当前位置:首页 » 基础知识 » 小学六年级数学比例知识题
扩展阅读
同学聚会如何调节心情 2025-01-19 19:25:23
同学在宿舍嫌弃我怎么办 2025-01-19 19:10:39

小学六年级数学比例知识题

发布时间: 2022-09-04 07:43:25

1. 小学六年级的比例数学题,跪求~~~~(>_<)~~~~

1、比值是6的较为简单的两个比,组成比例:
6:1=12:2

2、最小的素数是2;最小的合数是4;既不是素数也不是合数的是1;分子是1的最大真分数是1/2

能组成八个不同的比例;其中两个可以是:
2:4=1/2:1
2:1/2=4:1

2. 一些关于六年级比例的数学题,希望帮帮忙啊....

1.下列式子中是比例的是(C)?
A.2*10=4*5
B.0.6:3
C.15:0.5=30:1
D
1:7
7=14
2.下面四个比不能组成比例的是(C)
A.7;9
B.五分之一:二分之一
c.48:45
=15:16
d.0.75:0.25和五分之3:五分之一
3.一种8毫米的电脑零件,画在图纸上长16cm,图纸的比例尺是(D)
A.1:2
B.2:1
C.1:20
D.20:1
4.表示a和b
成正比例关系的式子是(D)A.a+b=20
B.a*b=三分之二
C.a-19=b
D.b=a*五分之一
5.最小的质数与最小的合数的比等于x与三分之一的比(列比例并解比例)
2:4=x:3分之1
4x=2×3分之1=3分之2
x=3分之2÷4
x=6分之1
2.
x和五分之三的比等于12分之五和八分之一的比。
x:5分之3=12分之5:8分之1
x×8分之1=5分之3×12分之5
x×8分之1=4分之1
x=4分之1÷8分之1
x=2

3. 小学六年级数学比例练习题

《小学六年级数学比例练习题》: (1—4题用比例的知识解答)(35分)
1.农场收割小麦,前3天收割了165公顷。照这样计算,8天可以收割多少公顷?(5分)

2.同学们做广播操,每行站20人,正好站18行。如果每行站24人,可以站多少行?(5分)

3.一种农药,用药液和水按1:1500配制而成,现有3千克药液,能配制这种农药多少千克?(5分)

4、一间房子要用方砖铺地,用边长3分米的方砖,需要96块。如果改用边长是2分米的方砖要多少块? (5分)

4. 六年级数学 “比” 的知识归纳

首先的比的意义,比的各部分名称,比的基本性质,比与分数和除法之间的联系,
比的应用.
比例应用题:1.先求出份数,再求出各部分量占总数的几分之几,用总数和各部分量占总数的几分之几,求出各部分量。或者乘各部分量所对应的分率。
解题高招:
当A:B=1:2时应用内项积等于外项积
所以2A=B
当B分之A=2分之1时,交叉相乘
所以2A=B
当A:B=1:2时,还可以用设参数:设每份数为K
所以A=2K
B=K

5. 小学六年级比例知识点整理内容是什么

小学六年级比例知识点如下:

1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

2、比例的意义:表示两个比相等的式子叫做比例。

3、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定。

4、路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。

5、图形的放大与缩小:图形的各边按相同的比放大或缩小。

6. 六年级数学典型比例应用题解答

六年级数学 比例学习时,学生应能根据比例的意义写比例,列出比例式,那么典型的比例应用题有哪些呢?我为六年级师生整理了数学比例典型应用题解答 方法 ,希望大家有所收获!
六年级数学典型比例应用题例题解答
例题、一辆汽车从甲地开往乙地,每小时行驶70千米,6小时到达,如果要4小时到达,每小时要行驶多少千米?

【点拨】

用比例知识解答,就要确定题中的两种量成什么比例,题中的不变量是甲乙两地的之间的路程一定,时间和速度成反比例,所以两次行驶的速度和时间的积相等,从而列出比例式进行解答

【解答】

设每小时要行驶X千米

4x=70×6

x=105

【练习】

1、一根圆柱,如果锯成5段,要8分钟,如果锯成10段,要多少小时?

2、把一根长3米的圆柱木棒每50厘米锯成一段,共要10分钟,如果每60厘米锯成一段,共要多少分钟?

例题 、用边长4分米的方砖给教室铺地,要450块,如果改用边长6分米的方砖铺地,要多少块?

【点拨】

先弄清哪两个量成比例,成什么比例。根据题意,房间的面积一定,则每块方砖的面积和方砖的块数成反比例。

【解答】

设要X块

4²×450=6²X

X=200

【练习】

1、用同样的方砖给教室铺地,铺18平方米要用400块砖,如果铺36平方米,要多少块砖?

2、同学们做广播操,每行站15人,站了12行,如果每行站18人,要站多少行?

3、马东风电子车间要加工一批电子产品,计划每天加工50件,24天可以完成,实际每天比原计划多加工1/5,实际几天完成?

4、一台织布机4小时织布32米,照这样计算,15小时织布多少米?

5、修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?
六年级数学典型比例应用题练习1
1、工程队修一条水渠,原计划每天修360米,30天修完。修10天后,每天多修40米,再修多少天就能完成任务?

2、农场挖一条水渠,头5天挖了180米,照这样速度,又用了16天挖完这条水渠。这条水渠全长多少米?

3、40千克小麦能磨面粉32千克,照这样计算,7吨小麦能磨面粉多少千克?

4、机床厂4天能生产小机床32台,照这样计算,要生产120台小机床需几天?

5、测量小组把一米长的竹竿直立在地面上,测得它的影子长度是1.6米,同时测得电线杆的影子长度是4米,求电线杆高多少米?

6、要测量一棵树的高度,量得树的影子长度是8.4米,同时用一根2米长的标杆直立在地面上,量得影子长度是1.2米,这棵树高是多少米?

7、一辆汽车从甲地开往乙地,甲乙两地相距405千米,头4小时行驶了180千米,剩下的路程还要行多少小时?

8、某印刷厂计划三月份印刷课本20000本,结果上旬就印刷7000本,照这样速度,三月份可以多印刷多少本?

9、用5辆同样汽车运粮食一次能运22.5吨,照这样计算,要把36吨粮食一次运完,需要增加多少辆这样的汽车?

10、服装厂生产制服,前3个月生产0.48万套,照这样计算,今年可以生产制服多少万套?

11、农场用3辆 拖拉机 耕地,每天共耕225公顷,如果用5辆同样的拖拉机,每天共耕在多少公顷?

12、一艘轮船,从甲地开往乙地,每小时行20千米,12小时到达,从乙地返回甲地时,每小时航行4千米,几小时可以到达?

13、100千克黄豆可以榨油13千克,照这样计算,要榨豆油6.5吨,需黄豆多少吨?

14、一个房间,用边长3分米的方砖铺地,需要432块,如果改用边长4分米的方砖铺地,需要多少块?

17.在一幅地图上,测得甲、乙两地的图上距离是12厘米,已知甲乙两地的实际距离是480千米。

(1)求这幅图的比例尺。

(2)在这幅地图上量得A、B两城的图上距离是4厘米,求A、B两城的实际距离。

18.在比例尺是1:6000000的地图上,量得两地距离是5厘米,甲乙两车同时从两地相向而行,3小时后两车相遇。已知甲乙两车的速度比是2:3,求甲乙两车的速度各是多少千米?

19.在一幅比例尺为1:500的平面图上量得一间长方形教室的的周长是10厘米,长与宽的比是3:2。求这间教室的图上面积与实际面积。

20.修路队修一条公路,已修部分与未修部分的比是5:3,又知已修部分比未修部分长600米,这条路长多少米?

21.一块直角三角形钢板用1:200的比例尺画在图上,两条直角边共长5.4厘米,它们的比是5:4.这块钢板的实际面积是多少?

22. 甲乙两地在比例尺是1:20000000的地图上长4厘米,乙丙两地相距500千米,画在这幅地图上,应画多长?一辆汽车以每小时200千米的速度从甲地经过乙地,去丙地需要多少小时?

23、 朝阳小学的操场是一个长方形,长120米,宽75米,用 的比例尺画成平面图,长和宽各是多少厘米?

24、 在比例尺是1:6000000的地图上,量得两地之间的距离是3厘米,这两地之间的实际距离是多少千米?

25、 同学们做操,每行站20人,正好站18行。如果每行站24人,可以站多少行?(用比例方法解)

26、 一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?(用比例方法解答)

27、 一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台?(用比例方法解)

28、 生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?(用比例方法解)

29、 小明买4本同样的练习本用了4.8元,3.6元可以买多少本这样的练习本?
六年级数学典型比例应用题练习2
(1)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?

(2)在一幅的平面图上,量得一块平行四边形的菜地的底是12厘米,高是10厘米,这块菜地的实际面积是多少公顷?

(3)甲、乙两地相距240千米,画在比例尺是1∶3000000的地图上,长度是多少厘米?

(4)在一幅地图上,用3厘米的线段表示实际距离600千米。在这幅地图上,量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?

(5)甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?

(6)在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?

(7)在比例尺是15000000 的地图上,量得甲、乙两地的距离是9.6厘米。甲、乙两地的实际距离是多少千米?

(8)甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?

(9)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?

(10)在一幅比例尺是14000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?

(11)在比例尺是1∶300000的地图上,量得甲、乙两地的距离是12厘米,它们之间的实际距离是多少千米?如果改用1∶500000的比例尺,甲、乙两地的距离应画多少厘米?

(12)一辆汽车2小时行驶130千米。照这样的速度,从甲地到乙地共行驶5小时。甲、乙两地相距多少千米?(用比例解)

(13)一辆汽车从甲地开往乙地,每小时行64千米,5小时到达。如果要4小时到达,每小时需行驶多少千米?(用比例解)

(14)修一条公路,原计划每天修360米,30天可以修完。如果要提前5天修完,每天要修多少米?(用比例解)

(15)修一条路,如果每天修120米,8天可以修完;如果每天修150米,可以提前几天可以修完?(用比例方法解)

(16)修一条公路,总长12千米,开工3天修了1.5千米。照这样计算,修完这条路还要多少天?(用比例解答)

(17)修一条路,如果每天修120米,8天可以修完;如果每天多修30米,几天可以修完?(用比例方法解)

(18)小明买4本同样的练习本用了4.8元,138元可以买多少本这样的练习本?(用比例解答)

(19)工厂有一批煤,计划每天烧2.4吨,42天可以烧完。实际每天节约1/8,实际可以烧多少天?(用比例方法解)

(20)两个底面积相等的长方体,第一个长方体与第二个长方体高的比是7:11,第二个长方体的体积是144立方分米,第一个长方体的体积是多少立方分米? (用比例方法解)

7. 小学比例应用题及答案

小学比例应用题及答案

小学六年级,一个关键的时期,不仅要学习课本知识,更要努力复习,准备迎战即将到来的小升初,数学不管在哪里都是一个重要学科,应用题又是数学中比较难攻克的一种题型.以下是我带来小学比例应用题及答案的相关内容,希望对你有帮助。

小学比例应用题及答案 例1

1、画一个周长 12.56 厘米的圆,并用字母标出圆心和一条半径,再求出这个圆的面积。

2、学校有一块圆形草坪,它的直径是30米,这块草坪的面积是多少平方米?如果沿着草坪的周围每隔1.57米摆一盆菊花,要准备多少盆菊花?

3、一个圆和一个扇形的半径相等,圆面积是30平方厘米,扇形的圆心角是36度。求扇形的面积。

4、前轮在720米的距离里比后轮多转40周,如果后轮的周长是2米,求前轮的周长。

5、一个圆形花坛的直径是10厘米,在它的四周铺一条2米宽的小路,这条小路面积是多少平方米?

6、学校有一块直径是40M的圆形空地,计划在正中央修一个圆形花坛,剩下部分铺一条宽6米的水泥路面,水泥路面的面积是多少平方米?

7、有一个圆环,内圆的周长是31.4厘米,外圆的周长是62.8厘米,圆环的宽是多少厘米?

8、一只挂钟的分针长20厘米,经过45分钟后,这根分针的尖端所走的路程是多少厘米?

9、一只大钟的时针长0.3米,这根时针的尖端1天走过多少米?扫过的面积是多少平方米?

答案如下:

1、2πR=12.56

R=2cm

S=πR2=12.56(cm2)

2、S=π×152=225π 2π×15÷1.57=60盆

答:草坪面积是225π(平方米),要准备60盆花。

3、30×1/10=3(cm2)

4、720÷(720÷2+40)=1.8(米)

5、S=π×2.12-π×0.12=4.4π(m2)

6、π×202-π×(20-6)2=204π(m2)

7、62.8/2π-31.4/2π=5(cm)

8、3/4×π·2×20=30π(cm)

9、2×2π·0.3=1.2π(m)

S=2×π·(0.3)2=0.18π(m2)

小学比例应用题及答案 例2

1、一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?

2、一根钢管长10米,第一次截去它的`7/10,第二次又截去余下的1/3,还剩多少米?

3、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?

4、师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?

5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?

6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快 2/7,两车经过多少小时相遇?

7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元?

8、饲养组有黑兔60只,白兔比黑兔多1/5,白兔有多少只?

9、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米?

答案:

1、5÷(1/2-30%)=25桶

2、10×[1-7/10-(1-7/10)×1/3]=2米

3、16.5÷(2/3-1/2)=99(千米)

4、21÷(5/7-2/7)=49(个)

5、(24-12)÷(1-2/5-1/3)=45(袋) 45-24=21(袋)答:还剩21袋

6、1152÷(72+72×7/9)=9小时

7、160÷(1-3/5)-160=240元

8、60×(1+1/5)=72只 答:白兔72只

9、80×(1/4+1/2)=60米 80-60=20米 答:共挖60米,还剩20米。

小学比例应用题及答案 例3

1、 一个长方形的周长是24厘米 ,长与宽的比是 2:1 ,这个长方形的面积是多少平方厘米?

2、 一个长方体棱长总和为 96 厘米 ,长、宽、高的比是 3∶2 ∶1 ,这个长方体的体积是多少?

3、 一个长方体棱长总和为 96 厘米 ,高为4厘米 ,长与宽的比是 3 ∶2 ,这个长方体的体积是多少?

4、 某校参加电脑兴趣小组的有42人,其中男、女生人数的比是 4 ∶3,男生有多少人?

5、 有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?

6、 做一个600克豆沙包,需要面粉 红豆和糖的比是3:2:1,面粉 红豆和糖各需多少克?

7、 小明看一本故事书,第一天看了全书的1/9,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页?

8、 一个三角形的三个内角的比是2:3:4,这三个内角的度数分别是多少?

答案如下:

1、S=(2/3×24/2)×(1/3×24/2)=32平方厘米

2、V=(3/6×96/4)×(2/6×96/4)×(1/6×96/4)=384立方厘米

3、V=4×[3/5×(96/4-4)]×[2/5×(96/4-4)]=384立方厘米

4、男=4/7×42=24(人)

5、32+32×3/4÷80%=62(千克)

6、面粉=300克 红豆=200克 糖=100克

7、24÷(1/5-1/9)=45×6=270页

8、180×2/9=40° 答:为40°,60°,80°

;

8. 小学数学六年级下册:正、反比例应用题

小学数学六年级下册:正、反比例应用题

教学要求:

1.使学生认识正、反比例应用题的特点,理解、掌握用比例知识解答应用题的解题思路和解题方法,学会正确地解答基本的正、反比例应用题。

2.进一步培养学生应用知识进行分析、推理的能力,发展学生思维。

教学重点:

认识正、反比例应用题的特点。

教学难点:

掌握用比例知识解答应用题的解题思路。

教学过程:

一、复习引新

1.判断下面的量各成什么比例。

(1)工作效率一定,工作总量和工作时间。

(2)路程一定,行驶的速度和时间。

让学生先分别说出数量关系式,再判断。

2.根据条件说出数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

(2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行x小时。

指名学生口答,老师板书。

3.引入新课。

从上面可以看出,生产、生活中的一些实际问题,应用比例的知识,也可以根据题意列一个等式。所以,我们以前学过的一些应用题,还可以应用比例的知识来解答。这节课,就学习正、反比例应用题。(板书课题)

二、教学新课

1.教学例1。

(1)出示例1,让学生读题。

提问:以前我们是怎样解答的?(板书算式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量?

(2)说明:这道题还可以用比例知识解答。

提问:题里“照这样计算”说明什么一定?数量之间有怎样的关系式,两种相关联的量成什么比例关系?题里两次抽水的总量与时间对应数值各是多少?这两次对应数值的什么相等?你能根据对应数值的比值相等,列出等式来解答吗?请大家自己试一试(启发弄清要设未知数x)。学生练习解题,然后口答,老师板书。追问:按过去的方法是先求什么再解答的?先求单一量的应用题现在用什么比例关系解答的?

(3)小结:

提问:谁来说一说,用正比例知识解答这道应用题要怎样想?怎样做?指出:先按题意列关系式判断成正比例,再找出两种相关联量里相对应的数值,然后根据正比例关系里比值一定,也就是两次抽水相对应数值比的比值相等,列等式解答。

2.教学改编题。

出示改变的问题,让学生说一说题意。请同学们按照例1的'方法自己在练习本上解答。同时指名一人板演,然后集体订正。指名说一说是怎样想的,列等式的依据是什么。

3.教学例2。

(1)出示例2,学生读题。

提问:以前我们是怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:速度×时间=路程)这道题里哪个数量是不变的量?

(2)谁能仿照例l的解题过程,用比例知识来解答例27请来试一试。指名板演,其余学生做在练习本上。学生练习后提问是怎样想的。速度和时间的对应关系怎样,检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。

(3)提问:按过去的方法是先求什么再解答的?先求总数量的应用题现在用什么比例关系解答的?谁来说一说,用反比例关系解答这道应用题是怎样想,怎样做的?指出;解答例2要先按题意列出关系式,判断成反比例,再找出两种相关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次航行相对应数值的乘积相等,列等式解答。

4.教学改编题。

出示改变的条件和问题,让学生说一说题意。指名一人板演,其余学生在练习本上独立解答。集体订正,让学生说一说怎样想的,根据什么列等式的。

5.小结解题思路。

请同学们看一下黑板上例1、例2的解题过程,想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可以相互讨论一下,然后告诉大家。指名学生说解题思路。指出:应用比例知识解答应用题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正、反比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题时关键是什么?(正确判断成什么比例)怎样来列出等式?(正比例比值相等,反比例乘积相等)

三、巩固练习

1.做“练一练”。

指名两人板演,其余学生做在练习本上。集体订正,让学生说说为什么列出的等式不一样。指出:只有先正确判断成什么比例关系,才能根据正比例或反比例的意义正确列式。

2.做练习十第1题。

让学生用比例知识列出解题的式子,然后口答,老师板书。提问:这两题有什么相同和不同的地方?按过去算术解法都要先求什么量?用比例知识解答有什么相同的地方?(都成正比例关系,都列成比值相等的式子来解答)有什么不同的地方?(未知数,表示的数量不同,在等式里位置也不同)说明;在正确判断成比例关系后,要按照比值相等来列等式解答。列等式时还要注意数量之间的对应关系。

3.做练习十第2题。

让学生默读题目。提问:用算术方法解答都要先求什么数量?这两题里两种数量成什么关系,为什么?要按什么相等来列等式?

四、课堂小结

这节课学习了什么内容?正、反比例应用题要怎样解答?你还认识了些什么?

五、布置作业

课堂作业;完成练习十第1、2题的解答。

家庭作业:练习十第3题。

;

9. 六年级数学应用题(比和比例)

1:设:甲已共计X人。则甲为70%X,已为30%X。
解:70%X-60%X=30
10%X=30
X=300
把X=300代入,甲70%,已30%
70%X=210
30X=90
答:原来甲队210人,已队90人。
2:答:甲乙速度比是3:4,乙丙速度比是2:3,(乙丙同时乘以2得4:6)。那么甲乙丙的速度比就是3:4:6。甲丙之比为:1:2
丙丁速度比是4:9。(甲丙同时乘以2得2:4)。那么甲丙丁的速度比就是2:4:9。
所以甲丁的速度之比为:2:9
3:解:(100*14/25-50*12/25)*3/8
=(56-24)*3/8
=32*3/8
=12
答:二班有男生12人。

10. 小学六年级数学比例尺知识点有哪些

小学六年级数学比例尺知识点如下:

1、比例的意义:表示两个比相等的式子叫做比例。

2、比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

3、比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。

4、比和比例有着密切联系。比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。

5、如果两个比相等,那么这两个比就可以组成比例。成比例的两个比的比值一定相等。