A. 大一高数知识点有哪些
大一高数知识点有集合间的基本关系。
1、“包含”关系—子集。
2、相等”关系:A=B (5≥5,且5≤5,则5=5)。
3、不含任何元素的集合叫做空集,记为Φ。
高数一般指高等数学。高等数学是指相对于初等数学和中等数学而言,数学的对象及方法较为繁杂的一部分,中学的代数、几何以及简单的集合论初步、逻辑初步称为中等数学,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。
通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。工科、理科、财经类研究生考试的基础科目。
高等数学分为几个部分为:
1、函数 极限 连续。
2、一元函数微分学。
3、一元函数积分学。
4、向量代数与空间解析几何。
5、多元函数微分学。
6、多元函数积分学。
7、无穷级数。
8、常微分方程。
B. 大一高等数学知识点有哪些
大一高等数学知识点有:
1、全体有理数组成的集合叫做有理数集,记作Q。
2、将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是域函数表格法。
3、我们最常用的有五种基本初等函数,分别是:指数函数、对数函数、幂函数、三角函数及反三角函数。
4、函数的定义是如果当变量x在其变化围任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。变量×的变化围叫做这个函数的定义域。
5、单调有界的函数必有极限,有极限的函数不一定单调有界。
C. 大一高数必考知识点
大一高数必考知识点,大一里面的知识点有很多,你可以在必考知识点里头找一些重点去学习一下,因为谁也不知道大一到底能考出什么样的题材
D. 大一高数上学期期末知识点有哪些
大一上学期主要是积分:极限、导数、微分、定积分、不定积分。大一下学期是第一学期的加深:偏导数、二重积分、(无穷)级数。
学习数学的方法
1、学数学最重要的就是解题能力。要想会做数学题目,就要有大量的练习积累,知道各类型题目的解题步骤与方法,题目做多了就有手感了,再拿出类似的题目才会有解题思路。
2、其次是学会预习。解题思路不是直接就有的,也并非通过做几道简单的题目就能轻易获得,而是在预习过程中不断积累出来的。因此,预习在数学学习过程中起到了非常重要的作用。预习一方面能够让大家提前对数学知识有所了解,另一方面能够培养数学独立学习能力。
E. 大一高等数学知识点总结 考试要点有哪些
我们当时考试的时候,基本上所有课后习题掌握成功就可以,他这个难度并不高,除非是那种什么物理系、数学系。
高等数学知识点总结
高数大一上期末复习要点
第一章:1、极限(夹逼准则)。2、连续(学会用定义证明一个函数连续,判断间断点类型)
第二章:1、导数(学会用定义证明一个函数是否可导) 注:连续不一定可导,可导一定连续。2、求导法则(背)3、求导公式 也可以是微分公式。
第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)。2、洛必达法则 。3、泰勒公式 拉格朗日中值定理。4、曲线凹凸性、极值(高中学过,不需要过多复习)。5、曲率公式 曲率半径
第四章、第五章:积分,不定积分:1、两类换元法。2、分部积分法 (注意加C )定积分:1、定义。2、反常积分
第六章: 定积分的应用。主要有几类:极坐标、求做功、求面积、求体积、求弧长
第七章:向量问题不会有很难1、方向余弦。 2、向量积。 3、空间直线(两直线的夹角、线面夹角、求直线方程)。 4、空间平面 。5、空间旋转面(柱面)。
F. 大一高数知识点
这个有用么http://wenku..com/view/153d200af78a6529647d53c2.html
G. 大一高数知识点归纳有哪些
大一高数知识点归纳如下:
第一章:
1、极限(夹逼准则)。
2、连续(学会用定义证明一个函数连续,判断间断点类型)。
第二章:
1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续。
2、求导法则(背)。
3、求导公式 也可以是微分公式。
第三章:
1、微分中值定理(一定要熟悉并灵活运用第一节)。
2、洛必达法则 。
3、泰勒公式 拉格朗日中值定理。
4、曲线凹凸性、极值(高中学过,不需要过多复习)。
5、曲率公式 曲率半径。
第四章、第五章,积分,不定积分:
1、两类换元法。
2、分部积分法 (注意加C )。
3、定积分,定义。反常积分。
第六章:
定积分的应用。主要有几类:极坐标、求做功、求面积、求体积、求弧长。
第七章:
1、方向余弦。
2、向量积。
3、空间直线(两直线的夹角、线面夹角、求直线方程)。
4、空间平面 。
5、空间旋转面(柱面)。
H. 大一高数知识点归纳是什么
大一高数知识点如下:
1、泰勒公式是一个用函数在某点的信息描述其附近取值的公式。
2、若连续曲线y=f(x) 在 A(a,f(a)),B(b,f(b))两点间的每一点处都有不垂直于x轴的切线,则曲线在A,B间至少存在1点 ,使得该曲线在P点的切线与割线AB平行。
3、洛必达法则(L’Hôpital’s rule)是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。可以解决0/0型不定式极限和∞/∞型不定式极限以及其他拓展的极限问题。
4、函数的间断点:第一类间断点和第二类间断点,左、右极限都存在的是第一类间断点,第一类间断点有跳跃间断点和可去间断点。左右极限至少有一个不存在的间断点是第二类间断点。
5、极限的性质:局部有界性、唯一性、局部保号性、不等式性质(保序性)。
I. 大一高数知识点有哪些
大一高数知识点有:
一、集合间的基本关系
1、“包含”关系—子集。注意:有两种可能(1)A是B的一部分;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA。
2、“相等”关系:A=B (5≥5,且5≤5,则5=5)。
实例:设A={x|x2-1=0} B={-1,1}“元素相同则两集合相等”。即:①任何一个集合是它本身的子集。AA②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)。③如果AB,BC,那么AC。④如果AB同时BA,那么A=B。
3、不含任何元素的集合叫做空集,记为Φ。
规定:空集是任何集合的子集,空集是任何非空集合的真子集。有n个元素的集合,含有2n个子集,2n-1个真子集。
二、集合及其表示
1、集合的含义:
“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。
所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
2、集合的表示:
通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作dA。
有一些特殊的集合需要记忆:非负整数集(即自然数集)N正整数集N*或N+,整数集Z有理数集Q实数集R,集合的表示方法:列举法与描述法。
①列举法:{a,b,c……};②描述法:将集合中的元素的公共属性描述出来。如{xR| x-3>2},{x| x-3>2},{(x,y)|y=x2+1};③语言描述法:例:{不是直角三角形的三角形};
例:不等式x-3>2的解集是{xR|x-3>2}或{x|x-3>2};
A={(x,y)|y= x2+3x+2}与B={y|y= x2+3x+2}不同。集合A中是数组元素(x,y),集合B中只有元素y。
3、集合的三个特性
(1)无序性
指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。
例题:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:A=B
注意:该题有两组解。
(2)互异性
指集合中的元素不能重复,A={2,2}只能表示为{2}。
(3)确定性
集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。
三、集合间的基本关系
1、子集,A包含于B,有两种可能
(1)A是B的一部分。
(2)A与B是同一集合,A=B,A、B两集合中元素都相同。
反之:集合A不包含于集合B,记作。
如:集合A={1,2,3 },B={1,2,3,4},C={1,2,3,4},三个集合的关系可以表示为B=C。A是C的子集,同时A也是C的真子集。
2、真子集:如果AB,且A B那就说集合A是集合B的真子集,记作AB(或BA)。
3、不含任何元素的集合叫做空集,记为Φ。Φ是任何集合的子集。
4、有n个元素的集合,含有2n个子集,2n -1个真子集,含有2n -2个非空真子集。如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。
例:集合共有个子集。
练习:A={1,2,3},B={1,2,3,4},请问A集合有多少个子集,并写出子集,B集合有多少个非空真子集,并将其写出来。
解析:
集合A有3个元素,所以有23=8个子集。分别为:①不含任何元素的子集Φ;②含有1个元素的子集{1}{2}{3};③含有两个元素的子集{1,2}{1,3}{2,3};④含有三个元素的子集{1,2,3}。
集合B有4个元素,所以有24-2=14个非空真子集。具体的子集自己写出来。