当前位置:首页 » 基础知识 » 贵州省数学会考必背公式知识点
扩展阅读
莫华伦的歌词叫什么 2025-01-19 10:27:33
阻击病毒知识大全 2025-01-19 10:26:53

贵州省数学会考必背公式知识点

发布时间: 2022-09-03 20:56:38

A. 高中数学会考必背公式

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标 
圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0
抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) 
和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B) )
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB

某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2 
2+4+6+8+10+12+14+…+(2n)=n(n+1) 5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
常用导数公式
1.y=c(c为常数) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2

希望能帮到你, 祝你学习进步,不理解请追问,理解请及时采纳!(*^__^*)

B. 初中数学必背公式归纳整理

很多初中同学想要初中的公式,所以我整理了一些,希望大家多多理解并进行记忆,以便考个好的数学成绩。
初中数学必背公式归纳
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h

正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2

圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=s*h 圆柱体 V=pi*r2h

常见的初中数学公式

1.过两点有且只有一条直线

2.两点之间线段最短

3.同角或等角的补角相等

4.同角或等角的余角相等

5.过一点有且只有一条直线和已知直线垂直

6.直线外一点与直线上各点连接的所有线段中,垂线段最短

7.平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8.如果两条直线都和第三条直线平行,这两条直线也互相平行

9.同位角相等,两直线平行

10.内错角相等,两直线平行

11.同旁内角互补,两直线平行

12.两直线平行,同位角相等

13.两直线平行,内错角相等

14.两直线平行,同旁内角互补

15.定理 三角形两边的和大于第三边

16.推论 三角形两边的差小于第三边

17.三角形内角和定理 三角形三个内角的和等于180°

18.推论1 直角三角形的两个锐角互余

19.推论2 三角形的一个外角等于和它不相邻的两个内角的和

20.推论3 三角形的一个外角大于任何一个和它不相邻的内角

21.全等三角形的对应边、对应角相等

22.边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23.角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24.推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25.边边边公理(SSS) 有三边对应相等的两个三角形全等

26.斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27.定理1 在角的平分线上的点到这个角的两边的距离相等

28.定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29.角的平分线是到角的两边距离相等的所有点的集合

30.等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31.推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33.推论3 等边三角形的各角都相等,并且每一个角都等于60°

34.等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35.推论1 三个角都相等的三角形是等边三角形

36.推论 2 有一个角等于60°的等腰三角形是等边三角形

37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38.直角三角形斜边上的中线等于斜边上的一半

39.定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40.逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42.定理1 关于某条直线对称的两个图形是全等形

43.定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44.定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45.逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46.勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47.勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48.定理 四边形的内角和等于360°

49.四边形的外角和等于360°

50.多边形内角和定理 n边形的内角的和等于(n-2)×180°
初中数学学习方法
1、配方法

所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法

因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理

一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
初中数学学习方建议
一、课前认真预习,简单梳理知识体系

每节数学课前都要好好看一看接下来老师所要讲授的内容,做到心中有数,带着自己的问题走进课堂,以便在课堂中做到有的放矢,这是学好数学的关键。

良好的预习习惯是学习新知识的必要前提,我在教学时对学生提出的预习要求是:动笔画一画,动手做一做,动脑想一想。

1、画一画

在阅读新的教学内容时,要把自己认为重点的内容和自己没有弄懂的地方分别用不同颜色的笔画下来。自己认为是重点的内容或不确定的知识上课时要认真听讲,跟住老师的教学思路;自己没有弄懂的内容是上课时重点突破的地方,或在课堂知识探究中小伙伴之间取长补短式的学习,或在老师重点指导时认真咀嚼。只有经常这样做,才会对数学产生一种善思好问的好习惯。

2、做一做

每节数学课的后面的练习可以自己试着先做一做,最好是每节新授内容能看懂百分之七十,会做的练习题达到百分之八十。以便于每节新授内容学习后就很容易的按照课本的习题设置能做到从易到难,从简到繁,一步一步地把预习过的知识与自己的实践进行比较。找到自己所欠缺的地方,以便在课堂探究中找到准确的答案。

3、想一想

对自己预习时的知识要学会归纳,对概念、定理、公式做出初步的归纳、总结,通过例题加深对知识的理解,最好把书中的习题自己做一遍,激发自己强烈的求知欲望。对教材中的概念、定理、公式做一下简单的推理,在头脑中建立对知识的初步整体认知。

二、课堂中要注意集中,突破知识的重难点

每节数学课,老师大多要在课堂教学中进行集中讲解或采用分组探究的模式进行教学,突破本节授课的重难点,这就要求学生在每一节课上带着问题去听课,带着问题去思考,攻克本节教学任务的重点内容。学会把预习中存在的问题放在课堂上着重听,必要时还需做好笔记,并通过练习题加以巩固。

在课堂教学中,我要求学生做到:会听、会记、会练

1、会听

听课要会听,不是你集中经历去听就行,而是要结合自己预习时自己所突破不了的知识去听,做到有的放矢,如果采用小组探究形式学习,一定要有自己的见解,不能人云亦云,小伙伴之间要取长补短,把重点和难点知识把握好,做到当堂课的内容一定要当堂消化理解,不要欠债。

2、会记

数学课往往涉及到很多,这些都是学生在解答数学问题的依据,要求学生对概念、定理、公理、公式等进行熟记,并逐渐养成归纳、整理的好习惯,让学生形成一定的知识体系,形成对知识的整体认知。

上课做笔记不是简单的记录老师的板书,而是要把老师所讲的知识点、解题技巧和容易犯的错误进行分类整理,还要做到经常回顾,加深理解和记忆。

3、会练

数学不同于其他学科,只把概念、定理、公理、公式等进行熟记还不够,有时无法解决一些实际问题,只有通过不断的练习才能做到熟能生巧,减少运算中出现的错误。此环节要求学生做题要快,准确率要高,书写干净利落。让学生养成学习中认真、严谨的科学态度。

三、课后要认真复习,保证作业质量

刚步入初中阶段,学生每天都要接触很多科目的学习,有时候会感觉到力不从心,不会合理分配时间,这就要求学生在当天课业结束后马上进行知识的反馈,即及时完成老师布置的作业任务。在这一环节需要学生做到:巩固当天学习的知识,反思好老师的授课内容,整理好易错的知识。

1、巩固

完成作业前一定要再阅读一遍教材,认真回顾老师在课堂上所讲的内容,然后再去写作业。作业一定要养成独立思考的好习惯,针对一道问题要学会多从不同的方法,不同的角度入手,多从典型题目中探索多种解题方法,从中得到联想和启发。

在较短的时间里进行知识的巩固,对知识的理解及运用的效果是最佳的,反之则效果不会明显,要做到学而时习之。

2、反思

学生在完成学习任务的基础上还要进行知识的梳理,多树立数学解题的思想,比如分类的思想,整体的思想,方程的思想,数形结合的思想,方程的思想函数的思想等常用的解题思想。同时还要对重点习题多问几个为什么,如果把这些题目中所示的已知条件改变、添加一些条件,结论与条件互换,原来的结论还存在吗?只有多多练习才会做到游刃有余。

3、整理

对于数学学习中,如试卷、作业中出现的错误,一定要及时弄懂,分析好自己做错题目的原因,最好在错题本中及时记录下来,每隔一段时间就巩固一下。在学习中绝对不能让同样的错误出现第二次。

数学是人类文化的重要组成部分,良好的数学素养是当代社会每个公民应该具备的基本素养。作为促进学生全面发展教育的重要组成部分,数学教学既要是学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的思维能力和创造能力。学习数学要做到有方法、有计划与合理的安排,只有做到循序渐进,才会获得最终的胜利。

猜你喜欢:

1. 初中数学公式知识大全

2. 初中数学规律题公式

3. 中考数学知识点总结

4. 初中数学公式怎么记

5. 初中数学考试规律题公式

C. 贵州会考数学公式

贵州会考常用39个数学公式,详见链接https://wenku..com/view/3143a0ddb9f3f90f76c61b4e.html。
高中会考是以测量和评价学生学业水平、学校教学质量为主要目的的水平考试,是评价普通高中教学质量的一项重要手段。它的实施使高考与高中毕业有为明显区分,既确保了高中教学质量,又能确保给高校招生输送合格的新生,在全国各地取得了明显的成效。

D. 高二数学会考考试必考知识点

想在学习中获得成功,也不是不是不可能的,只要我们能做到有永不言败+勤奋学习+有远大的理想+坚定的信念,坚强的意志,明确地目标,而想成功也是应该有这个配方研制而成的吧!以下是我给大家整理的 高二数学 会考考试必考知识点,希望能帮助到你!

高二数学会考考试必考知识点1

等腰直角三角形面积公式:S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。

若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积:S=ab/2。

且由等腰直角三角形性质可知:底边c上的高h=c/2,则三角面积可表示为:S=ch/2=c2/4。

等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等直角边夹一直角锐角45°,斜边上中线角平分线垂线三线合一。

高二数学会考考试必考知识点2

反函数:

(1)定义:

(2)函数存在反函数的条件:

(3)互为反函数的定义域与值域的关系:

(4)求反函数的步骤:

①将看成关于的方程,解出,若有两解,要注意解的选择;

②将互换,得;

③写出反函数的定义域(即的值域)。

(5)互为反函数的图象间的关系:

(6)原函数与反函数具有相同的单调性;

(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。

高二数学会考考试必考知识点3

1.定义法:

判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可。

2.转换法:

当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

3.集合法

在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:

若A?B,则p是q的充分条件。

若A?B,则p是q的必要条件。

若A=B,则p是q的充要条件。

若A?B,且B?A,则p是q的既不充分也不必要条件。

高二数学会考考试必考知识点相关 文章 :

★ 高二数学考试必考知识点

★ 高二数学常考知识点总结

★ 高二数学考点知识点总结复习大纲

★ 高二数学知识点总结

★ 高二数学上下学期知识点复习提纲

★ 高二数学会考集合知识点总结

★ 高二数学会考知识点总结(2)

★ 高二数学复习必背知识点归纳

★ 高二数学会考集合知识点总结(2)

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

E. 谁能帮我总结高中数学会考知识点

2009年高中数学会考复习必背知识点
第一章 集合与简易逻辑 1、含n个元素的集合的所有子集有 个
第二章 函数 1、求 的反函数:解出 , 互换,写出 的定义域;
2、对数:①:负数和零没有对数,②、1的对数等于0: ,③、底的对数等于1: ,
④、积的对数: , 商的对数: ,
幂的对数: ; ,
第三章 数列
1、数列的前n项和: ; 数列前n项和与通项的关系:
2、等差数列 :(1)、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个常数;
(2)、通项公式: (其中首项是 ,公差是 ;)
(3)、前n项和:1. (整理后是关于n的没有常数项的二次函数)
(4)、等差中项: 是 与 的等差中项: 或 ,三个数成等差常设:a-d,a,a+d
3、等比数列:(1)、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数,( )。
(2)、通项公式: (其中:首项是 ,公比是 )
(3)、前n项和:
(4)、等比中项: 是 与 的等比中项: ,即 (或 ,等比中项有两个)
第四章 三角函数
1、弧度制:(1)、 弧度,1弧度 ;弧长公式: ( 是角的弧度数)
2、三角函数 (1)、定义:
3、特殊角的三角函数值
的角度

的弧度





4、同角三角函数基本关系式:
5、诱导公式:(奇变偶不变,符号看象限) 正弦上为正;余弦右为正;正切一三为正
公式二: 公式三: 公式四: 公式五:

6、两角和与差的正弦、余弦、正切
: :
: :
: :
7、辅助角公式:

8、二倍角公式:(1)、 : )




(2)、降次公式:(多用于研究性质)

9、三角函数:
函数 定义域 值域 周期性 奇偶性 递增区间 递减区间

[-1,1]
奇函数

[-1,1]
偶函数

函数 定义域 值域 振幅 周期 频率 相位 初相 图象

[-A,A] A

五点法
10、解三角形:(1)、三角形的面积公式:
(2)正弦定理:
(3)、余弦定理:
求角:
第五章、平面向量 1、坐标运算:设 ,则
数与向量的积:λ ,数量积:
(2)、设A、B两点的坐标分别为(x1,y1),(x2,y2),则 .(终点减起点)
;向量 的模| |: ;
(3)、平面向量的数量积: , 注意: , ,
(4)、向量 的夹角 ,则 ,
2、重要结论:(1)、两个向量平行: ,
(2)、两个非零向量垂直 ,
(3)、P分有向线段 的:设P(x,y) ,P1(x1,y1) ,P2(x2,y2) ,且 ,
则定比分点坐标公式 , 中点坐标公式
第六章:不等式
1、 均值不等式:(1)、 ( )
(2)、a>0,b>0; 或 一正、二定、三相等
2、解指数、对数不等式的方法:同底法,同时对数的真数大于0;
第七章:直线和圆的方程
1、斜 率: , ;直线上两点 ,则斜率为
2、直线方程:(1)、点斜式: ;(2)、斜截式: ;
(3)、一般式: (A、B不同时为0) 斜率 , 轴截距为
3、两直线的位置关系(1)、平行: 时 , ;
垂直: ;
(2)、到角范围: 到角公式 : 都存在,
夹角范围: 夹角公式: 都存在,
(3)、点到直线的距离公式 (直线方程必须化为一般式)
6、圆的方程:(1)、圆的标准方程 ,圆心为 ,半径为
(2)圆的一般方程 (配方: )
时,表示一个以 为圆心,半径为 的圆;
第八章:圆锥曲线 1、椭圆标准方程: ,
半焦距: , 离心率的范围: ,准线方程: ,参数方程:
2、双曲线标准方程: ,半焦距: ,离心率的范围:
准线方程: ,渐近线方程用 求得: ,等轴双曲线离心率
3、抛物线: 是焦点到准线的距离 ,离心率:
:准线方程 焦点坐标 ; :准线方程 焦点坐标
:准线方程 焦点坐标 ; :准线方程 焦点坐标
第九章 直线 平面 简单的几何体
1、长方体的对角线长 ;正方体的对角线长
2、两点的球面距离求法:球心角的弧度数乘以球半径,即 ;
3、球的体积公式: ,球的表面积公式:
4、柱体 ,锥体 ,锥体截面积比:
第十章 排列 组合 二项式定理
1、排列:(1)、排列数公式: = = .( , ∈N*,且 ).0!=1
(3)、全排列:n个不同元素全部取出的一个排列; ;
2、组合:
(1)、组合数公式: = = = ( , ∈N*,且 ); ;
(3)组合数的两个性质: = ; + = ;
3、二项式定理 :(1)、定理: ;
(2)、二项展开式的通项公式(第r +1项):
各二项式系数和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n (表示含n个元素的集合的所有子集的个数)。
奇数项二项式系数的和=偶数项二项式系数的和:Cn0+Cn2+Cn4+ Cn6+…=Cn1+Cn3+Cn5+ Cn7+…=2n -1
第十一章:概率:
1、概率(范围):0≤P(A) ≤1(必然事件: P(A)=1,不可能事件: P(A)=0)
2、等可能性事件的概率: .
3、互斥事件有一个发生的概率:A,B互斥: P(A+B)=P(A)+P(B);A、B对立:P(A)+ P(B)=1
4、独立事件同时发生的概率:独立事件A,B同时发生的概率:P(A•B)= P(A)•P(B).
n次独立重复试验中某事件恰好发生k次的概率

F. 高中数学会考公式有哪些

高中数学会考公式如下:

1、指数式与对数式的互化式:logₐN=b,ₐᵇ=N(a>0,a≠1,N>0)。

2、(ab)ʳ=aʳbʳ(a>0,b>0,r∈Q)。

3、二倍角公式:tan2A=2tanA/[1-(tanA)^2];cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2;sin2A=2sinA*cosA。

4、圆的一般方程:x²+y²+Dx+Ey+F=0(D²+E²-4F>0)。

5、n个互斥事件分别发生的概率的和P(A₁+A₂+A₃...+Aₙ)=P(A₁)+P(A₂)+...+P(Aₙ)。

G. 高中会考数学一些重要公式

抛物线:y = ax *+ bx + c
就是y等于ax 的平方加上 bx再加上 c
a > 0时开口向上
a < 0时开口向下
c = 0时抛物线经过原点
b = 0时抛物线对称轴为y轴
还有顶点式y = a(x+h)* + k
就是y等于a乘以(x+h)的平方+k
-h是顶点坐标的x
k是顶点坐标的y
一般用于求最大值与最小值
抛物线标准方程:y^2=2px
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
编辑本段|回到顶部关于圆的公式 体积=4/3(pi)(r^3)
面积=(pi)(r^2)
周长=2(pi)r
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
(一)椭圆周长计算公式
椭圆周长公式:L=2πb+4(a-b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式
椭圆面积公式: S=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。
椭圆形物体 体积计算公式椭圆 的 长半径*短半径*PAI*高sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)] 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a| 根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理
判别式 b2-4a=0 注:方程有相等的两实根
b2-4ac>0 注:方程有两个不相等的个实根
b2-4ac<0 注:方程有共轭复数根 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h弧长计算公式:l=nπr/180
145扇形面积公式:s扇形=nπr2/360=lr/2
146内公切线长= d-(r-r) 外公切线长= d-(r+r)

H. 初中数学必背公式大全及知识点整理

很多同学都会需要整理知识点,我整理了初中数学的公司及一些常考知识点,大家一起来看看吧。

数学常用公式

一元二次方程的解法

大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解

(1)配方法

利用配方,使方程变为完全平方公式,在用直接开平方法去求出解

(2)分解因式法

提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解

(3)公式法

这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a

相交线与平行线

1、相交线

对顶角相等。

过一点有且只有一条直线与已知直线垂直。

连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。

2、平行线

经过直线外一点,有且只有一条直线与这条直线平行。

如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

直线平行的条件:

两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

3、平行线的性质

两条平行线被第三条直线所截,同位角相等。

两条平行线被第三条直线所截,内错角相等。

两条平行线被第三条直线所截,同旁内角互补。

判断一件事情的语句,叫做命题。

以上就是一些初中数学知识点整理,希望对大家有所帮助。

I. 高三数学会考知识点整理大全

奋斗也就是我们平常所说的努力。那种不怕苦,不怕累的精神在学习中也是需要的。看到了一道有意思的题,就不惜一切代价攻克它。为了学习,废寝忘食一点也不是难事,只要你做到了有兴趣。下面是我给大家带来的 高三数学 会考知识点整理大全,以供大家参考!

高三数学会考知识点整理大全

定义:

形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域:

当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。

性质:

对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

排除了为0这种可能,即对于x

排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

高三数学复习知识点

考点一:集合与简易逻辑

集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查 抽象思维 能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示 方法 的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数

函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量

一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新 热点 ”题型、

考点四:数列与不等式

不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查、在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目、

考点五:立体几何与空间向量

一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求)、在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。

考点六:解析几何

一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的`位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。

考点七:算法复数推理与证明

高考对算法的考查以选择题或填空题的形式出现,或给解答题披层“外衣”、考查的热点是流程图的识别与算法语言的阅读理解、算法与数列知识的网络交汇命题是考查的主流、复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大、推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。对于理科,数学归纳法可能作为解答题的一小问

高三数学复习知识点最新

一、充分条件和必要条件

当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。

二、充分条件、必要条件的常用判断法

1、定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可

2、转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

3、集合法

在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:

若A?B,则p是q的充分条件。

若A?B,则p是q的必要条件。

若A=B,则p是q的充要条件。

若A?B,且B?A,则p是q的既不充分也不必要条件。

三、知识扩展

1、四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:

(1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;

(2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;

(3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。

2、由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。


高三数学会考知识点整理大全相关 文章 :

★ 高三数学会考知识点

★ 高三数学考试必考的重要知识点归纳

★ 高三数学都有哪些知识点

★ 高三学年数学考试主要考的知识点

★ 高三期末数学考试知识点

★ 高三数学学业考试知识点归纳

★ 高三数学模拟考试知识点概括

★ 高考数学知识点复习考试指导文章

★ 2017中职高三数学公式大全

★ 高考数学攻略:7个易错点绝对值函数分析