当前位置:首页 » 基础知识 » 数学实数知识点
扩展阅读
怎么和女儿的男同学沟通 2024-09-20 05:29:38
常见的建筑基础有哪些 2024-09-20 04:50:17

数学实数知识点

发布时间: 2022-02-26 01:26:43

A. 人教版数学八年级上册第十三章实数知识点

实数包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。
数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。
实数可以分为有理数和无理数两类,或代数数和超越数两类,或正数,负数和零三类。实数集合通常用字母 R 或 R^n 表示。而 R^n 表示 n 维实数空间。实数是不可数的。实数是实分析的核心研究对象。
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n 为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
①相反数(只有符号不同的两个数,我们就说其中一个是另一个的相反数) 实数a的相反数是-a
②绝对值(在数轴上一个数所对应的点与原点0的距离) 实数a的绝对值是:
|a|= ①a为正数时,|a|=a
②a为0时, |a|=0
③a为负数时,|a|=a
③倒数 (两个实数的乘积是1,则这两个数互为倒数) 实数a的倒数是:1/a (a≠0)

与实数相对应的就是虚数:a+bi 表示

B. 八上的数学实数的知识结构图

一、实数

1、平方根和算术平方根的概念及其性质:

⑴概念:如果x2=a,那么x是a的平方根,记作:±;其中叫做a的算术平方根。

⑵性质:①当a≥0时,≥0;当a<0时,无意义;②()2=a;③=|a|。

2、立方根的概念及其性质:

⑴概念:若x3=a,那么x是a的立方根,记作:;

⑵性质:①=a;②()3=a;③=-

3、实数的概念及其分类:

⑴概念:实数是有理数和无理数的统称;

⑵分类:

4、与实数有关的概念:

在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。

5、算术平方根的运算律:

二、简单的平移与旋转

三、四边形:

1、多边形的分类

2、本章重要知识点:

四、位置的确定:

五、一次函数:

六、二元一次方程组:

1、解方程组的基本思路是消元,消元的基本方法是:①代入消元法;②加减消元法,此外还可用图象法;

2、方程组解应用题的关键是找相等关系;

3、解应用题时,按设、列、解、答四步进行;

4、每个二元一次方程都可以看成一次函数,求二元一次方程组的解,可看成求两个一次函数图象的交点。

七、数据的代表:

1、平均数的定义及计算方法:

⑴一般地,对于n个数x1,x2,…,xn,我们把叫做这n个数据的算术平均数,记作。

⑵如果在n个数中,x1出现了f1次,x2出现了f2次,…,xk出现了fk次,那么:叫做x1,x2,…,xk的加权平均数;

2、算术平均数与加权平均数的区别与联系:算术平均数是加权平均数的一种特殊情况,(它特殊在各项的权相等),当实际问题中,各项的权不相等时,计算平均数时就要采用加权平均数,当各项的权相等时,计算平均数就要采用算术平均数。

3、中位数和众数

⑴中位数指的是n个数据按大小顺序排列,处在最中间位置的一个数据(或最中间两个数据的平均数)。

⑵众数指的是一组数据中出现次数最多的那个数据。

以后你的学习有什么问题都可以到“求解答网”寻找,既快捷又方便

C. 有哪位前辈知道初二数学实数知识点求告

实数可以分为有理数和无理数,有理数可以是分数(有限小数和无限循环小数 比如1/3就是0.333…)和整数(负整数,正整数和0)
无理数(无限不循环小数,不能写成分数的形式,即两整数之比的形式,比如圆周率,2的平方根,3的平方根等)
实数也可以划分为正数,负数和0
正数(所有大于0的数,圆周率,2/3,7…只要大于0就是正数)
负数(所有小于0的数,-2/3,-7,-圆周率。只要是负的就行,小于0的)
0就是0。。。。。
所有的实数都能在数轴上表示
PS:满意请采纳,若不满意,可以继续追问

D. 求初二上数学 全等三角形and实数 两章的知识点整理

这是我上初三中考时老师总结的,因为原版是分专题的,我就把实数和全等三角形两个专题发上来了,不知道全不全。希望对你有帮助,祝你学习进步!

1.全等三角形:
两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

全等三角形的性质:
全等三角形的对应角相等、对应边相等。

三角形全等的判定公理及推论有:
(1)“边角边”简称“SAS” 有两边和它们的夹角对应相等的两个三角形全等
(2)“角边角”简称“ASA” 有两角和它们的夹边对应相等的两个三角形全等
(3)“边边边”简称“SSS” 有三边对应相等的两个三角形全等
(4)“角角边”简称“AAS” 有两角和其中一角的对边对应相等的两个三角形全等
(5)斜边和直角边相等的两直角三角形(HL)有斜边和一条直角边对应相等的两个直角三角形全等

角平分线推论:
角的内部到角的两边的距离相等的点在叫的平分线上。
有斜边和一条直角边对应相等的两个直角三角形全等

证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:
①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),
②、回顾三角形判定,搞清我们还需要什么
③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).

2、实数
无理数:
无限不循环小数叫无理数

平方根:
①如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根
②如果一个数x的平方等于a,那么这个数x就叫做a的平方根。
③一个正数有2个平方根,0的平方根为0,负数没有平方根。
④求一个数a的平方根运算,叫做开平方,其中a叫做被开方数。

立方根:
①如果一个数x的立方等于a,那么这个数x就叫做a的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数a的立方根的运算叫开立方,其中a叫做被开方数。

实数:
①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。

算术平方根:
一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。

平方根:
一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。

正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。

正数的立方根是正数;0的立方根是0;负数的立方根是负数。

数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

E. 初中数学知识点总结

很多的学生到了初中之后,发现自己的分数会有一定的下降,这可能是由于上初中之后数学科目的难度加大,所以分数会有一定的降低,那么初中数学应该怎样学?应该使用什么方式哪?

知识点

当老师在讲完内容之后会讲一些课外的内容,一般是定理、概念等等,会让你对这些知识更加的了解,所以如果对这类题目有问题的同学可以多看一些课外的题目,当然想要提升分数是离不开练习题的,想要多好就需要多做一些习题,但是不可以过多,需要边做边思考才可以,这样所学的知识就会运用出来.

以上就是初中数学应该怎样学习的内容,如果在这个阶段对自己分数不满意的同学可以借鉴一下以上的内容,或许会对你有一定的帮助,将自身的分数提升.

F. 初中数学“实数”那章的重要知识点及重点题型

典含义读音:shíshù 英语:real number
(一)数学名词。有理数和无理数的总称。
(二)确实的数字。【例】公司到底还有多少钱?请你告诉我实数! [编辑本段]数学术语 [编辑本段]1、基本概念实数包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。
数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。
实数可以分为有理数和无理数两类,或代数数和超越数两类,或正数,负数和零三类。实数集合通常用字母 R 或 R^n 表示。而 R^n 表示 n 维实数空间。实数是不可数的。实数是实分析的核心研究对象。
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n 为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
①相反数(只有符号不同的两个数,我们就说其中一个是另一个的相反数) 实数a的相反数是-a
②绝对值(在数轴上一个数所对应的点与原点0的距离) 实数a的绝对值是:
|a|= ①a为正数时,|a|=a
②a为0时, |a|=0
③a为负数时,|a|=-a
③倒数 (两个实数的乘积是1,则这两个数互为倒数) 实数a的倒数是:1/a (a≠0) [编辑本段]2、历史来源埃及人早在大约公元前1000年就开始运用分数了。在公元前500年左右,以毕达哥拉斯为首的希腊数学家们意识到了无理数存在的必要性。印度人于公元600年左右发明了负数,据说中国也曾发明负数,但稍晚于印度。
直到17世纪,实数才在欧洲被广泛接受。18世纪,微积分学在实数的基础上发展起来。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。 [编辑本段]3、相关定义从有理数构造实数
实数可以用通过收敛于一个唯一实数的十进制或二进制展开如 {3, 3.1, 3.14, 3.141, 3.1415,…} 所定义的序列的方式而构造为有理数的补全。实数可以不同方式从有理数构造出来。这里给出其中一种,其他方法请详见实数的构造。
公理的方法
设 R 是所有实数的集合,则:
集合 R 是一个域: 可以作加、减、乘、除运算,且有如交换律,结合律等常见性质。
域 R 是个有序域,即存在全序关系 ≥ ,对所有实数 x, y 和 z:
若 x ≥ y 则 x + z ≥ y + z;
若 x ≥ 0 且 y ≥ 0 则 xy ≥ 0。
集合 R 满足戴德金完备性,即任意 R 的非空子集 S (S∈R,S≠Φ),若 S 在 R 内有上界,那么 S 在 R 内有上确界。
最后一条是区分实数和有理数的关键。例如所有平方小于 2 的有理数的集合存在有理数上界,如 1.5;但是不存在有理数上确界(因为 √2 不是有理数)。
实数通过上述性质唯一确定。更准确的说,给定任意两个戴德金完备的有序域 R1 和 R2,存在从 R1 到 R2 的唯一的域同构,即代数学上两者可看作是相同的。 [编辑本段]4、相关性质基本运算
实数可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。
完备性
作为度量空间或一致空间,实数集合是个完备空间,它有以下性质:
所有实数的柯西序列都有一个实数极限。
有理数集合就不是完备空间。例如,(1, 1.4, 1.41, 1.414, 1.4142, 1.41421, ...) 是有理数的柯西序列,但没有有理数极限。实际上,它有个实数极限 √2。实数是有理数的完备化——这亦是构造实数集合的一种方法。
极限的存在是微积分的基础。实数的完备性等价于欧几里德几何的直线没有“空隙”。
“完备的有序域”
实数集合通常被描述为“完备的有序域”,这可以几种解释。
首先,有序域可以是完备格。然而,很容易发现没有有序域会是完备格。这是由于有序域没有最大元素(对任意元素 z,z + 1 将更大)。所以,这里的“完备”不是完备格的意思。
另外,有序域满足戴德金完备性,这在上述公理中已经定义。上述的唯一性也说明了这里的“完备”是指戴德金完备性的意思。这个完备性的意思非常接近采用戴德金分割来构造实数的方法,即从(有理数)有序域出发,通过标准的方法建立戴德金完备性。
这两个完备性的概念都忽略了域的结构。然而,有序群(域是种特殊的群)可以定义一致空间,而一致空间又有完备空间的概念。上述完备性中所述的只是一个特例。(这里采用一致空间中的完备性概念,而不是相关的人们熟知的度量空间的完备性,这是由于度量空间的定义依赖于实数的性质。)当然,R 并不是唯一的一致完备的有序域,但它是唯一的一致完备的阿基米德域。实际上,“完备的阿基米德域”比“完备的有序域”更常见。可以证明,任意一致完备的阿基米德域必然是戴德金完备的(当然反之亦然)。这个完备性的意思非常接近采用柯西序列来构造实数的方法,即从(有理数)阿基米德域出发,通过标准的方法建立一致完备性。
“完备的阿基米德域”最早是由希尔伯特提出来的,他还想表达一些不同于上述的意思。他认为,实数构成了最大的阿基米德域,即所有其他的阿基米德域都是 R 的子域。这样 R 是“完备的”是指,在其中加入任何元素都将使它不再是阿基米德域。这个完备性的意思非常接近用超实数来构造实数的方法,即从某个包含所有(超实数)有序域的纯类出发,从其子域中找出最大的阿基米德域。
高级性质
实数集是不可数的,也就是说,实数的个数严格多于自然数的个数(尽管两者都是无穷大)。这一点,可以通过康托尔对角线方法证明。实际上,实数集的势为 2ω(请参见连续统的势),即自然数集的幂集的势。由于实数集中只有可数集个数的元素可能是代数数,绝大多数实数是超越数。实数集的子集中,不存在其势严格大于自然数集的势且严格小于实数集的势的集合,这就是连续统假设。该假设不能被证明是否正确,这是因为它和集合论的公理不相关。
所有非负实数的平方根属于 R,但这对负数不成立。这表明 R 上的序是由其代数结构确定的。而且,所有奇数次多项式至少有一个根属于 R。这两个性质使 R成为实封闭域的最主要的实例。证明这一点就是对代数基本定理的证明的前半部分。
实数集拥有一个规范的测度,即勒贝格测度。
实数集的上确界公理用到了实数集的子集,这是一种二阶逻辑的陈述。不可能只采用一阶逻辑来刻画实数集:1. Löwenheim-Skolem定理说明,存在一个实数集的可数稠密子集,它在一阶逻辑中正好满足和实数集自身完全相同的命题;2. 超实数的集合远远大于 R,但也同样满足和 R 一样的一阶逻辑命题。满足和 R 一样的一阶逻辑命题的有序域称为 R 的非标准模型。这就是非标准分析的研究内容,在非标准模型中证明一阶逻辑命题(可能比在 R 中证明要简单一些),从而确定这些命题在 R 中也成立。
拓扑性质
实数集构成一个度量空间:x 和 y 间的距离定为绝对值 |x - y|。作为一个全序集,它也具有序拓扑。这里,从度量和序关系得到的拓扑相同。实数集又是 1 维的可缩空间(所以也是连通空间)、局部紧致空间、可分空间、贝利空间。但实数集不是紧致空间。这些可以通过特定的性质来确定,例如,无限连续可分的序拓扑必须和实数集同胚。以下是实数的拓扑性质总览:
令 a 为一实数。a 的邻域是实数集中一个包括一段含有 a 的线段的子集。
R 是可分空间。
Q 在 R 中处处稠密。
R的开集是开区间的联集。
R的紧子集是有界闭集。特别是:所有含端点的有限线段都是紧子集。
每个R中的有界序列都有收敛子序列。
R是连通且单连通的。
R中的连通子集是线段、射线与R本身。由此性质可迅速导出中间值定理。 [编辑本段]5、扩展与一般化实数集可以在几种不同的方面进行扩展和一般化:
最自然的扩展可能就是复数了。复数集包含了所有多项式的根。但是,复数集不是一个有序域。
实数集扩展的有序域是超实数的集合,包含无穷小和无穷大。它不是一个阿基米德域。
有时候,形式元素 +∞ 和 -∞ 加入实数集,构成扩展的实数轴。它是一个紧致空间,而不是一个域,但它保留了许多实数的性质。
希尔伯特空间的自伴随算子在许多方面一般化实数集:它们可以是有序的(尽管不一定全序)、完备的;它们所有的特征值都是实数;它们构成一个实结合代数。

G. 人教版数学初二 第十三章 实数 知识点归纳

我都不学好就了,自己上网看看

H. 数学初中知识点

初中数学知识点总结
一、基本知识
一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数
数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数 无理数:无限不循环小数叫无理数
平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。
3、代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式
整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一样。
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式
整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。
B、方程与不等式
1、方程与方程组
一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程
1)一元二次方程的二次函数的关系
大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了
2)一元二次方程的解法
大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程变为完全平方公式,在用直接开平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解
(3)公式法
这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步骤:
(1)配方法的步骤:
先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式
(2)分解因式法的步骤:
把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式
(3)公式法
就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c
4)韦达定理
利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a
也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用
5)一元一次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:
I当△>0时,一元二次方程有2个不相等的实数根;
II当△=0时,一元二次方程有2个相同的实数根;
III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)
2、不等式与不等式组
不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。②一个含有未知数的不等式的所有解,组成这个不等式的解集。③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。③求不等式组解集的过程,叫做解不等式组。
一元一次不等式的符号方向:
在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。
在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C
在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C<B*C(C<0)
如果不等式乘以0,那么不等号改为等号
所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;
3、函数
变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。②当B=0时,称Y是X的正比例函数。
一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数Y=KX的图象是经过原点的一条直线。③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。
二空间与图形
A、图形的认识
1、点,线,面
点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。
2、角
线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。
比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。
垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等;
判定定理:到线段2端点距离相等的点在这线段的垂直平分线上
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
正方形:一组邻边相等的矩形是正方形
性质:正方形具有平行四边形、菱形、矩形的一切性质
判定:1、对角线相等的菱形2、邻边相等的矩形
二、基本定理
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
14、两直线平行,同旁内角互补
15、定理 三角形两边的和大于第三边
16、推论 三角形两边的差小于第三边
17、三角形内角和定理 三角形三个内角的和等于180°
18、推论1 直角三角形的两个锐角互余
19、推论2 三角形的一个外角等于和它不相邻的两个内角的和
20、推论3 三角形的一个外角大于任何一个和它不相邻的内角
21、全等三角形的对应边、对应角相等
22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23、角边角公理( ASA)有两角和它们的夹边对应相等的 两个三角形全等
24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25、边边边公理(SSS) 有三边对应相等的两个三角形全等
26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27、定理1 在角的平分线上的点到这个角的两边的距离相等
28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29、角的平分线是到角的两边距离相等的所有点的集合
30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33、推论3 等边三角形的各角都相等,并且每一个角都等于60°
34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35、推论1 三个角都相等的三角形是等边三角形
36、推论 2 有一个角等于60°的等腰三角形是等边三角形
37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38、直角三角形斜边上的中线等于斜边上的一半
39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42、定理1 关于某条直线对称的两个图形是全等形
43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形
48、定理 四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理 n边形的内角的和等于(n-2)×180°
51、推论 任意多边的外角和等于360°
52、平行四边形性质定理1 平行四边形的对角相等
53、平行四边形性质定理2 平行四边形的对边相等
54、推论 夹在两条平行线间的平行线段相等
55、平行四边形性质定理3 平行四边形的对角线互相平分
56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形
58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60、矩形性质定理1 矩形的四个角都是直角
61、矩形性质定理2 矩形的对角线相等
62、矩形判定定理1 有三个角是直角的四边形是矩形
63、矩形判定定理2 对角线相等的平行四边形是矩形
64、菱形性质定理1 菱形的四条边都相等
65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66、菱形面积=对角线乘积的一半,即S=(a×b)÷2
67、菱形判定定理1 四边都相等的四边形是菱形
68、菱形判定定理2 对角线互相垂直的平行四边形是菱形
69、正方形性质定理1 正方形的四个角都是直角,四条边都相等
70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71、定理1 关于中心对称的两个图形是全等的
72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75、等腰梯形的两条对角线相等
76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形
77、对角线相等的梯形是等腰梯形
78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d
84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
87、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例
90、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94、判定定理3 三边对应成比例,两三角形相似(SSS)
95、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97、性质定理2 相似三角形周长的比等于相似比
98、性质定理3 相似三角形面积的比等于相似比的平方
99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

I. 高中数学知识点总结

《高中数学基础知识梳理(数学小飞侠)》网络网盘免费下载

链接:

提取码: i8i2

资源目录

01.集合例题讲解.mp4

01.集合进阶.mp4

02函数的值域.mp4

03函数的定义域与解析式.mp4

04函数的单调性.mp4

04函数的奇偶性.mp4

05指数运算与指数函数.mp4

07对数运算与对数函数.mp4

08幂函数突破.mp4

09函数零点专题.mp4

10含参二次函数与不等式专题.mp4

11二次函数根的分布专题.mp4

12空间几何体.mp4

13点线面位置关系进阶.mp4

14平行关系突破.mp4

15垂直关系突破.mp4

16空间几何关系综合.mp4

17直线方程突破.mp4

18圆的方程突破.mp4

19算法初步.mp4

20算法语句与算法案例.mp4

21数据的收集与频率分布.mp4

22常用统计量与相关关系.mp4

23古典概型概率.mp4

24几何概型概率.mp4

25任意角重难点.mp4

26三角函数定义与诱导公式.mp4

27三角函数图像及性质.mp4

28平面向量几何运算.mp4

29平面向量代数运算.mp4

30.三角恒等变换.mp4

31.三角函数计算专题.mp4

32.正弦定理与余弦定理.mp4

33.等差数列突破.mp4

34.等比数列突破.mp4

35.数列通项公式专题 .mp4

36.数列求和公式专题 .mp4

37.二次不等式与分式不等式.mp4

38.线性规划问题.mp4

39.基本不等式突破.mp4

40.逻辑用语专题.mp4

41.椭圆方程及其几何性质.mp4

42.双曲线方程及其性质.mp4

43.抛物线方程及其性质.mp4

44.直线与圆锥曲线综合.mp4

45.空间向量突破.mp4

46.导数的计算专题.mp4

47.导数的应用.mp4

48.导数的应用(二).mp4

49.定积分与微积分.mp4

50.复数专题.mp4

51.排列组合.mp4

52.二项式定理.mp4

53.随机变量及其变量.mp4

54回归分析与独立性检验.mp4

资源目录

01.集合例题讲解.mp4

01.集合进阶.mp4

02函数的值域.mp4

03函数的定义域与解析式.mp4

04函数的单调性.mp4

04函数的奇偶性.mp4

05指数运算与指数函数.mp4

07对数运算与对数函数.mp4

08幂函数突破.mp4

09函数零点专题.mp4

10含参二次函数与不等式专题.mp4

11二次函数根的分布专题.mp4

12空间几何体.mp4

13点线面位置关系进阶.mp4

14平行关系突破.mp4

15垂直关系突破.mp4

16空间几何关系综合.mp4

17直线方程突破.mp4

18圆的方程突破.mp4

19算法初步.mp4

20算法语句与算法案例.mp4

21数据的收集与频率分布.mp4

22常用统计量与相关关系.mp4

23古典概型概率.mp4

24几何概型概率.mp4

25任意角重难点.mp4

26三角函数定义与诱导公式.mp4

27三角函数图像及性质.mp4

28平面向量几何运算.mp4

29平面向量代数运算.mp4

30.三角恒等变换.mp4

31.三角函数计算专题.mp4

32.正弦定理与余弦定理.mp4

33.等差数列突破.mp4

34.等比数列突破.mp4

35.数列通项公式专题 .mp4

36.数列求和公式专题 .mp4

37.二次不等式与分式不等式.mp4

38.线性规划问题.mp4

39.基本不等式突破.mp4

40.逻辑用语专题.mp4

41.椭圆方程及其几何性质.mp4

42.双曲线方程及其性质.mp4

43.抛物线方程及其性质.mp4

44.直线与圆锥曲线综合.mp4

45.空间向量突破.mp4

46.导数的计算专题.mp4

47.导数的应用.mp4

48.导数的应用(二).mp4

49.定积分与微积分.mp4

50.复数专题.mp4

51.排列组合.mp4

52.二项式定理.mp4

53.随机变量及其变量.mp4

54回归分析与独立性检验.mp4

J. 请问初一下学期数学,实数的运算那一章有些什么知识点怎么算怎么化简

就是找关系,一般化简的式子都有一定的模式,注意转换和猜想就好,要勇于尝试