当前位置:首页 » 基础知识 » 九年级数学上册知识点全解
扩展阅读
法律知识讲座的策划书 2024-11-18 10:04:18

九年级数学上册知识点全解

发布时间: 2022-09-02 09:28:15

❶ 初三上册数学知识点 这些要点必须掌握

解一元二次方程

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。

1、直接开平方法:

用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=± m.

直接开平方法就是平方的逆运算.通常用根号表示其运算结果.

2、配方法

通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。

1.转化: 将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)

2.系数化1: 将二次项系数化为1

3.移项: 将常数项移到等号右侧

4.配方: 等号左右两边同时加上一次项系数一半的平方

5.变形: 将等号左边的代数式写成完全平方形式

6.开方: 左右同时开平方

7.求解: 整理即可得到原方程的根

3、公式法

公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

圆的对称性

1、圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

2、圆的中心对称性:圆是以圆心为对称中心的中心对称图形。

五、弧、弦、弦心距、圆心角之间的关系定理

1、圆心角:顶点在圆心的角叫做圆心角。

2、弦心距:从圆心到弦的距离叫做弦心距。

3、弧、弦、弦心距、圆心角之间的关系定理

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。

推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

切线的判定和性质

1、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

2、切线的性质定理:圆的切线垂直于经过切点的半径。

切线长定理

1、切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。

2、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

以上就是我为大家总结的初三上册 数学知识点 ,仅供参考,希望对大家有所帮助。

❷ 九年级数学知识点归纳总结

只有学习精彩,生命才精彩,只有学习成功,事业才成功。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。下面是我给大家整理的一些 九年级数学 的知识点,希望对大家有所帮助。

初三第一学期数学知识点

【角的度量与分类】

角的度量:度量角的大小,可用“度”作为度量单位。把一个圆周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。

角的分类:

(1)锐角:小于直角的角叫做锐角

(2)直角:平角的一半叫做直角

(3)钝角:大于直角而小于平角的角

(4)平角:把一条射线,绕着它的端点顺着一个方向旋转,当终止位置和起始位置成一直线时,所成的角叫做平角。

(5)周角:把一条射线,绕着它的端点顺着一个方向旋转,当终边和始边重合时,所成的角叫做周角。

(6)周角、平角、直角的关系是:l周角=2平角=4直角=360°

【锐角三角函数定义】

锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

正弦(sin)等于对边比斜边;sinA=a/c

余弦(cos)等于邻边比斜边;cosA=b/c

正切(tan)等于对边比邻边;tanA=a/b

余切(cot)等于邻边比对边;cotA=b/a

正割(sec)等于斜边比邻边;secA=c/b

余割(csc)等于斜边比对边。cscA=c/a

互余角的三角函数间的关系

sin(90°-α)=cosα,cos(90°-α)=sinα,

tan(90°-α)=cotα,cot(90°-α)=tanα。

平方关系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

初三数学知识点

1.有两条边相等的三角形是等腰三角形。

2.判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角形(简称:等角对等边)。

角平分线:把一个角平分的射线叫该角的角平分线。

定义中有几个要点要注意一下的,学习方法,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

性质定理:角平分线上的点到该角两边的距离相等

判定定理:到角的两边距离相等的点在该角的角平分线上

标准差与方差

极差是什么:一组数据中数据与最小数据的差叫做极差,即极差=值-最小值。

计算器——求标准差与方差的一般步骤:

1.打开计算器,按“ON”键,按“MODE”“2”进入统计(SD)状态。

2.在开始数据输入之前,请务必按“SHIFT”“CLR”“1”“=”键清除统计存储器。

3.输入数据:按数字键输入数值,然后按“M+”键,就能完成一个数据的输入。如果想对此输入同样的数据时,还可在步骤3后按“SHIET”“;”,后输入该数据出现的频数,再按“M+”键。

4.当所有的数据全部输入结束后,按“SHIFT”“2”,选择的是“标准差”,就可以得到所求数据的标准差;

5.标准差的平方就是方差。

数学初三上册知识点归纳

分式的基本性质与应用:

(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;

(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;

(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.

分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.

最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.

分式的乘除法法则:.

分式的乘方:.

负整指数计算法则:

(1)公式:a0=1(a≠0),a-n=(a≠0);

(2)正整指数的运算法则都可用于负整指数计算;

(3)公式:,;

(4)公式:(-1)-2=1,(-1)-3=-1.


九年级数学知识点归纳 总结 相关 文章 :

★ 初三数学知识点考点归纳总结

★ 九年级数学上册重要知识点总结

★ 初三数学知识点归纳总结

★ 九年级上册数学知识点归纳整理

★ 人教版九年级数学知识点归纳

★ 初三数学知识点归纳人教版

★ 初中九年级数学知识点总结归纳

★ 最新初三数学知识点总结大全

★ 初三中考数学知识点归纳总结

★ 九年级上册数学知识点归纳

❸ 初三上数学知识点归纳汇总

这篇文章我给大家归纳汇总了初三上册数学的重要知识点,一起看一下具体内容,供参考。

函数

1.反比例函数的性质

(1)反比例函数y=xk(k≠0)的图象是双曲线;

(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;

(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.

注意:反比例函数的图象与坐标轴没有交点.

2.画二次函数的图像

(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像

(2)理解二次函数的图像,体会数形结合思想;

(3)会画二次函数的大致图像。

3.一次函数

变量:因变量,自变量。

①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。

②当B=0时,称Y是X的正比例函数。

一次函数的图像:

①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

②正比例函数Y=KX的图象是经过原点的一条直线。

③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。

④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。

垂直平分线

1.经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

2.垂直平分线的性质

(1)垂直平分线垂直且平分其所在线段。

(2)垂直平分线上任意一点,到线段两端点的距离相等。

(3)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

(4)线段垂直平分线上的点和这条线段两个端点的距离相等。

逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)三角形三条边的垂直平分线相交于一点,该点叫外心(circumcenter),并且这一点到三个顶点的距离相等。(此时以外心为圆心,外心到顶点的长度为半径,所作的圆为此三角形的外接圆。)

3.垂直平分线的逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

不等式的判定

1.常见的不等号有“>”“<”“≤”“≥”及“≠”。分别读作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

2.在不等式“a>b”或“a<b”中,a叫作不等式的左边,b叫作不等式的右边;

3.不等号的开口所对的数较大,不等号的尖头所对的数较小;

4.在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等。

❹ 九年级上册数学知识点归纳

学习中的困难莫过于一节一节的台阶,虽然台阶很陡,但只要一步一个脚印的踏,攀登一层一层的台阶,才能实现学习的理想。下面就是我为大家梳理归纳的知识,希望能够帮助到大家。

九年级上册数学知识点归纳一

圆的定义

1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素

1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质

1、圆的对称性

(1)圆是图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:

平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O的半径为r,OP=d。

7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。

(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

(直角的外心就是斜边的中点。)

8、直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。

直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;

直线与圆没有交点,直线与圆相离。

9、中,A(x1,y1)、B(x2,y2)。

10、圆的切线判定。

(1)d=r时,直线是圆的切线。

切点不明确:画垂直,证半径。

(2)经过半径的外端且与半径垂直的直线是圆的切线。

切点明确:连半径,证垂直。

11、圆的切线的性质(补充)。

(1)经过切点的直径一定垂直于切线。

(2)经过切点并且垂直于这条切线的直线一定经过圆心。

12、切线长定理。

(1)切线长:从圆外一点引圆的两条切线,切点与这点之间连线段的长叫这个点到圆的切线长。

(2)切线长定理。

∵PA、PB切⊙O于点A、B

∴PA=PB,∠1=∠2。

13、内切圆及有关计算。

(1)内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。

(2)如图,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三边于点D、E、F。

求:AD、BE、CF的长。

分析:设AD=x,则AD=AF=x,BD=BE=5-x,CE=CF=7-x.

可得方程:5-x+7-x=6,解得x=3

(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。

求内切圆的半径r。

分析:先证得正方形ODCE,

得CD=CE=r

AD=AF=b-r,BE=BF=a-r

b-r+a-r=c

14、(1)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。

BC切⊙O于点B,AB为弦,∠ABC叫弦切角,∠ABC=∠D。

(2)相交弦定理。

圆的两条弦AB与CD相交于点P,则PA?PB=PC?PD。

(3)切割线定理。

如图,PA切⊙O于点A,PBC是⊙O的割线,则PA2=PB?PC。

(4)推论:如图,PAB、PCD是⊙O的割线,则PA?PB=PC?PD。

15、圆与圆的位置关系。

(1)外离:d>r1+r2,交点有0个;

外切:d=r1+r2,交点有1个;

相交:r1-r2

内切:d=r1-r2,交点有1个;

内含:0≤d

(2)性质。

相交两圆的连心线垂直平分公共弦。

相切两圆的连心线必经过切点。

16、圆中有关量的计算。

(1)弧长有L表示,圆心角用n表示,圆的半径用R表示。

(2)扇形的面积用S表示。

(3)圆锥的侧面展开图是扇形。

r为底面圆的半径,a为母线长。

九年级上册数学知识点归纳二

1二次根式:形如式子为二次根式;

性质:是一个非负数;

2二次根式的乘除:

3二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并.

4海伦-秦九韶公式:,S是的面积,p为.

1:等号两边都是整式,且只有一个未知数,未知数的次是2的方程.

2配 方法 :将方程的一边配成完全平方式,然后两边开方;

因式分解法:左边是两个因式的乘积,右边为零.

3一元二次方程在实际问题中的应用

4韦达定理:设是方程的两个根,那么有

1:一个图形绕某一点转动一个角度的图形变换

性质:对应点到中心的距离相等;

对应点与旋转中心所连的线段的夹角等于旋转角

旋转前后的图形全等.

2中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;

中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;

3关于原点对称的点的坐标

1圆、圆心、半径、直径、圆弧、弦、半圆的定义

2垂直于弦的直径

圆是图形,任何一条直径所在的直线都是它的对称轴;

垂直于弦的直径平分弦,并且平方弦所对的两条弧;

平分弦的直径垂直弦,并且平分弦所对的两条弧.

3弧、弦、圆心角

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.

4圆周角

在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;

半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径.

5点和圆的位置关系

点在圆外d>r

点在圆上d=r

点在圆内dR+r

外切d=R+r

相交R-r

九年级上册数学知识点归纳三

抛物线顶点坐标公式

y=ax2+bx+c(a=?0)的顶点坐标公式是(-b/2a,(4ac-b2)/4a)

y=ax2+bx的顶点坐标是(-b/2a,-b2/4a)

相关结论

过抛物线y^2=2px(p>0)焦点F作倾斜角为θ的直线L,L与抛物线相交于A(x1,y1),B(x2,y2),有

①x1 x2=p^2/4,y1 y2=—P^2,要在直线过焦点时才能成立;

②焦点弦长:|AB|=x1+x2+P=2P/[(sinθ)^2];

③(1/|FA|)+(1/|FB|)=2/P;

④若OA垂直OB则AB过定点M(2P,0);

⑤焦半径:|FP|=x+p/2(抛物线上一点P到焦点F距离等于到准线L距离);

⑥弦长公式:AB=√(1+k^2) │x2-x1│;

⑦△=b^2-4ac;

⑧由抛物线焦点到其切线的垂线距离,是焦点到切点的距离,与到顶点距离的比例中项;

⑨标准形式的抛物线在x0,y0点的切线就是:yy0=p(x+x0)。

⑴△=b^2-4ac>0有两个实数根;

⑵△=b^2-4ac=0有两个一样的实数根;

⑶△=b^2-4ac<0没实数根。


九年级上册数学知识点归纳相关 文章 :

★ 九年级数学上册重要知识点总结

★ 九年级上册数学知识点归纳整理

★ 人教版九年级数学知识点归纳

★ 初三上册数学知识点归纳

★ 初三数学知识点上册总结归纳

★ 初三数学知识点考点归纳总结

★ 初三九年级上册数学知识点

★ 初中九年级数学知识点总结

★ 初中九年级数学知识点总结归纳

★ 初中数学必备知识点总结初三数学上册一二章知识点

❺ 初三数学主要知识点

学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目 学习 方法 其实都是一样的,不断的记忆与练习,使知识刻在脑海里。下面是我给大家整理的一些初三数学的知识点,希望对大家有所帮助。

九年级下册数学知识点

★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。

☆内容提要☆

一、圆的基本性质

1.圆的定义(两种)

2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。

3.“三点定圆”定理

4.垂径定理及其推论

5.“等对等”定理及其推论

6.与圆有关的角:⑴圆心角定义(等对等定理)

⑵圆周角定义(圆周角定理,与圆心角的关系)

⑶弦切角定义(弦切角定理)

二、直线和圆的位置关系

1.切线的性质(重点)

2.切线的判定定理(重点)

3.切线长定理

三、圆换圆的位置关系

1.五种位置关系及判定与性质:(重点:相切)

2.相切(交)两圆连心线的性质定理

3.两圆的公切线:⑴定义⑵性质

四、与圆有关的比例线段

1.相交弦定理

2.切割线定理

五、与和正多边形

1.圆的内接、外切多边形(三角形、四边形)

2.三角形的外接圆、内切圆及性质

3.圆的外切四边形、内接四边形的性质

4.正多边形及计算

中心角:初中数学复习提纲

内角的一半:初中数学复习提纲(右图)

(解Rt△OAM可求出相关元素,初中数学复习提纲、初中数学复习提纲等)

六、一组计算公式

1.圆周长公式

2.圆面积公式

3.扇形面积公式

4.弧长公式

5.弓形面积的计算方法

6.圆柱、圆锥的侧面展开图及相关计算

七、点的轨迹

六条基本轨迹

八、有关作图

1.作三角形的外接圆、内切圆

2.平分已知弧

3.作已知两线段的比例中项

4.等分圆周:4、8;6、3等分

九、重要辅助线

1.作半径

2.见弦往往作弦心距

3.见直径往往作直径上的圆周角

4.切点圆心莫忘连

5.两圆相切公切线(连心线)

6.两圆相交公共弦

初三下册数学知识点 总结

一、锐角三角函数

正弦等于对边比斜边

余弦等于邻边比斜边

正切等于对边比邻边

余切等于邻边比对边

正割等于斜边比邻边

二、三角函数的计算

幂级数

c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)

c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)

它们的各项都是正整数幂的幂函数,其中c0,c1,c2,...cn...及a都是常数,这种级数称为幂级数.

泰勒展开式(幂级数展开法)

f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...

三、解直角三角形

1.直角三角形两个锐角互余。

2.直角三角形的三条高交点在一个顶点上。

3.勾股定理:两直角边平方和等于斜边平方

四、利用三角函数测高

1、解直角三角形的应用

(1)通过解直角三角形能解决实际问题中的很多有关测量问.

如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.

(2)解直角三角形的一般过程是:

①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).

②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.

初三数学复习资料

轴对称知识点

1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

3.角平分线上的点到角两边距离相等。

4.线段垂直平分线上的任意一点到线段两个端点的距离相等。

5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

6.轴对称图形上对应线段相等、对应角相等。

7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

8.点(x,y)关于x轴对称的点的坐标为(x,-y)

点(x,y)关于y轴对称的点的坐标为(-x,y)

点(x,y)关于原点轴对称的点的坐标为(-x,-y)

9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为三线合一。

10.等腰三角形的判定:等角对等边。

11.等边三角形的三个内角相等,等于60,

12.等边三角形的判定:三个角都相等的三角形是等腰三角形。

有一个角是60的等腰三角形是等边三角形

有两个角是60的三角形是等边三角形。

13.直角三角形中,30角所对的直角边等于斜边的一半。

不等式

1.掌握不等式的基本性质,并会灵活运用:

(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c,a-c>b-c。

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即:如果a>b,并且c>0,那么ac>bc。

(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac

2.比较大小:(a、b分别表示两个实数或整式)

一般地:

如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;

如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;

如果a

即:a>b<===>a-b>0;a=b<===>a-b=0;aa-b<0。

3.不等式的解集:能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式。

4.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左。


初三数学主要知识点相关 文章 :

★ 初三数学知识点考点归纳总结

★ 中考数学最全考点分析主要知识点

★ 初三数学知识点归纳总结

★ 初三数学中考复习重点章节知识点归纳

★ 九年级数学上册重要知识点总结

★ 最新初三数学知识点总结大全

★ 初三数学知识点整理

★ 初三数学知识点上册总结归纳

★ 初三数学复习知识点总结

❻ 九年级数学知识点归纳

各个科目都有自己的 学习 方法 ,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。下面是我给大家整理的一些 九年级数学 知识点的学习资料,希望对大家有所帮助。

初三下册数学知识点 总结

半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。

如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

九年级下册数学知识点

知识点1.概念

把形状相同的图形叫做相似图形。(即对应角相等、对应边的比也相等的图形)

解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.

(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.

(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.

知识点2.比例线段

对于四条线段a,b,c,d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.

知识点3.相似多边形的性质

相似多边形的性质:相似多边形的对应角相等,对应边的比相等.

解读:(1)正确理解相似多边形的定义,明确“对应”关系.

(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.

知识点4.相似三角形的概念

对应角相等,对应边之比相等的三角形叫做相似三角形.

解读:(1)相似三角形是相似多边形中的一种;

(2)应结合相似多边形的性质来理解相似三角形;

(3)相似三角形应满足形状一样,但大小可以不同;

(4)相似用“∽”表示,读作“相似于”;

(5)相似三角形的对应边之比叫做相似比.

知识点5.相似三角的判定方法

(1)定义:对应角相等,对应边成比例的两个三角形相似;

(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.

(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.

(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.

(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.

(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.

知识点6.相似三角形的性质

(1)对应角相等,对应边的比相等;

(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;

(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.

(4)射影定理

苏教版九年级上册数学知识点归纳

1二次根式:形如式子为二次根式;

性质:是一个非负数;

2二次根式的乘除:

3二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并.

4海伦-秦九韶公式:,S是的面积,p为.

1:等号两边都是整式,且只有一个未知数,未知数的次是2的方程.

2配方法:将方程的一边配成完全平方式,然后两边开方;

因式分解法:左边是两个因式的乘积,右边为零.

3一元二次方程在实际问题中的应用

4韦达定理:设是方程的两个根,那么有

1:一个图形绕某一点转动一个角度的图形变换

性质:对应点到中心的距离相等;

对应点与旋转中心所连的线段的夹角等于旋转角

旋转前后的图形全等.

2中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;

中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;


九年级数学知识点归纳相关 文章 :

★ 初三数学知识点归纳总结

★ 九年级上册数学知识点归纳整理

★ 初三数学知识点考点归纳总结

★ 初三数学知识点归纳人教版

★ 九年级数学上册重要知识点总结

★ 九年级上册数学知识点归纳

★ 初中九年级数学知识点总结归纳

★ 初三数学中考复习重点章节知识点归纳

★ 初三数学知识点整理

❼ 初三上册数学知识点总结

读书,始读,未知有疑;其次,则渐渐有疑;中则节节是疑。过了这一番,疑渐渐释,以至融会贯通,都无所疑,方始是学。下面给大家分享一些初三上册数学知识点,希望对大家有所帮助。

初三上册数学知识点1

特殊平行四边形

1、菱形的性质与判定

①菱形的定义:

一组邻边相等的平行四边形叫做菱形。

②菱形的性质:

具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。

菱形是轴对称图形,每条对角线所在的直线都是对称轴。

③菱形的判别 方法 :

一组邻边相等的平行四边形是菱形。

对角线互相垂直的平行四边形是菱形。

四条边都相等的四边形是菱形。

2、矩形的性质与判定

①矩形的定义:

有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。

②矩形的性质:

具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)

③矩形的判定:

有一个内角是直角的平行四边形叫矩形(根据定义)。

对角线相等的平行四边形是矩形。

四个角都相等的四边形是矩形。

④推论:直角三角形斜边上的中线等于斜边的一半。

3、正方形的性质与判定

①正方形的定义:

一组邻边相等的矩形叫做正方形。

②正方形的性质:

正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)

③正方形常用的判定:

有一个内角是直角的菱形是正方形;

邻边相等的矩形是正方形;

对角线相等的菱形是正方形;

对角线互相垂直的矩形是正方形。

④正方形、矩形、菱形和平行边形四者之间的关系

⑤梯形定义:

一组对边平行且另一组对边不平行的四边形叫做梯形。

两条腰相等的梯形叫做等腰梯形。

一条腰和底垂直的梯形叫做直角梯形。

⑥等腰梯形的性质:

等腰梯形同一底上的两个内角相等,对角线相等。

同一底上的两个内角相等的梯形是等腰梯形。

三角形的中位线平行于第三边,并且等于第三边的一半。

夹在两条平行线间的平行线段相等。

在直角三角形中,斜边上的中线等于斜边的一半

初三上册数学知识点2

一元二次方程

1、认识一元二次方程

只含有一个未知数的整式方程,且都可以化为ax2+bx+c=0

(a、b、c为常数,a≠0)的形式,这样的方程叫一元二次方程。

把ax2+bx+c=0(a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。

2、用配方法求解一元二次方程

①配方法 <即将其变为(x+m)2=0的形式>

配方法解一元二次方程的基本步骤:

把方程化成一元二次方程的一般形式;

将二次项系数化成1;

把常数项移到方程的右边;

两边加上一次项系数的一半的平方;

把方程转化成的形式;

两边开方求其根。

3、用公式法求解一元二次方程

②公式法 (注意在找abc时须先把方程化为一般形式)

4、用因式分解法求解一元二次方程

③分解因式法

把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)

5、一元二次方程的根与系数的关系

①根与系数的关系:

当b2-4ac>0时,方程有两个不等的实数根;

当b2-4ac=0时,方程有两个相等的实数根;

当b2-4ac<0时,方程无实数根。

②如果一元二次方程 ax2+bx+c=0 的两根分别为x1、x2,则有:

③一元二次方程的根与系数的关系的作用:

已知方程的一根,求另一根;

不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式:

已知方程的两根x1、x2,可以构造一元二次方程:

x2-(x1+x2)x+x1x2=0

已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程x2-(x1+x2)x+x1x2=0的根

6、应用一元二次方程

①在利用方程来解应用题时,主要分为两个步骤:

设未知数(在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);

寻找等量关系(一般地,题目中会含有一表述等量关系的 句子 ,只须找到此句话即可根据其列出方程)。

②处理问题的过程可以进一步概括为

初三上册数学知识点3

图形的相似

1、成比例线段

①线段的比

如果选用同一个长度单位量得两条线段AB, CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成

四条线段a、b、c、d中,如果a与b的比等于c与d的比,即

那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.

②注意点:

a:b=k,说明a是b的k倍

由于线段 a、b的长度都是正数,所以k是正数

比与所选线段的长度单位无关,求出时两条线段的长度单位要一致

除了a=b之外,a:b≠b:a

比例的基本性质:若

则ad=bc; 若ad=bc, 则

2、平行线分线段成比例

平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图2, l1 // l2 // l3 ,则

3. 黄金分割

如图1,点C把线段AB分成两条线段AC和BC,如果

那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.

黄金分割点是最优美、最令人赏心悦目的点.

4.相似多边形

① 含义:

一般地,形状相同的图形称为相似图形.

对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.

②注意点:

在相似多边形中,最为简单的就是相似三角形.

对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.

全等三角形是相似三角的特例,这时相似比等于1.

注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.

相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.

相似三角形周长的比等于相似比.

相似三角形面积的比等于相似比的平方.

相似多边形的周长等于相似比;面积比等于相似比的平方.

5、探索三角形相似的条件

①相似三角形的判定方法:

②平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

③相似三角形的判定定理的证明

④利用相似三角形测高

⑤相似三角形的性质

⑥图形的位似

初三上册数学知识点 总结 相关 文章 :

★ 九年级数学上册重要知识点总结

★ 初三数学知识点考点归纳总结

★ 九年级上册数学知识点归纳整理

★ 初三数学知识点归纳总结

★ 初三数学知识点总结

★ 初三上册数学知识点盘点与数学学习方法

★ 初三数学重要公式知识大全

★ 初三九年级上册数学知识点

★ 初中数学必备知识点总结初三数学上册一二章知识点

★ 人教版九年级数学知识点归纳

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

❽ 苏教版九年级数学知识点归纳

课堂临时报佛脚,不如 课前预习 好。其实任何学科都是一样的,学习任何一门学科,勤奋都是最好的 学习 方法 ,没有之一,书山有路勤为径。下面是我给大家整理的一些 九年级数学 的知识点,希望对大家有所帮助。

初三数学上册知识点归纳

二元一次方程组

1、定义:含有两个未知数,并且未知项的次数是1的整式方程叫做二元一次方程。

2、二元一次方程组的解法

(1)代入法

由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。

(2)因式分解法

在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。

(3)配方法

将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。

(4)韦达定理法

通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。

(5)消常数项法

当方程组的两个方程都缺一次项时,可用消去常数项的方法解。

解一元二次方程

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。

1、直接开平方法:

用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m.

直接开平方法就是平方的逆运算.通常用根号表示其运算结果.

2、配方法

通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。

(1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)

(2)系数化1:将二次项系数化为1

(3)移项:将常数项移到等号右侧

(4)配方:等号左右两边同时加上一次项系数一半的平方

(5)变形:将等号左边的代数式写成完全平方形式

(6)开方:左右同时开平方

(7)求解:整理即可得到原方程的根

九年级下册数学知识点归纳

一、平行线分线段成比例定理及其推论:

1.定理:三条平行线截两条直线,所得的对应线段成比例。

2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。

二、相似预备定理:

平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。

三、相似三角形:

1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。

2.性质:(1)相似三角形的对应角相等;

(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;

(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。

说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。

3.判定定理:

(1)两角对应相等,两三角形相似;

(2)两边对应成比例,且夹角相等,两三角形相似;

(3)三边对应成比例,两三角形相似;

(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。

初三数学复习资料

因式分解的方法

1.十字相乘法

(1)把二次项系数和常数项分别分解因数;

(2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数;

(3)确定合适的十字图并写出因式分解的结果;

(4)检验。

2.提公因式法

(1)找出公因式;

(2)提公因式并确定另一个因式;

①找公因式可按照确定公因式的方法先确定系数再确定字母;

②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;

③提完公因式后,另一因式的项数与原多项式的项数相同。

3.待定系数法

(1)确定所求问题含待定系数的一般解析式;

(2)根据恒等条件,列出一组含待定系数的方程;

(3)解方程或消去待定系数,从而使问题得到解决。


苏教版九年级数学知识点归纳相关 文章 :

★ 苏教版九年级数学知识点整理

★ 九年级新学期数学知识点苏教版

★ 苏教版初三年级上册数学知识点

★ 九年级数学知识点

★ 初三数学的知识点总结

★ 初三数学的知识点归纳

★ 初三数学知识点归纳

★ 苏教版初中数学总复习资料有哪些

★ 初二数学知识点苏教版

★ 初一数学知识点上册苏教版

❾ 初三数学人教版知识点归纳

没有加倍的勤奋,就没有才能,也没有天才。天才其实就是可以持之以恒的人。勤能补拙是良训,一分辛苦一分才,勤奋一直都是学习通向成功的最好捷径。下面是我给大家整理的一些初三数学知识点,希望对大家有所帮助。

初三新学期数学知识点

一元一次方程:

①在一个方程中,只含有一个未知数,并且未知数的指数是

1、这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:

去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的 方法 :代入消元法/加减消元法。

2、不等式与不等式组

不等式:

①用符号”=“号连接的式子叫不等式。

②不等式的两边都加上或减去同一个整式,不等号的方向不变。

③不等式的两边都乘以或者除以一个正数,不等号方向不变。

④不等式的两边都乘以或除以同一个负数,不等号方向相反。

不等式的解集:

①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。

一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

一元一次不等式组:

①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

③求不等式组解集的过程,叫做解不等式组。

3、函数

变量:因变量,自变量。在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:

①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。

②当B=0时,称Y是X的正比例函数。

一次函数的图象:

①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

②正比例函数Y=KX的图象是经过原点的一条直线。

③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。

④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。

初三数学上册知识点归纳

二元一次方程组

1、定义:含有两个未知数,并且未知项的次数是1的整式方程叫做二元一次方程。

2、二元一次方程组的解法

(1)代入法

由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。

(2)因式分解法

在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。

(3)配方法

将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。

(4)韦达定理法

通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。

(5)消常数项法

当方程组的两个方程都缺一次项时,可用消去常数项的方法解。

解一元二次方程

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。

1、直接开平方法:

用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m.

直接开平方法就是平方的逆运算.通常用根号表示其运算结果.

2、配方法

通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。

(1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)

(2)系数化1:将二次项系数化为1

(3)移项:将常数项移到等号右侧

(4)配方:等号左右两边同时加上一次项系数一半的平方

(5)变形:将等号左边的代数式写成完全平方形式

(6)开方:左右同时开平方

(7)求解:整理即可得到原方程的根

3、公式法

公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

代数式

1、代数式与有理式

用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

整式和分式统称为有理式。

2、整式和分式

含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3、单项式与多项式

没有加减运算的整式叫做单项式。(数字与字母的积-包括单独的一个数或字母)

几个单项式的和,叫做多项式。

说明:

①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

4、同类项及其合并

条件:①字母相同;②相同字母的指数相同

合并依据:乘法分配律。

初三 数学 学习方法

概念课

要重视教学过程,要积极体验知识产生、发展的过程,要把知识的来龙去脉搞清楚,认识知识发生的过程,理解公式、定理、法则的推导过程,改变死记硬背的方法,这样我们就能从知识形成、发展过程当中,理解到学会它的乐趣;在解决问题的过程中,体会到成功的喜悦。

习题课

要掌握“听一遍不如看一遍,看一遍不如做一遍,做一遍不如讲一遍,讲一遍不如辩一辩”的诀窍。除了听老师讲,看老师做以外,要自己多做习题,而且要把自己的体会主动、大胆地讲给大家听,遇到问题要和同学、老师辩一辩,坚持真理,改正错误。在听课时要注意老师展示的解题思维过程,要多思考、多探究、多尝试,发现创造性的证法及解法,学会“小题大做”和“大题小做”的解题方法,即对选择题、填空题一类的客观题要认真对待绝不粗心大意,就像对待大题目一样,做到下笔如有神;对综合题这样的大题目不妨把“大”拆“小”,以“退”为“进”,也就是把一个比较复杂的问题,拆成或退为最简单、最原始的问题,把这些小题、简单问题想通、想透,找出规律,然后再来一个飞跃,进一步升华,就能凑成一个大题,即退中求进了。如果有了这种分解、综合的能力,加上有扎实的基本功还有什么题目难得倒我们。

复习课

在数学学习过程中,要有一个清醒的复习意识,逐渐养成良好的复习习惯,从而逐步学会学习。数学复习应是一个 反思 性学习过程。要反思对所学习的知识、技能有没有达到课程所要求的程度;要反思学习中涉及到了哪些数学思想方法,这些数学思想方法是如何运用的,运用过程中有什么特点;要反思基本问题(包括基本图形、图像等),典型问题有没有真正弄懂弄通了,平时碰到的问题中有哪些问题可归结为这些基本问题;要反思自己的错误,找出产生错误的原因,订出改正的 措施 。在新学期大家准备一本数学学习“病例卡”,把平时犯的错误记下来,找出“病因”开出“处方”,并且经常拿出来看看、想想错在哪里,为什么会错,怎么改正,通过你的努力,到中考时你的数学就没有什么“病例”了。并且数学复习应在数学知识的运用过程中进行,通过运用,达到深化理解、发展能力的目的,因此在新的一年要在教师的指导下做一定数量的数学习题,做到举一反三、熟练应用,避免以“练”代“复”的题海战术。

初三数学人教版知识点归纳相关 文章 :

★ 初三数学知识点归纳人教版

★ 人教版九年级数学知识点归纳

★ 九年级人教版数学知识点整理

★ 初三物理知识点总结归纳(完整版)

★ 人教版九年级下册数学复习提纲

★ 各年级数学学习方法大全

★ 最新初三数学知识点总结大全

★ 九年级数学知识点归纳总结

★ 人教版初三数学知识点复习资料备战中考

★ 九年级数学重要知识点

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

❿ 初三数学上册重点知识点

伟大的成绩和辛勤劳动是成正比例的,有一分劳动就有一分收获,积累,从少到多,奇迹就可以创造出来。学习也是一样的,需要积累,从少变多。下面是我给大家整理的一些初三数学的知识点,希望对大家有所帮助。

初三新学期数学知识点

一元一次方程:

①在一个方程中,只含有一个未知数,并且未知数的指数是

1、这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:

去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的 方法 :代入消元法/加减消元法。

2、不等式与不等式组

不等式:

①用符号”=“号连接的式子叫不等式。

②不等式的两边都加上或减去同一个整式,不等号的方向不变。

③不等式的两边都乘以或者除以一个正数,不等号方向不变。

④不等式的两边都乘以或除以同一个负数,不等号方向相反。

不等式的解集:

①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。

一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

一元一次不等式组:

①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

③求不等式组解集的过程,叫做解不等式组。

初三数学上册知识点归纳

二元一次方程组

1、定义:含有两个未知数,并且未知项的次数是1的整式方程叫做二元一次方程。

2、二元一次方程组的解法

(1)代入法

由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。

(2)因式分解法

在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。

(3)配方法

将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。

(4)韦达定理法

通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。

(5)消常数项法

当方程组的两个方程都缺一次项时,可用消去常数项的方法解。

解一元二次方程

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。

1、直接开平方法:

用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m.

直接开平方法就是平方的逆运算.通常用根号表示其运算结果.

2、配方法

通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。

(1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)

(2)系数化1:将二次项系数化为1

(3)移项:将常数项移到等号右侧

(4)配方:等号左右两边同时加上一次项系数一半的平方

(5)变形:将等号左边的代数式写成完全平方形式

(6)开方:左右同时开平方

(7)求解:整理即可得到原方程的根

数学 学习方法 技巧

自学能力的培养是深化学习的必由之路

在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。

我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。我去佛山一中开家长会时,一中校长的一番话使我感触良多。他说:我是教物理的,学生物理学得好,不是我教出来的,而是他们自己悟出来的。当然,校长是谦虚的,但他说明了一个道理,学生不能被动地学习,而应主动地学习。一个班里几十个学生,同一个老师教,差异那么大,这就是学习主动性问题了。

自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。在老师讲新课前,能不能运用自己所学过的已掌握的旧知识去预习新课,结合新课中的新规定去分析、理解新的学习内容。由于数学知识的无矛盾性,你所学过的数学知识永远都是有用的,都是正确的,数学的进一步学习只是加深拓广而已。因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。有些同学为什么听老师讲新课时总有一种似懂非懂的感觉,或者是“一听就懂、一做就错”,就是因为没有预习,没有带着问题学,没有将“要我学”真正变为“我要学”,力求把知识变为自己的。学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。


初三数学上册重点知识点相关 文章 :

★ 初三数学知识点上册总结归纳

★ 初三数学上册知识点总结

★ 初三数学知识点考点归纳总结

★ 九年级上册数学知识点归纳整理

★ 初三上册数学知识点总结

★ 初三数学中考复习重点章节知识点归纳

★ 初三上册数学知识点归纳

★ 初三上册数学知识点

★ 初三数学复习知识点总结