当前位置:首页 » 基础知识 » 九上数学菱形知识点简单归纳
扩展阅读
如何辨别欧米茄经典款 2024-11-17 06:24:04

九上数学菱形知识点简单归纳

发布时间: 2022-08-30 11:58:19

A. 九年级上学期数学知识

九年级上学期数学期末复习计划

本次期末考试一共考查九上全书和九下一二章的内容,这些内容是:证明(二)、证明(三)、一元二次方程,视图与投影,反比例函数,频数与频率,三角函数,二次函数。
我的复习计划大致分三轮:
第一轮:将各章内容分类划分,细化各章知识点,采取学生先自主复习,作出复习手抄报,让学生总结各章重点及难点,以及本章中的重点例题和练习题,再利用上课时间对学生的总结全面细化,弥补其不足之处,提高复习效率,达到学生看见题目能够自己分析出考查哪章节知识点的目的。主要将各章内容分成以下几部分:
第一部分:三角函数;
第二部分:二次函数,反比例函数,一元二次方程;
第三部分:频数与频率
第四部分:证明(二),证明(三),视图与投影
其中一、二部分为重点,三四部分在习题中同时展开复习,大致需要一个星期时间。
第二轮:通过这次考试的题型有针对性地复习,利用教研活动各校所出模拟试题,整理分类,分为以下专题展开:
一、填空选择专题,全面考察各章细小知识点;
二、几何及三角函数专题;
三、二次函数及动点专题。
由于这些类型的题目是学生感到有难度,且在考试中最易丢分的题目,因此特别针对这些内容作专题训练,以强化学生的问题分析能力。大致四天左右时间。
第三轮:综合检测,选取三至四份质量比较高的综合试题,对学生进行实战练习,全面考查复习成果,讲评中注意精讲,尽量让学生自己解决问题。

B. 初中数学几何知识点总结

初中数学几何知识点总结

数学几何的空间思维能力是培养出来的,因此相关的知识点需要牢记,下面初中数学几何知识点总结是我想跟大家分享的,欢迎大家浏览。

初中数学几何知识点总结1

三角形的知识点

1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三角形的分类

3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7、高线、中线、角平分线的意义和做法

8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

9、三角形内角和定理:三角形三个内角的和等于180°

推论1直角三角形的两个锐角互余

推论2三角形的一个外角等于和它不相邻的两个内角和

推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半

10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

11、三角形外角的性质

(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

(2)三角形的一个外角等于与它不相邻的两个内角和;

(3)三角形的一个外角大于与它不相邻的任一内角;

(4)三角形的外角和是360°。

四边形(含多边形)知识点、概念总结

一、平行四边形的定义、性质及判定

1、两组对边平行的四边形是平行四边形。

2、性质:

(1)平行四边形的对边相等且平行

(2)平行四边形的对角相等,邻角互补

(3)平行四边形的对角线互相平分

3、判定:

(1)两组对边分别平行的四边形是平行四边形

(2)两组对边分别相等的四边形是平行四边形

(3)一组对边平行且相等的四边形是平行四边形

(4)两组对角分别相等的四边形是平行四边形

(5)对角线互相平分的四边形是平行四边形

4、对称性:平行四边形是中心对称图形

二、矩形的定义、性质及判定

1、定义:有一个角是直角的平行四边形叫做矩形

2、性质:矩形的四个角都是直角,矩形的对角线相等

3、判定:

(1)有一个角是直角的平行四边形叫做矩形

(2)有三个角是直角的四边形是矩形

(3)两条对角线相等的平行四边形是矩形

4、对称性:矩形是轴对称图形也是中心对称图形。

三、菱形的定义、性质及判定

1、定义:有一组邻边相等的平行四边形叫做菱形

(1)菱形的四条边都相等

(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角

(3)菱形被两条对角线分成四个全等的直角三角形

(4)菱形的面积等于两条对角线长的积的一半

2、s菱=争6(n、6分别为对角线长)

3、判定:

(1)有一组邻边相等的平行四边形叫做菱形

(2)四条边都相等的四边形是菱形

(3)对角线互相垂直的平行四边形是菱形

4、对称性:菱形是轴对称图形也是中心对称图形

四、正方形定义、性质及判定

1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形

2、性质:

(1)正方形四个角都是直角,四条边都相等

(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形

(4)正方形的对角线与边的夹角是45°

(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形

3、判定:

(1)先判定一个四边形是矩形,再判定出有一组邻边相等

(2)先判定一个四边形是菱形,再判定出有一个角是直角

4、对称性:正方形是轴对称图形也是中心对称图形

五、梯形的定义、等腰梯形的性质及判定

1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形

4、对称性:等腰梯形是轴对称图形

六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。

七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。

八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。

九、多边形

1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

2、多边形的内角:多边形相邻两边组成的角叫做它的内角。

3、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

4、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

5、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

6、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

7、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

8、公式与性质

多边形内角和公式:n边形的内角和等于(n-2)·180°

9、多边形外角和定理:

(1)n边形外角和等于n·180°-(n-2)·180°=360°

(2)边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

10、多边形对角线的条数:

(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形

(2)n边形共有n(n-3)/2条对角线

圆知识点、概念总结

1、不在同一直线上的三点确定一个圆。

2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1①(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2圆的两条平行弦所夹的弧相等

3、圆是以圆心为对称中心的中心对称图形

4、圆是定点的距离等于定长的点的集合

5、圆的内部可以看作是圆心的距离小于半径的点的集合

6、圆的外部可以看作是圆心的距离大于半径的点的集合

7、同圆或等圆的半径相等

8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

12、①直线L和⊙O相交d

②直线L和⊙O相切d=r

③直线L和⊙O相离d>r

13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

14、切线的性质定理:圆的切线垂直于经过切点的半径

15、推论1经过圆心且垂直于切线的直线必经过切点

16、推论2经过切点且垂直于切线的直线必经过圆心

17、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

18、圆的外切四边形的两组对边的和相等,外角等于内对角

19、如果两个圆相切,那么切点一定在连心线上

20、①两圆外离d>R+r

②两圆外切d=R+r

③两圆相交R-rr)

④两圆内切d=R-r(R>r)⑤两圆内含dr)

21、定理:相交两圆的连心线垂直平分两圆的公共弦

22、定理:把圆分成n(n≥3):

(1)依次连结各分点所得的多边形是这个圆的内接正n边形

(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

23、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

24、正n边形的每个内角都等于(n-2)×180°/n

25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

26、正n边形的面积Sn=pnrn/2p表示正n边形的周长

27、正三角形面积√3a/4a表示边长

28、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

29、弧长计算公式:L=n兀R/180

30、扇形面积公式:S扇形=n兀R^2/360=LR/2

31、内公切线长=d-(R-r)外公切线长=d-(R+r)

32、定理:一条弧所对的圆周角等于它所对的圆心角的一半

33、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

34、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

35、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

初中数学几何知识点总结2

直角三角形的知识点

基本简介:

等腰直角三角形的边角之间的关系:

(1)三角形三内角和等于180°;

(2)三角形的一个外角等于和它不相邻的两个内角之和;

(3)三角形的一外角大于任何一个和它不相邻的内角;

(4)三角形两边之和大于第三边,两边之差小于第三边;

(5)在同一个三角形内,大边对大角,大角对大边。

等腰直角三角形中的四条特殊的线段:角平分线,中线,高,中位线。

(1)三角形的角平分线的交点叫做三角形的内心,它是三角形内切圆的圆心,它到各边的距离相等。

(三角形的外接圆圆心,即外心,是三角形三边的垂直平分线的交点,它到三个顶点的距离相等)。

(2)三角形的.三条中线的交点叫三角形的重心,它到每个顶点的距离等于它到对边中点的距离的2倍。

(3)三角形的三条高的交点叫做三角形的垂心。

(4)三角形的中位线平行于第三边且等于第三边的二分之一。

(5)三角形的一条内角平分线与两条外角平分线交于一点,该点即为三角形的旁心。

注意:

①任意三角形的内心、重心都在三角形的内部。

②钝角三角形垂心、外心在三角形外部。

③直角三角形垂心、外心在三角形的边上。(直角三角形的垂心为直角顶点,外心为斜边中点。)

④锐角三角形垂心、外心在三角形内部。

⑤任意三角形的旁心一定在三角形的外部。

直角三角形的`相关线段:

1、中线:顶点与对边中点的连线,平分三角形。

2、角平分线:平分三角形一内角的线段。

3、高线:三角形中一顶点向对边作的垂线。

等腰梯形的知识点

定义

一组对边平行(不相等),另一组对边不平行但相等的四边形叫做等腰梯形。顾名思义,等腰梯形是两腰相等的梯形,它是梯形的一种特殊情况。

判定

1、以下判定可作为定理使用:

(1)一组对边相等且不平行,另一组对边平行的四边形是等腰梯形。

(2)同一底上的两个角相等的梯形是等腰梯形。

(3)对角线相等的`梯形是等腰梯形。

(4)两腰相等的梯形是等腰梯形。

以下判定不作为定理使用:

(1)对角线相等且能形成两个等腰三角形的四边形是等腰梯形。

(2)对角互补的梯形是等腰梯形。

面积公式

对于等腰梯形,其面积计算方法与普通梯形一致。用a、b、h分别表示梯形的上底、下底、高,S表示梯形的面积,则S=(a+b)×h÷2。

通俗的说,梯形的面积=(上底+下底)×高÷2。

特殊情况

1、若等腰梯形对角线互相垂直,则面积为1/2乘以两对角线长度的乘积。

2、在已知中位线情况下,等腰梯形的面积等于中位线的长度乘以高。

棱柱的知识点

棱柱的定义

有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的'侧面。两个侧面的公共边叫做棱柱的侧棱。侧面与底的公共顶点叫做棱柱的顶点,不在同一个面上的两个顶点的连线叫做棱柱的对角线,两个底面的距离叫做棱柱的高。

棱柱的性质

①棱柱的各个侧面都是平行四边形,所有的侧棱都相等,直棱柱的各个侧面都是矩形,正棱柱的各个侧面都是全等的矩形;

②与底面平行的截面是与底面对应边互相平行的全等多边形;

③过棱柱不相邻的两条侧棱的截面都是平行四边形。

棱台的定义

用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台,原棱锥的底面和截面分别叫做棱台的下底面和上底面。

棱锥的定义

如果一个多面体的一个面是多边形,其余各个面是有一个公共顶点的三角形,那么这个多面体叫棱锥。在棱锥中有公共顶点的各三角形叫做棱锥的侧面,棱锥中这个多边形叫做棱锥的底面,棱锥中相邻两个侧面的交线叫做棱锥的侧棱,棱锥中各侧棱的公共顶点叫棱锥的顶点。棱锥顶点到底面的距离叫棱锥的高,过棱锥不相邻的两条侧棱的截面叫棱锥的对角面。

按照棱锥底面多边形的边数可将棱锥分为:三棱锥

;

C. 初三上学期数学知识点总结

对于很多初三学生来说成绩不好的原因主要是因为数学成绩不好,那么对于初三学生来说想要学好数学那么平时一定要注重数学知识点的总结和归纳,下面我为大家提供初三上学期数学知识点总结,希望大家能够从中得到帮助。

初三数学知识点-二次根式

1、二次根式

式子)0(³aa叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a

必须是非负数。

2、最简二次根式

若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

化二次根式为最简二次根式的方法和步骤:

(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

3、同类二次根式

几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。

推荐阅读: 初三数学知识点总结

初三数学知识点-平行四边形的性质

①平行四边形的对边相等;

②平行四边形的对角相等;

③平行四边形的对角线互相平分.

初三数学知识点-矩形的性质

①矩形具有平行四边形的一切性质;

②矩形的四个角都是直角;

③矩形的对角线相等.

正方形的判定与性质

1.判定方法:

(1)邻边相等的矩形;

(2)邻边垂直的菱形;

(3)对角线垂直的矩形;

(4)对角线相等的菱形;

2.性质:

(1)边:四边相等,对边平行;

(2)角:四个角都相等都是直角,邻角互补;

(3)对角线互相平分、垂直、相等,且每长对角线平分一组内角。

初三数学知识点-二次根式

1、二次根式

式子叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。

2、最简二次根式

若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

化二次根式为最简二次根式的方法和步骤:

(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

3、同类二次根式

几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。

以上内容就是我为大家提供的初三上学期知识点,希望各位初三学生能够认真学习数学,逐渐提高成绩,最后在中考的时候取得优异的成绩。

D. 初三中考数学几何知识点归纳

对初三学生来说,他们很快就要迎来中考了,而中考是人生道路上第一个转折点。对每个初三学生来说,他们都希望自己能够在中考中取得好成绩,从而考上好高中。这次我给大家整理了初三中考数学几何知识点归纳,供大家阅读参考。

目录

初三中考数学几何知识点归纳

学好数学的几条建议

数学八种思维方法

初三中考数学几何知识点归纳

1.过两点有且只有一条直线

2.两点之间线段最短

3.同角或等角的补角相等

4.同角或等角的余角相等

5.过一点有且只有一条直线和已知直线垂直

6.直线外一点与直线上各点连接的所有线段中,垂线段最短

7.平行公理经过直线外一点,有且只有一条直线与这条直线平行

8.如果两条直线都和第三条直线平行,这两条直线也互相平行

9.同位角相等,两直线平行

10.内错角相等,两直线平行

11.同旁内角互补,两直线平行

12.两直线平行,同位角相等

13.两直线平行,内错角相等

14.两直线平行,同旁内角互补

15.定理三角形两边的和大于第三边

16.推论三角形两边的差小于第三边

17.三角形内角和定理三角形三个内角的和等于180°

18.推论1直角三角形的两个锐角互余

19.推论2三角形的一个外角等于和它不相邻的两个内角的和

20.推论3三角形的一个外角大于任何一个和它不相邻的内角

21.全等三角形的对应边、对应角相等

22.边角边公理有两边和它们的夹角对应相等的两个三角形全等

23.角边角公理有两角和它们的夹边对应相等的两个三角形全等

24.推论有两角和其中一角的对边对应相等的两个三角形全等

25边边边公理有三边对应相等的两个三角形全等

26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等

27.定理1:在角的平分线上的点到这个角的两边的距离相等

28.定理2:到一个角的两边的距离相同的点,在这个角的平分线上

29.角的平分线是到角的两边距离相等的所有点的集合

30.等腰三角形的性质定理等腰三角形的两个底角相等

31.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边

32.等腰三角形的顶角平分线、底边上的中线和高互相重合

33.推论3:等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35.推论1:三个角都相等的三角形是等边三角形

36.推论2:有一个角等于60°的等腰三角形是等边三角形

37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38.直角三角形斜边上的中线等于斜边上的一半

39.定理线段垂直平分线上的点和这条线段两个端点的距离相等

40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42.定理1:关于某条直线对称的两个图形是全等形

43.定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44.定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a b=c

47.勾股定理的逆定理如果三角形的三边长a、b、c有关系a b=c,那么这个三角形是直角三角形

48.定理四边形的内角和等于360°

49.四边形的外角和等于360°

50.多边形内角和定理n边形的内角的和等于(n-2)×180°

51.推论任意多边的外角和等于360°

52.平行四边形性质定理1平行四边形的对角相等

53.平行四边形性质定理2平行四边形的对边相等

54.推论夹在两条平行线间的平行线段相等

55.平行四边形性质定理3平行四边形的对角线互相平分56.平行四边形判定定理1两组对角分别相等的四边形是平行四边形

57.平行四边形判定定理2两组对边分别相等的四边形是平行四边形

58.平行四边形判定定理3对角线互相平分的四边形是平行四边形

59.平行四边形判定定理4一组对边平行相等的四边形是平行四边形

60.矩形性质定理1矩形的四个角都是直角

61.矩形性质定理2矩形的对角线相等

62.矩形判定定理1有三个角是直角的四边形是矩形

63.矩形判定定理2对角线相等的平行四边形是矩形

64.菱形性质定理1菱形的四条边都相等

65.菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角

66.菱形面积=对角线乘积的一半,即S=(a×b)÷2

67.菱形判定定理1:四边都相等的四边形是菱形

68.菱形判定定理2:对角线互相垂直的平行四边形是菱形

69.正方形性质定理1:正方形的四个角都是直角,四条边都相等

70.正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71.定理1关于中心对称的两个图形是全等的

72.定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73.逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74.等腰梯形性质定理等腰梯形在同一底上的两个角相等

75.等腰梯形的两条对角线相等

76.等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

77.对角线相等的梯形是等腰梯形

78.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79.推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰

80.推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边

81.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半

82.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a b)÷2S=L×h

83.(1)比例的基本性质如果a:b=c:d,那么ad=bc, 如果ad=bc,那么a:b=c:d

84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d

85.(3)等比性质如果a/b=c/d=…=m/n(b d … n≠0),那么(a c … m)/(b d … n)=a/b

86.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例

87.推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88.定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91.相似三角形判定定理1:两角对应相等,两三角形相似(ASA)

92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93.判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)

94.判定定理3:三边对应成比例,两三角形相似(SSS)

95.定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96.性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97.性质定理2:相似三角形周长的比等于相似比

98.性质定理3:相似三角形面积的比等于相似比的平方

99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

101.圆是定点的距离等于定长的点的集合

102.圆的内部可以看作是圆心的距离小于半径的点的集合

103.圆的外部可以看作是圆心的距离大于半径的点的集合

104.同圆或等圆的半径相等

105.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

<<<

学好数学的几条建议

1、要有学习数学的兴趣。“兴趣是最好的老师”。做任何事情,只要有兴趣,就会积极、主动去做,就会想方设法把它做好。但培养数学兴趣的关键是必须先掌握好数学基础知识和基本技能。有的同学老想做难题,看到别人上数奥班,自己也要去。如果这些同学连课内的基础知识都掌握不好,在里面学习只能滥竽充数,对学习并没有帮助,反而使自己失去学习数学的信心。我建议同学们可以看一些数学名人小 故事 、趣味数学等知识来增强学习的自信心。

2、要有端正的 学习态度 。首先,要明确学习是为了自己,而不是为了老师和父母。因此,上课要专心、积极思考并勇于发言。其次,回家后要认真完成作业,及时地把当天学习的知识进行复习,再把明天要学的内容做一下预习,这样,学起来会轻松,理解得更加深刻些。

3、要有“持之以恒”的精神。要使学习成绩提高,不能着急,要一步一步地进行,不要指望一夜之间什么都学会了。即使进步慢一点,只要坚持不懈,也一定能在数学的学习道路上获得成功!还要有“不耻下问”的精神,不要怕丢面子。其实无论知识难易,只要学会了,弄懂了,那才是最大的面子!

4、要注重学习的技巧和 方法 。不要死记硬背一些公式、定律,而是要靠分析、理解,做到灵活运用,举一反三。特别要重视课堂上学习新知识和分析练习的时候,不能思想开小差,管自己做与学习无关的事情。注意力一定要高度集中,并积极思考,遇到不懂题目时要及时做好记录,课后和同学进行探讨,做好查漏补缺。

5、要有善于观察、阅读的好习惯。只要我们做数学的有心人,细心观察、思考,我们就会发现生活中到处都有数学。除此之外,同学们还可以从多方面、多种 渠道 来学习数学。如:从电视、网络、《小学生数学报》、《数学小灵通》等报刊杂志上学习数学,不断扩展知识面。

6、要有自己的观点。现在,大部分同学遇到一些较难或不清楚的问题时,就不加思考,轻易放弃了,有的干脆听从老师、父母、书本的意见。即使是老师、长辈、书籍等权威,也不是没有一点儿失误的,我们要重视权威的意见,但绝不等于不加思考的认同。

7、要学会概括和积累。及时 总结 解题规律,特别是积累一些经典和特殊的题目。这样既可以学得轻松,又可以提高学习的效率和质量。

8、要重视其他学科的学习。因为各个学科之间是有着密切的联系,它对学习数学有促进的作用。如:学好语文对数学题目的理解有很大的帮助等等。

<<<

数学八种思维方法

1、代数思想这是基本的数学思想之一 ,小学阶段的设未知数x,初中阶段的一系列的用字母代表数,这都是代数思想,也是代数这门学科最基础的根!

2、数形结合是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国着名数学家华罗庚教授的 名言 ,是对数形结合的作用进行了高度的概括。初高中阶段有很多题都涉及到数形结合,比如说解题通过作几何图形标上数据,借助于函数图象等等都是数形给的体现。

3、转化思想在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。

4、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。

5、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

6、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

7、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。

8、极限思想方法事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。

<<<


初三中考数学几何知识点归纳相关 文章 :

★ 初三中考数学知识点归纳总结

★ 初三数学函数几何知识点总结

★ 初三数学知识点考点归纳总结

★ 人教版初三数学知识点归纳整理

★ 初三数学知识点总结归纳

★ 初三数学知识点归纳人教版

★ 初三数学知识点归纳总结

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

E. 初三上册数学知识点总结

读书,始读,未知有疑;其次,则渐渐有疑;中则节节是疑。过了这一番,疑渐渐释,以至融会贯通,都无所疑,方始是学。下面给大家分享一些初三上册数学知识点,希望对大家有所帮助。

初三上册数学知识点1

特殊平行四边形

1、菱形的性质与判定

①菱形的定义:

一组邻边相等的平行四边形叫做菱形。

②菱形的性质:

具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。

菱形是轴对称图形,每条对角线所在的直线都是对称轴。

③菱形的判别 方法 :

一组邻边相等的平行四边形是菱形。

对角线互相垂直的平行四边形是菱形。

四条边都相等的四边形是菱形。

2、矩形的性质与判定

①矩形的定义:

有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。

②矩形的性质:

具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)

③矩形的判定:

有一个内角是直角的平行四边形叫矩形(根据定义)。

对角线相等的平行四边形是矩形。

四个角都相等的四边形是矩形。

④推论:直角三角形斜边上的中线等于斜边的一半。

3、正方形的性质与判定

①正方形的定义:

一组邻边相等的矩形叫做正方形。

②正方形的性质:

正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)

③正方形常用的判定:

有一个内角是直角的菱形是正方形;

邻边相等的矩形是正方形;

对角线相等的菱形是正方形;

对角线互相垂直的矩形是正方形。

④正方形、矩形、菱形和平行边形四者之间的关系

⑤梯形定义:

一组对边平行且另一组对边不平行的四边形叫做梯形。

两条腰相等的梯形叫做等腰梯形。

一条腰和底垂直的梯形叫做直角梯形。

⑥等腰梯形的性质:

等腰梯形同一底上的两个内角相等,对角线相等。

同一底上的两个内角相等的梯形是等腰梯形。

三角形的中位线平行于第三边,并且等于第三边的一半。

夹在两条平行线间的平行线段相等。

在直角三角形中,斜边上的中线等于斜边的一半

初三上册数学知识点2

一元二次方程

1、认识一元二次方程

只含有一个未知数的整式方程,且都可以化为ax2+bx+c=0

(a、b、c为常数,a≠0)的形式,这样的方程叫一元二次方程。

把ax2+bx+c=0(a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。

2、用配方法求解一元二次方程

①配方法 <即将其变为(x+m)2=0的形式>

配方法解一元二次方程的基本步骤:

把方程化成一元二次方程的一般形式;

将二次项系数化成1;

把常数项移到方程的右边;

两边加上一次项系数的一半的平方;

把方程转化成的形式;

两边开方求其根。

3、用公式法求解一元二次方程

②公式法 (注意在找abc时须先把方程化为一般形式)

4、用因式分解法求解一元二次方程

③分解因式法

把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)

5、一元二次方程的根与系数的关系

①根与系数的关系:

当b2-4ac>0时,方程有两个不等的实数根;

当b2-4ac=0时,方程有两个相等的实数根;

当b2-4ac<0时,方程无实数根。

②如果一元二次方程 ax2+bx+c=0 的两根分别为x1、x2,则有:

③一元二次方程的根与系数的关系的作用:

已知方程的一根,求另一根;

不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式:

已知方程的两根x1、x2,可以构造一元二次方程:

x2-(x1+x2)x+x1x2=0

已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程x2-(x1+x2)x+x1x2=0的根

6、应用一元二次方程

①在利用方程来解应用题时,主要分为两个步骤:

设未知数(在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);

寻找等量关系(一般地,题目中会含有一表述等量关系的 句子 ,只须找到此句话即可根据其列出方程)。

②处理问题的过程可以进一步概括为

初三上册数学知识点3

图形的相似

1、成比例线段

①线段的比

如果选用同一个长度单位量得两条线段AB, CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成

四条线段a、b、c、d中,如果a与b的比等于c与d的比,即

那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.

②注意点:

a:b=k,说明a是b的k倍

由于线段 a、b的长度都是正数,所以k是正数

比与所选线段的长度单位无关,求出时两条线段的长度单位要一致

除了a=b之外,a:b≠b:a

比例的基本性质:若

则ad=bc; 若ad=bc, 则

2、平行线分线段成比例

平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图2, l1 // l2 // l3 ,则

3. 黄金分割

如图1,点C把线段AB分成两条线段AC和BC,如果

那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.

黄金分割点是最优美、最令人赏心悦目的点.

4.相似多边形

① 含义:

一般地,形状相同的图形称为相似图形.

对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.

②注意点:

在相似多边形中,最为简单的就是相似三角形.

对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.

全等三角形是相似三角的特例,这时相似比等于1.

注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.

相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.

相似三角形周长的比等于相似比.

相似三角形面积的比等于相似比的平方.

相似多边形的周长等于相似比;面积比等于相似比的平方.

5、探索三角形相似的条件

①相似三角形的判定方法:

②平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

③相似三角形的判定定理的证明

④利用相似三角形测高

⑤相似三角形的性质

⑥图形的位似

初三上册数学知识点 总结 相关 文章 :

★ 九年级数学上册重要知识点总结

★ 初三数学知识点考点归纳总结

★ 九年级上册数学知识点归纳整理

★ 初三数学知识点归纳总结

★ 初三数学知识点总结

★ 初三上册数学知识点盘点与数学学习方法

★ 初三数学重要公式知识大全

★ 初三九年级上册数学知识点

★ 初中数学必备知识点总结初三数学上册一二章知识点

★ 人教版九年级数学知识点归纳

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

F. 初中数学菱形的面积公式

面积计算是数学常考的知识点,我整理了一些几何图形的面积计算公式,大家一起来看看吧。

菱形的面积

设一个菱形的面积为S,边长为a,高为b,两对角线分别为c和d,一个最小的内角为∠θ,则有:

1、S=ab(菱形和其他平行四边形的面积等于底乘以高);

2、S=cd÷2(菱形和其他对角线互相垂直的四边形的面积等于两对角线乘积的一半);

3、S=a^2·sinθ。

在同一平面内,有一组邻边相等的平行四边形是菱形,四边都相等的四边形是菱形,菱形的对角线互相垂直平分且平分每一组对角,菱形是轴对称图形,对称轴有2条,即两条对角线所在直线,菱形是中心对称图形。

几何图形面积公式

1、长方形的周长=(长+宽)×2

2、正方形的周长=边长×4C=4a

3、长方形的面积=长×宽S=ab

4、正方形的面积=边长×边长S=a×a

5、三角形的面积=底×高÷2S=ah÷2

6、平行四边形的面积=底×高S=ah

7、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2

8、直径=半径×2d=2r半径=直径÷2r=d÷2

9、圆的周长=圆周率×直径=圆周率×半径×2c=πd=2πr

10、圆的面积=圆周率×半径×半径Ѕ=πr

以上就是一些菱形的面积计算的相关信息,供大家参考。

G. 初中数学知识点归纳 不要太长

公式分类 公式表达式

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根

三角函数公式

两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h

H. 求数学平行四边形、正方形、长方形、菱形的知识点

平行四边形定义: 在同一平面内两组对边分别平行的四边形叫做平行四边形
判断定理 1.两组对边分别相等的四边形是平行四边形
2.一组对边平行 一组对角相等是平行四边形
3.一组对边平行且相等的四边形是平行四边形
4.两组对角分别相等的四边形是平行四边形
5.两组对边分别平行的四边形是平行四边形
矩形 有一个角是直角的平行四边形叫做矩形
性质
1.矩形的四个角都是直角,对边相等
2.矩形的对角线相等
4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线)。
5.对边平行且相等
6.对角线互相平分 ( 距形具备平行四边形的一切性质。)
判断定理
1.有一个角是直角的平行四边形是矩形
2.对角线相等的平行四边形是矩形
3.有三个角是直角的四边形是矩形
菱形 一组邻边相等的平行四边形叫做菱形
性质 对角线互相垂直且平分;
四条边都相等;
对角相等,邻角互补;
每条对角线平分一组对角, 菱形具备平行四边形的一切性质。
判断 一组邻边相等的平行四边形是菱形 四边相等的四边形是菱形
对角线互相垂直且平分的四边形是菱形.
正方形: 平行四边形 菱形 矩形 所具有的性质 他都有
如果判断出这个图形既是菱形,又是矩形,那么他是正方形
梯形 梯形是指一组对边平行而另一组对边不平行的四边形。
判断定理.一组对边平行,另一组对边不平行的四边形是梯形
等腰梯形的性质
1.等腰梯形的两条腰相等 2.等腰梯形在同一底上的两个底角相等 3.等腰梯形的两条对角线相等 4.等腰梯形是轴对称图形,对称轴是上下底中点的连线所在直线 5.等腰梯形(这个非等腰梯形同理)的中位线(两腰中点相连的线叫做中位线)等于上下底和的二分之一 6.有一个角为90°的梯形是直角梯形 注意:在有些情况下,梯形的上下底以长短区分,而不是按位置确定的,把较短的底叫做上底,较长的底叫做下底。

I. 人教版初三数学知识点归纳

初三数学知识点归纳人教版有哪些?初中数学学习是对学生逻辑计算能力的培养,学好初三数学的关键就在于要适时适量地进行 总结 归类,下面是我整理的初三数学知识点,欢迎大家阅读学习!

初三数学知识点总结

一、 直线、相交线、平行线

1.线段、射线、直线三者的区别与联系

从图形、表示法、界限、端点个数、基本性质等方面加以分析。

2.线段的中点及表示

3.直线、线段的基本性质(用线段的基本性质论证三角形两边之和大于第三边)

4.两点间的距离(三个距离:点-点;点-线;线-线)

5.角(平角、周角、直角、锐角、钝角)

6.互为余角、互为补角及表示 方法

7.角的平分线及其表示

8.垂线及基本性质(利用它证明直角三角形中斜边大于直角边)

9.对顶角及性质

10.平行线及判定与性质(互逆)(二者的区别与联系)

11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。

12.定义、命题、命题的组成

13.公理、定理

14.逆命题

二、 三角形

分类:⑴按边分;

⑵按角分

1.定义(包括内、外角)

2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中,

3.三角形的主要线段

讨论:①定义②线的交点-三角形的心③性质

① 高线②中线③角平分线④中垂线⑤中位线

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形

4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:①一般方法②专用方法

6.三角形的面积

⑴一般计算公式⑵性质:等底等高的三角形面积相等。

7.重要辅助线

⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线

8.证明方法

⑴直接证法:综合法、分析法

⑵间接证法-反证法:①反设②归谬③结论

⑶证线段相等、角相等常通过证三角形全等

⑷证线段倍分关系:加倍法、折半法

⑸证线段和差关系:延结法、截余法

⑹证面积关系:将面积表示出来

三、 四边形

分类表:

1.一般性质(角)

⑴内角和:360

⑵顺次连结各边中点得平行四边形。

推论1:顺次连结对角线相等的四边形各边中点得菱形。

推论2:顺次连结对角线互相垂直的`四边形各边中点得矩形。

⑶外角和:360

2.特殊四边形

⑴研究它们的一般方法:

⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定

⑶判定步骤:四边形平行四边形矩形正方形

⑷对角线的纽带作用:

3.对称图形

⑴轴对称(定义及性质);⑵中心对称(定义及性质)

4.有关定理:①平行线等分线段定理及其推论1、2

②三角形、梯形的中位线定理

③平行线间的距离处处相等。(如,找下图中面积相等的三角形)

5.重要辅助线:①常连结四边形的对角线;②梯形中常平移一腰、平移对角线、作高、连结顶点和对腰中点并延长与底边相交转化为三角形。

6.作图:任意等分线段。

初三数学知识点归纳大全

第四章直线形

★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。

☆内容提要☆

一、直线、相交线、平行线

1.线段、射线、直线三者的区别与联系

从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。

2.线段的中点及表示

3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)

4.两点间的距离(三个距离:点-点;点-线;线-线)

5.角(平角、周角、直角、锐角、钝角)

6.互为余角、互为补角及表示方法

7.角的平分线及其表示

8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)

9.对顶角及性质

10.平行线及判定与性质(互逆)(二者的区别与联系)

11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。

12.定义、命题、命题的组成

13.公理、定理

14.逆命题

二、三角形

分类:⑴按边分;

⑵按角分

1.定义(包括内、外角)

2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中,

3.三角形的主要线段

讨论:①定义②__线的交点―三角形的×心③性质

①高线②中线③角平分线④中垂线⑤中位线

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形

4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:①一般方法②专用方法

6.三角形的面积

⑴一般计算公式⑵性质:等底等高的三角形面积相等。

7.重要辅助线

⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线

8.证明方法

⑴直接证法:综合法、分析法

⑵间接证法―反证法:①反设②归谬③结论

⑶证线段相等、角相等常通过证三角形全等

⑷证线段倍分关系:加倍法、折半法

⑸证线段和差关系:延结法、截余法

⑹证面积关系:将面积表示出来

三、四边形

分类表:

1.一般性质(角)

⑴内角和:360°

⑵顺次连结各边中点得平行四边形。

推论1:顺次连结对角线相等的四边形各边中点得菱形。

推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。

⑶外角和:360°

2.特殊四边形

⑴研究它们的一般方法:

⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定

⑶判定步骤:四边形→平行四边形→矩形→正方形

┗→菱形――↑

⑷对角线的纽带作用:

3.对称图形

⑴轴对称(定义及性质);⑵中心对称(定义及性质)

4.有关定理:①平行线等分线段定理及其推论1、2

②三角形、梯形的中位线定理

③平行线间的距离处处相等。(如,找下图中面积相等的三角形)

5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。

6.作图:任意等分线段。

初中数学知识点总结归纳

代数部分:有理数、无理数、实数整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程组、二元二次方程组、分式方程、一元一次不等式函数(一次函数、二次函数、反比例函数)

几何部分:线段、角相交线、平行线三角形、四边形、相似形、圆。

1、实数的分类

有理数:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数。如:-3,,0.231,0.737373...

无理数:无限不环循小数叫做无理数如:π,-,0.1010010001...(两个1之间依次多1个0)。

实数:有理数和无理数统称为实数。

2、无理数

在理解无理数时,要抓住"无限不循环"这一时之,它包含两层意思:一是无限小数;二是不循环.二者缺一不可.归纳起来有四类:

(1)开方开不尽的数,如等;

(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;

(3)有特定结构的数,如0.1010010001...等;

(4)某些三角函数,如sin60o等。

注意:判断一个实数的属性(如有理数、无理数),应遵循:一化简,二辨析,三判断.要注意:"神似"或"形似"都不能作为判断的标准.

3、非负数:正实数与零的统称。(表为:x≥0)

常见的非负数有:

性质:若干个非负数的和为0,则每个非负担数均为0。

4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴("三要素")。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

5、相反数

实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。

即:(1)实数的相反数是。

初三数学知识点归纳人教版相关 文章 :

★ 人教版九年级数学知识点归纳

★ 人教版初三数学知识点复习资料备战中考

★ 初中数学知识点总结

★ 人教版必修3数学算法初步知识点归纳

★ 人教版八年级数学上册知识点总结

★ 人教版初一数学下册知识点复习总结备战中考

★ 人教版九年级历史下册知识点归纳

★ 人教版高三年级数学知识点总结

★ 人教版高三年级数学必考知识点

★ 人教版数学三年级下册知识点

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

J. 菱形的性质。

菱形的性质

1、对角线互相垂直且平分,并且每条对角线平分一组对角。

2、菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形。

3、菱形是特殊的平行四边形,它具备平行四边形的一切性质。

4、四条边都相等。

5、对角相等,邻角互补。

6、在60°的菱形中,短对角线等于边长,长对角线是短对角线的根号三倍。

初二数学菱形的几何知识点归纳

1、判定

①有一组邻边相等的平行四边形是菱形;

②四条边都相等的四边形是菱形;

③对角线互相垂直的平行四边形是菱形

④有一条对角线平分一组对角的平行四边形是菱形

⑤对角线互相垂直且平分的四边形是菱形

2、面积

①对角线乘积的一半(只要是对角线互相垂直的四边形都可用);

②设菱形的边长为a,一个夹角为x°,则面积公式是:S=a^2·sinx

3、周长

菱形周长=边长×4 用“a”表示菱形的边长,“C”表示菱形的周长,

则C=4a

菱形是特殊的平行四边形,而菱形中又有特殊的一类就是正方形。