积
太阳的体积是1.412 x 10^18 立方千米。那是很大的体积了。你需要用什么东西来和这个比较呢?太阳的体积如此之大,需要130万颗地球大小的行星才能把它填满。或者你叶可以用1000颗木星大小的行星来填满它。
太阳体积(立方千米):1.412 x 10^18立方千米
太阳与地球的体积之比:130万
9.太阳周长
太阳的周长是4379000千米。
相比而言,地球的赤道周长是40075千米。所以,太阳的周长是地球周长的109倍。太阳的周长是木星的9.7倍。
参考资料
1.WJ网络全书
2.天文学名词
3. universetoday-氵橘
转载还请取得授权,并注意保持完整性和注明出处
⑶ 关于太阳的科学知识
天文学释义
它的体积是地球的130多万倍,太阳系的中心天体。银河系的一颗普通恒星。与地球平均距离14960万千米,直径139万千米,从地球到太阳上去步行要走3500多年,就是坐飞机,也要坐20多年。平均密度1.409克/立方厘米,质量1.989×10^33克,表面温度5770℃,中心温度1500万℃。由里向外分别为太阳核反应区、太阳对流层、太阳大气层。其中心区不停地进行热核反应,所产生的能量以辐射方式向宇宙空间发射。其中二十二亿分之一的能量辐射到地球,成为地球上光和热的主要来源。恒星也有自己的生命史,它们从诞生、成长到衰老,最终走向死亡。它们大小不同,色彩各异,演化的历程也不尽相同。恒星与生命的联系不仅表现在它提供了光和热。实际上构成行星和生命物质的重原子就是在某些恒星生命结束时发生的爆发过程中创造出来的。
详解:
太阳(Sun)是一颗普通的恒星,目前在赫-罗图上度过了主序生涯的一半左右。它是一个质量为1989.1亿亿亿吨(约为地球质量的33万倍)、直径139.2万km(约为地球直径的109倍)的热气体(严格说是等离子体)球。其平均密度为水的1.4倍,但这一平均密度隐含着很宽的密度范围,从超高密的核心到稀薄的外层。
作为一颗恒星太阳,其总体外观性质是,视星等为-26.3,光度为383亿亿亿瓦,绝对视星等(Mv)为+4.83,绝对热星等(Mb)为4.8,他是一颗黄色G2型矮星,有效温度等于开氏5770℃。太阳与在轨道上绕它公转的地球的平均距离为149597870km(499.005光秒或1天文单位)。按质量计,它的物质构成是71%的氢、26%的氦和少量重元素。太阳圆面在天空的角直径为32角分,与从地球所见的月球的角直径很接近,是一个奇妙的巧合(太阳直径约为月球的400倍而离我们的距离恰是地月距离的400倍),使日食看起来特别壮观。由于太阳比其他恒星离我们近得多,其视星等达到-26.8,成为地球上看到最明亮的天体。太阳每25.4天自转一周(平均周期;赤道比高纬度自转得快),每2亿年绕银河系中心公转一周。太阳因自转而呈轻微扁平状,与完美球形相差0.001%,相当于赤道半径与极半径相差6km(地球这一差值为21km,月球为9km,木星9000km,土星5500km)。差异虽然很小,但测量这一扁平性却很重要,因为任何稍大一点的扁平程度(哪怕是0.005%)将改变太阳引力对水星轨道的影响,而使根据水星近日点进动对广义相对论所做的检验成为不可信。
太阳基本物理参数
半径: 696295 千米.
质量: 1.989×10^30 千克
温度: 5770℃(表面) 1560万℃ (核心)
总辐射功率: 3.83×10^26 焦耳/秒
平均密度: 1.409 克/立方厘米
日地平均距离: 1亿5千万 千米
年龄: 约50亿年
到达地球大气上界的太阳辐射能量称为天文太阳辐射量。在地球位于日地平均距离处时,地球大气上界垂直于太阳光线的单位面积在单位时间内所受到的太阳辐射的全谱总能量,称为太阳常数。太阳常数的常用单位为瓦/米2。因观测方法和技术不同,得到的太阳常数值不同。世界气象组织 (WMO)1981年公布的太阳常数值是1368瓦/米2。地球大气上界的太阳辐射光谱的99%以上在波长 0.15~4.0微米之间。大约50%的太阳辐射能量在可见光谱区(波长0.4~0.76微米),7%在紫外光谱区(波长<0.4微米),43%在红外光谱区(波长>0.76微米),最大能量在波长 0.475微米处。由于太阳辐射波长较地面和大气辐射波长(约3~120微米)小得多,所以通常又称太阳辐射为短波辐射,称地面和大气辐射为
长波辐射。太阳活动和日地距离的变化等会引起地球大气上界太阳辐射能量的变化。
对于人类来说,光辉的太阳无疑是宇宙中最重要的天体。万物生长靠太阳,没有太阳,地球上就不可能有姿态万千的生命现象,当然也不会孕育出作为智能生物的人类。太阳给人们以光明和温暖,它带来了日夜和季节的轮回,左右着地球冷暖的变化,为地球生命提供了各种形式的能源。
⑷ 关于太阳的科普知识
太阳是太阳系的中心天体,占有太阳系总体质量的99.86%。太阳系中的八大行星、小行星、流星、彗星、外海王星天体以及星际尘埃等都围绕太阳公转,而太阳则围绕着银河系的中心公转。太阳直径相当于地球直径的109倍,体积大约是地球的130万倍。
关于太阳的科普知识
从化学组成来看,目前太阳质量大约3/4是氢,剩下的几乎都是氦,包括氧、碳、氖、铁和其它的重元素的质量少于2%,采用核聚变的方式向太空释放光和热。
太阳目前正在穿越银河系内部边缘猎户臂的本地泡区中的本星际云。距离太阳最近的恒星是红矮星。
太阳是一颗黄矮星,黄矮星的寿命大致为100亿年,目前太阳大约有45.7亿岁。
⑸ 关于太阳的知识有哪些
它的体积是地球的130多万倍,太阳系的中心天体。银河系的一颗普通恒星。与地球平均距离14960万千米,直径139万千米,从地球到太阳上去步行要走3500多年,就是坐飞机,也要坐20多年。平均密度1.409克/立方厘米,质量1.989×10^33克,表面温度5770℃,中心温度1500万℃。由里向外分别为太阳核反应区、太阳对流层、太阳大气层。其中心区不停地进行热核反应,所产生的能量以辐射方式向宇宙空间发射。其中二十二亿分之一的能量辐射到地球,成为地球上光和热的主要来源。恒星也有自己的生命史,它们从诞生、成长到衰老,最终走向死亡。它们大小不同,色彩各异,演化的历程也不尽相同。恒星与生命的联系不仅表现在它提供了光和热。实际上构成行星和生命物质的重原子就是在某些恒星生命结束时发生的爆发过程中创造出来的。
⑹ 关于太阳的知识有哪些
关于太阳的知识有:
1、太阳是分层结构的,肉眼能看到的可见表面被称为光球层,其温度可达6000开氏温度。光球里面是对流层,对流区下面是辐射层,从太阳的中心延伸到太阳半径20%的距离的是太阳核心。
2、太阳体型巨大,其直径相当于地球直径的109倍。
3、太阳和地球相距遥远,就算以光速穿行也要8分钟30秒才能到达。
4、太阳每2.4亿年绕银河系转一圈。
5、太阳大气的最外层叫做日冕,日冕的体积甚至比太阳本身还要大,其温度可以达到一百万开尔文。
⑺ 关于太阳的知识
太阳是太阳系的中心天体,占有太阳系总体质量的99.86%。太阳系中的八大行星、小行星、流星、彗星、外海王星天体以及星际尘埃等,都围绕着太阳公转,而太阳则围绕着银河系的中心公转。
太阳是位于太阳系中心的恒星,它几乎是热等离子体与磁场交织着的一个理想球体。太阳直径大约是1392000(1.392×10⁶)千米,相当于地球直径的109倍;体积大约是地球的130万倍;其质量大约是2×10³⁰千克(地球的330000倍)。
(7)科普小知识太阳知识扩展阅读:
太阳看起来很平静,实际上无时无刻不在发生剧烈的活动。太阳由里向外分别为太阳核反应区、太阳对流层、太阳大气层。其中22亿分之一的能量辐射到地球,成为地球上光和热的主要来源。太阳表面和大气层中的活动现象,诸如太阳黑子、耀斑和日冕物质喷发(日珥)等,会使太阳风大大增强,造成许多地球物理现象──例如极光增多、大气电离层和地磁的变化。
太阳活动和太阳风的增强还会严重干扰地球上无线电通讯及航天设备的正常工作,使卫星上的精密电子仪器遭受损害,地面通讯网络、电力控制网络发生混乱,甚至可能对航天飞机和空间站中宇航员的生命构成威胁。
⑻ 太阳的科普知识
在群星之间,并不是空无一物,而是布满了物质,是气体,尘埃或两者的混合物.其中一种低温,不发光的星际尘云,相信是形成恒星的基本材料.
这些黑暗的星际尘云温度很低,约为摄氏-260至-160之间.天文学家发现这类物质如果没有什么外力的话,这些星际尘云就如天上的云朵,在太空中天长地久的飘着.但是如果有些事情发生,例如邻近有颗超新星爆炸,产生的震波通过星际尘云时,会把它压缩,而使星际尘云的密度增加到可以靠本身的重力持续收缩.这种靠本身重力使体积越缩越小的过程,称为”重力溃缩”.也有一些其他的外力,如银河间的磁力或尘云间的碰撞,也可能使星际云产生重力溃缩.
大约在五十亿年前,一个称为”原始太阳星云”的星际尘云,开始重力溃缩.体积越缩越小,核心的温度也越来越高,密度也越来越大.当体积缩小百万倍后,成为一颗原始恒星,核心区域温度也升高而趋近于摄氏一千万度左右.当这个原始恒星或胎星的核心区域温度高逹一千万度时,触发了氢融合反应时,也就是氢弹爆炸的反应.此时,一颗叫太阳的恒星便诞生了.
经过一连串的核反应,会消耗掉四个氢核,形成一个氦核,而损失了一点点的质量.依据爱因斯坦质量和能量互换的方程式E=MC^2,损失的质量转化为光和热辐射出去,经过一路的碰撞,吸收再发射的过程,最后光和热传到太阳表面,再辐射到太空中一去不返,这也就是我们所看到的太阳辐射.当太阳中心区域氢融合反应产生的能量传到表面时,大部份以可见光的形式辐射到太空.
在五十忆年前刚形成的太阳并不稳定,体积缩胀不定.收缩的重力遭到热膨胀压力的阻挡,有时热膨胀力扬头,超过了重力,恒星大气因此膨胀.但是一膨胀,温度就跟着下降.膨胀过头,导致温度过低,使热膨胀压力挡不住重力,则恒星大气开始收缩.同样的,一收缩,温度就跟着上升,收缩过头,导致温度过高,又使热膨胀压力超过重力, 恒星大气又开始膨胀.
这种膨胀,收缩的过程反复发生,加上周围还笼罩在云气中,因此亮度变化很不规则.但是胀缩的程度慢慢缩小,最后热膨胀力和收缩力达到平衡,进入稳定期.此时,太阳是一颗黄色的恒星,差不多就像我们现在看到的一样.
太阳进入稳定期后,相当稳定的发出光和热,可以持续一百亿年之久.这期间占太阳一生中的90%,天文学家特称为”主序星”时期.太阳成为一颗黄色主序星,至今己有五十亿年,再过五十亿年,太阳度过一生的黄金岁月后,将进入晚年.
有足够长的稳定期,对行星上的生命发生非常重要.以地球的经验来说,地球太约和太阳同时形成,将近十亿年后才出现生命,经过四十多亿年后,才发展出高等智慧的生物.因此,天文学家要找外星生命,只对生存期超过四十亿的恒星有兴趣.
太阳在晚年将成为红巨星
太阳在晚年时,将己经耗尽核心区域的氢,这时太阳的核心区域都是温度较低的氦,周围包着的一层正在进行氢融合反应,再外围便是太阳的一般物质.氢融合反应产生的光和热,正好和收缩的重力相同.核心区域的氦由于温度较低,而氦的密度又比氢大,所以重力大于热膨胀力而开始收缩,核心区域收缩产生的热散布到外层,加上外层氢融合反应产生的热,使得太阳外部慢慢膨胀,半径增大到吞没水星的范围.
随着太阳的膨胀,其发光散热的表面积也随之增加,表面积扩大后,单位面积所散发的热相对减少,所以太阳一边膨胀,表面温度也随之降到摄氏三千度,在发生的电磁辐射中,以红光最强,所以将呈现一个火红的大太阳,称为”红巨星”.
在红巨星时期的太阳不稳定,外层大气受到扰动会造成膨胀,收缩的脉动效应,而且脉动的周期和体积大小关.想想果冻的情形,轻拍一下果冻,它便会晃动,而且果冻越大,晃动的程度越小.同样的道理,红巨星的体积越大,膨胀,收缩的周期也越长.
简单来说,五十亿年后,太阳核心区域收缩的热将导致外部膨胀,变成一颗红巨星.充满氦的核心区域则持续收缩,温度也随之增加.当核心区域的温度升至一亿度时,开始发生氦融合反应,三个氦经过一连串的核反应后融合成为一个碳,放出比氢融合反应更巨量的光和热,使太阳外层急速膨胀,连地球也吞没了,成为一个体积超大的红色超巨星.
太阳的末路:白矮星
相似的过程是在红色超巨星的核心区域再次发生,碳累积越来越多,碳的密度比氦大,相对的收缩的重力也更大,史的碳构成的核心区域收缩下去.但是当此区域收缩到非常紧密结实的程度,也就是碳原子核周围所有的电子都挤在一起,挤到不能再挤时,这种紧密的压力挡住了重力收缩.虽然此时的温度比摄氏一亿度高很多,但是还没有高到可以产生碳融合反应的地步.因此,太阳核心区域不再收缩,但也没有多余的热使外层膨胀,就如此僵持着,形成了白矮星.由于白矮星的核心没有核融合反应来供给光与热,整个星球越来越暗,逐渐黯淡下去,最后变成一颗不发光的死寂星球----黑矮星.经过理论上的计算,白矮星慢慢冷却变成黑矮星的过程非常漫长,超过一百多亿年,而银河系的形成至今不过一百多亿年,因此天文学家认为银河系还没有老到可以形成黑矮星.
经过计算,太阳体积缩小一百万倍,约像地球一样大时,物质间拥挤的的程度才足以抗拒重力收缩.想想,质量与太阳相当,体积却只有地球大小,很容易算出白矮星的密度比水重一百万倍,也就是说一一方公分的物质约有一公吨重,是非常特别的物质状态,物理学家称为简并状态.原子是由原子核和电子构成.一般人都看过电子围绕原子核的图画或动画,虽然是简化的示意图,却也反映了微小的物质状态.通常电子都在距离原子核很远的地方绕转着,如果温度逐渐降低,或是外力逐渐增加,则电子的活动范围便被押挤而越来越小,逐渐靠近原子核.但是电子与原子核之间的距离有其最小范围,电子不能越过这道界线.就像围绕在玻璃珠周围的沙粒一样,沙粒最多依附在玻璃珠表面,而无法压入玻璃珠中.
同样的,当所有的电子都被迫压挤再原子的表层时,物质状态达到了一个临界,即使在增加压力,也无法将电子往内压挤.这种由电子处于最内层而产生的抗压力称为电子简并压力.依据理论推算,质量小于一点四个太阳质量的星球重力,不足以压垮电子简并压力,因此白矮星的质量不能比一点四个太阳质量更大.到目前为止,所发现的白矮星数量超过数百个,也都符合这个理论.这个上限首先是由一个印度天文学家钱德拉沙哈(Subrahmanyan Chandrasekhar 1910-1995)在1931年利用量子力学所求出来的,因此称为钱式极限(Chandrasekhar’s limit).
当钱德沙哈拉当年提出的这种由电子简并压力挡住重力收缩的星球时,并没有得到赞扬,再英国皇家天文学会在一九三五年所举办的研讨会中,更受到当代大师爱丁顿(Authur Eddington)爵士打压,认为宇宙中并没有这种天体.德拉沙哈受到这个打击后,没有办法在即刊上发表论文,因此他写了一本书<<恒星的结构与演化>>,后来成为这个领域中的经典之作.为什么要称之为白矮星呢?这是因为第一哥确定的白矮星是天狼星的伴星,颜色属高温的青白色,但是体积如此小,因此称之为白矮星,但是后来陆续发现许多同类的恒星,星光颜色属于温度较低的黄色橙色,但是仍然称它们为白矮星.白矮星因此成为一个专有名词,专指这类由电子简并压力挡住重力收缩的星球.
有关星星历史上的记载与传说
不论中外,有关昂宿星团的记载都超过三千多年,它就是北天最明亮的星团之一.这个看起来模糊的一团天体,我国称之为昂宿,是二十八星宿中的一个.诗经中的<昭南.小星>就已经提到昂宿,<尔雅>释天中也提到西路昂也,昂的意思是毛毛的,所以称之为昂。史记—天关书中昂曰髦头,就是这个意思。昂宿星团在日本神话故事中,有许多不同的名称和故事,但大都与农业和渔业有关。例如在日本有些农业区,当看到昂宿星团与太阳一同升起时,表示到了春天播种的季节。有些沿海的地区,余名看到昂宿星团升起与落下来决定是否撒网。而在希腊神话中,七姊妹是擎天神阿特拉斯的女儿,她们是月亮女神阿特密斯的宫女,有一天再草原上玩耍的十,猎户奥莱翁突然闯了进来,七姊妹吓的逃到天上,躲在女神的袖子里,事后女神打开衣袖只见七只鸽子缩成一团。虽然奥莱翁无法抓到她们,但是他却一直追求着,直到天神宙斯同情而将她们安置在天上,成为七姊妹星团。从天文学的角度上看,最有可能的情况是第七颗星是一颗变星,原来很亮,后来变暗了。依据天文学家的研究,昂宿星团是一个行程至今约一亿年的年轻星团,其中包含许多亮度变化不规则的变星。由于昂宿星团属于年轻的星团,其中一些寿命很短的恒星才刚进入演化末期,这些恒星的亮度大都不稳定,例如金牛座BU星就是一颗亮度变化不规则的变星。
重质量恒星的演化
当这些物质以高速撞击在坚硬无比的内核区域时,产生强大的反弹力,而形成向外传播的震波。这种情形就像一个人用力拍桌子,越用力,产生反弹力道也越大。震波以超音速往外震动,挤压外层物质,促使温度急速升高,因此整个星球由内重质量恒星的稳定期依其质量有很大的差别,击中质量恒星的寿命相当短,只有数千万年.质量比太阳大倍以上的恒星寿命大约为数亿年至数十亿年。重质量恒星短寿的原因是质量大,导致收缩的重力也非常强而有力,使得恒星内和区域温度比较高,连带使核反应速率更劲爆,发出威猛的光与热,造成核星表面的温度比太阳型恒星高数倍以上,向太空辐射的光与热成几何级数增加.当恒星形成时,质量就已经固定,因此恒星发光发热都是在吃老本。重质量恒星本钱虽比太阳要多,但是其发热的速度却是数十倍以上,显然很快的便耗尽核反应的原料而进入演化的末期.
中子星
原子的直径范围比原子核大上一万倍,所以当电子被挤压进入原子核时,直径就缩小了一万倍以上,体积则缩小了一兆倍以上。因此,所有物质都成为中子时,体积可以说是小的惊人,密度也大的吓人。抗压力更是大。这种以中子紧密压挤在一起的抗压力,称为{中子简并压力}。依据理论,重质量恒星在演化末期,核心区域的质量如果在二至三个太阳质量之间,则强大的重力会把物质挤压成为中子。此时星球直径约为三十公里左右,强大的中子简并压力挡住了重力,星球不在收缩成为一个中子星。说到这里,中子星的故事并不完整,前面只其到恒星中央区域的情形,因此还要加上外层区域的变化情形,才会完整。经由目前物理学家仍不完全了解的过程,中心区域的物质全被挤压成中子时,星球内部的物质随着强大的重力陷向中心,陷落得速度非常快,核区域到表层的温度都高到能产生核融合反应。想想,如果地球上所有氢弹同时爆炸的情景。这可是整个星球都在发生核融合反应,将整个星球炸碎,形成天文学家所说的”超新星爆炸”。超新星爆炸有如烟火一样四射,只是规模大的多,持续得时间也久,整个超新星爆炸有如烟火一般四射,只是规模大的多,持续的时间也久。整个超新星爆炸扩散的过程可以持续数千年至数万年之久,阔至张范围渴达数十光年之远。在银河系中,超新星爆炸是最壮观的事件了。总结来说,质量比太阳大三倍以上的恒星就可能产生超新星爆炸。而炸碎后中心留下一个中子星。中子星主要经由中子构成,直径约为数十公里,密度是水的数千万至一亿倍,真是个异常的星球。
黑洞
质量在六个至八个太阳质量以上的恒星,在演化末期发生超过超新星爆炸时,如果内核区域的质量大于三个太阳质量,则连中子简并压力也抵挡不住强大的重力收缩,物质只好一路收缩下去,目前只有爱因斯坦提出的广义相对论可以解释这种问题。依据理论,物质缩小到约三公里左右,进入一个连光线都无法脱逃的范围,除了总值量,电核自转外,失去的所有的讯息,理问物理学家称这种奇异的状态为”黑洞”。既然黑洞不发光,那么要如何去发现他勒?对于单独的黑洞,物理学家仍想不出好方法,但是如果黑洞是双星系统之一,则可以借由观测双星的运动来推估看不到的伴星质量,伴星质量超过三个太阳质量而又看不到他,则可能是黑洞了。在双星系统中,如果其中之一是黑洞,则另外一颗恒星在演化晚期膨胀成为超巨星时,膨胀的物质会被黑洞强大的重力吸引,盘旋般向黑洞陷落。在盘旋陷落得过程中,形成一个吸积盘。物质在吸积盘中盘旋陷落得过程中,一路碰撞推挤,半径越来越小,温度也随之升高。在吸积盘内层温度高达摄氏百万度,发出X光。因此,天文学家搜索X光双星系统来推算看不见的伴星质量,如果这个看不见的伴星质量超过三个太阳质量,则认为他是黑洞的候选者。经过科学家近一百年的探究,对恒星结构的演变勾勒出一个轮廓,让我们认识恒星如何演变,步向终局的故事。其中有的恒星不由自主的步向轰轰烈烈的爆炸,许多元素像是钙,矽,铁等,就借着超新星爆炸四散成为星际介质。这些物质在机缘巧合下,化作春泥更护化,经过重力的压缩后,又成为一颗灿烂的恒星,由于有这些元素,因此可以形成类似地球的行星,称命的发生也是要靠这些元素。例如在人体里面,血的成份有铁,骨骼有钙等,所以天文学家常说:”我们是超新星的子民’’。
⑼ 太阳的知识(只要50字)
太阳是太阳系的中心天体,占有太阳系总体质量的99.86%。太阳系中的八大行星、小行星、流星、彗星、外海王星天体以及星际尘埃等,都围绕着太阳公转,而太阳则围绕着银河系的中心公转。
太阳只是宇宙中一颗十分普通的恒星,但它却是太阳系的中心天体。太阳系中,包含我们的地球在内的八大行星、一些矮行星、彗星和其它无数的太阳系小天体,都在太阳的强大引力作用下环绕太阳运行。
太阳系的疆域庞大,仅以冥王星为例,其运行轨道距离太阳就将近40个天文单位,也就是60亿千米之遥远,而实际上太阳系的范围还要数十倍于此。
(9)科普小知识太阳知识扩展阅读:
根据太阳活动的相对强弱,太阳可分为宁静太阳和活动太阳两大类。宁静太阳是一个理论上假定宁静的球对称热气体球,其性质只随半径而变,而且在任一球层中都是均匀的,其目的在于研究太阳的总体结构和一般性质。
在这种假定下,按照由里往外的顺序,太阳是由核心、辐射区、对流层、光球层、色球层、日冕层构成。光球层之下称为太阳内部;光球层之上称为太阳大气。
太阳辐射的峰值波长(500纳米)介于光谱中蓝光和绿光的过渡区域。恒星的温度与其辐射中占主要地位的波长有密切关系。就太阳来说,其表面的温度大约在5800K。然而,由于人的眼睛对峰值波长周围的其它颜色更敏感,所以太阳看起来呈现出黄色或是红色。
⑽ 关于我们每天见到的太阳有什么鲜为人知的小知识
1. 太阳被九大行星环绕着,分别是水星、金星、地球、火星、木星、土星、天王星、海王星和冥王星(不再是官方行星)。
2. 根据其大小、热量和化学组成,太阳被归类为G2矮星,是一颗中等大小的恒星。一颗G星是相对较冷的(开尔文温标在5000-6000之间),并且发生着复杂的化学过程,这意味着它的组成包含比氦更重的化学物质。
图释:不幸的是,阿利斯塔克的观点不被接受,而亚里斯多德和托勒密的不正确的地心理论被大众支持。
26. 希腊哲学家 阿利斯塔克 被认为是第一个声称地球绕着太阳转的人。
27. 在一个十年周期内,测量出的太阳辐射的微小变化仅为1% 的十分之一,甚至都不足以在地球表面温度记录中提供可检测的信号。
28. 从1645年开始的75年间,天文学家发现在太阳上几乎没有太阳黑子的活动。这个被称为“蒙德极小值”的事件正好发生在小冰期最冷的时候,这是一个持续了350年、席卷了欧洲和北美的大部分地区的寒冷期。然而,新的估算表明,亮度的变化可能并不足以造成这种全球变冷。