当前位置:首页 » 基础知识 » 数学等差数列基础知识
扩展阅读
朗逸经典用的什么发动机 2024-11-16 15:27:26
儿童声乐大概有什么内容 2024-11-16 15:14:45

数学等差数列基础知识

发布时间: 2022-08-29 08:49:53

❶ 【高中数学】急需等差数列的的性质!!!

等差数列前n项和公式S 的基本性质
⑴数列为等差数列的重要条件是:数列的前n项和S 可以写成S = an^2 + bn的形式(其中a、b为常数).
⑵在等差数列中,当项数为2n (n∈ N+)时, S偶-S奇 = nd, S奇÷S偶=an÷a(n+1) ;当项数为(2n-1)(n∈ N+)时,S奇—S偶=a中 ,S奇÷S偶 =n÷(n-1) .
⑶若数列为等差数列,则S n,S2n -Sn ,S3n -S 2n,…仍然成等差数列,公差为k^2d . ⑷若两个等差数列、的前n项和分别是S 、T (n为奇数),则 = .
⑸在等差数列中,S = a,S = b (n>m),则S = (a-b).
⑹等差数列中, 是n的一次函数,且点(n, )均在直线y = x + (a - )上.
⑺记等差数列的前n项和为S .①若a >0,公差d<0,则当a ≥0且a ≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且a ≥0时,S 最小.
[8)若等差数列S(p)=q,S(q)=p,则S(p+q)=-(p+q)

❷ 高中数学数列知识点总结

高中数学数列知识点总结

数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。下面是我为大家收集的高中数学数列知识点总结,欢迎大家分享!

高中数学数列知识点:

等差数列公式

等差数列的通项公式为:an=a1+(n-1)d

或an=am+(n-m)d

前n项和公式为:Sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2

若m+n=2p则:am+an=2ap

以上n均为正整数

文字翻译

第n项的值=首项+(项数-1)*公差

前n项的和=(首项+末项)*项数/2

公差=后项-前项

等比数列公式

等比数列求和公式

(1) 等比数列:a (n+1)/an=q (n∈N)。

(2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m);

(3) 求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q为公比,n为项数)

(4)性质:

①若 m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;

②在等比数列中,依次每 k项之和仍成等比数列.

③若m、n、q∈N,且m+n=2q,则am×an=aq^2

(5)"G是a、b的等比中项""G^2=ab(G ≠ 0)".

(6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式中an表示等比数列的第n项。

等比数列求和公式推导: Sn=a1+a2+a3+...+an(公比为q) q*Sn=a1*q+a2*q+a3*q+...+an*q =a2+a3+a4+...+a(n+1) Sn-q*Sn=a1-a(n+1) (1-q)Sn=a1-a1*q^n Sn=(a1-a1*q^n)/(1-q) Sn=(a1-an*q)/(1-q) Sn=a1(1-q^n)/(1-q) Sn=k*(1-q^n)~y=k*(1-a^x)。

拓展:高中数学知识点等差数列的定义及性质

一般地,如果一个数列从第2项起,每一项与它的前一项的`差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做公差,用符号语言表示为an+1-an=d。

等差数列的性质:

(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;

(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;

(3)m,n∈N*,则am=an+(m-n)d;

(4)若s,t,p,q∈N*,且s+t=p+q,则as+at=ap+aq,其中as,at,ap,aq是数列中的项,特别地,当s+t=2p时,高一,有as+at=2ap;

(5)若数列{an},{bn}均是等差数列,则数列{man+kbn}仍为等差数列,其中m,k均为常数。

(6)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即

对等差数列定义的理解:

①如果一个数列不是从第2项起,而是从第3项或某一项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列,但可以说从第2项或某项开始是等差数列.

②求公差d时,因为d是这个数列的后一项与前一项的差,故有 还有

③公差d∈R,当d=0时,数列为常数列(也是等差数列);当d>0时,数列为递增数列;当d<0时,数列为递减数列;

④ 是证明或判断一个数列是否为等差数列的依据;

⑤证明一个数列是等差数列,只需证明an+1-an是一个与n无关的常数即可。

等差数列求解与证明的基本方法:

(1)学会运用函数与方程思想解题;

(2)抓住首项与公差是解决等差数列问题的关键;

(3)等差数列的通项公式、前n项和公式涉及五个量:a1,d,n,an,Sn,知道其中任意三个就可以列方程组求出另外两个(俗称“知三求二’).

;

❸ 高中数学等差数列公式

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列的通项公式为:

an=a1+(n-1)d (1)

前n项和公式为:
Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

❹ 高二数学必修5等差数列知识点总结

等差数列是高二数学研究的两个基本数列之一,下面是我给大家带来的高二数学必修5等差数列知识点总结,希望对你有帮助。

高二数学必修5等差数列知识点

高二数学学习方法

(1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

(2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

(3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。

(4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。

(5)阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。

(6)及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。

(7)学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。

(8)经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。

❺ 数学中等差数列是什么

等差数列是多项式数列的一次形式b(0)+b(1)*n,在这里把多项式数列的一次形式简称为(一次数列)。
一次数列的通项公式为:p(n)=b(0)+b(1)*n;前n项和的公式为:S(n)=[n,n^2]*[1,1/2;0,1/2]*[b(0);b(1)]

等差数列的通项公式为:a(n)=a(1)+(n-1)*d
(1)
前n项和公式为:S(n)=n*a(1)+n*(n-1)*d/2或S(n)=n*(a(1)+a(n))/2
(2)
以上n均属于正整数。

❻ 等差中项有什么性质

等于前后两项之和的一半

若a,b,c三个数按这个顺序排列成等差数列,那么b叫a,c的等差中项, a, b, c满足b-a=c-b a,b,c成等差数列的充分必要条件是b=(a+c)/2.b为等差中项(arithmetic mean)。

(6)数学等差数列基础知识扩展阅读:

等差中项

编辑

等差中项即等差数列头尾两项的和的一半,但求等差中项不一定要知道头尾两项。等差数列中,等差中项一般设为

的求和公式。

❼ 什么叫等差数列

关于等差数列,我们要注意的有以下几个问题:什么是数列,什么是等差数列,等差数列的发展历史,等差数列的常见性质,与等比数列的对比,等等。下面我们来逐一进行解说。

  1. 什么是数列

    数列(sequence of number)是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。着名的数列有斐波那契数列,卡特兰数等。

    换句话说,首先,数列是一种函数,而不是一种集合。虽然数列可以用类似集合的方式表示(如{1,2,3,4}),但是这与数集{1,2,3,4}是有本质区别的。数列与集合的区别表现在:

    ①数列必须满足有序性。比如说集合{1,2,3,4},它表示n=1时,an=1;n=2时,an=2,以此类推。所以它与{1,3,2,4}是两个不同的集合,二者虽然定义域值域都相同,但是对应关系不同。而{1,2,3,4}与{1,3,2,4}是同一个集合。

    ②数列不必满足互异性。我们知道集合的元素必须满足互异性,即任意两个元素不能够重复,而数列中的项与项之间可以相等。所以在数列中,摇摆数列,周期数列,常数列都是被允许的。如数列an=sin(nπ/2)就是一个典型的周期数列。因为数列本质上是函数,函数的因变量取值可以相等,所以数列的不同项也可以相等。

    但是数列却又不同于一般的函数:

    ①数列的定义域只能是正整数。n可以是1,2,3,4,5,但是不可以是0,-1,-2,也不可以是0.5,1.8这样的数,而函数的定义域没有这样的限制。

    ②数列在几何上,表现为点集,所以数列不具有连续性,而我们接触到的函数多为连续函数,在几何上体现为曲线。

    最着名的数列莫过于斐波那契数列:1,1,2,3,5,8……,即每一项都等于前两项之和。这个数列完美诠释了数列的有序性和每一项之间的可重复性。当然,这个数列是有通项公式的。

  2. 什么是等差数列

    等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用AP表示。这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)d。首项a1=1,公差d=2。(以上n均属于正整数)

    这里要注意的几个问题是:

    ①等差数列中,一定是后项与前项的差为常数,而不是后项与前项或前项与后项的差为常数。如,1,3,1,3,1,就不是等差数列,而是摇摆数列。

    ②等差数列是可以用公式表示的数列。

    ③等差数列的公差可以为0,当且仅当公差为0时,数列不具有单调性。其他情况下,等差数列都具有单调性。

  3. 等差数列的发展历史

    ①其实,中国古代南北朝的张丘建早已在《张丘建算经》提到等差数列了:今有女子不善织布,逐日所织的布以同数递减,初日织五尺,末一日织一尺,计织三十日,问共织几何?书中的解法是:并初、末日织布数,半之,余以乘织讫日数,即得。这相当于给出了S(n)=n(a1+an)/2的求和公式。

    ②西方最着名的等差数列莫过于高斯数列。7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳(Buttner),他对高斯的成长也起了一定作用。高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳刚叙述完题目,高斯就算出了正确答案5050,运用的就是等差数列求和公式,Sn=[n(a1+an)]/2。

  4. 等差数列的常见性质

    ①等差数列的前n项和求和公式:Sn=na1+[n(n-1)d]/2或Sn=[n(a1+an)]/2。

    ②m+n=p+q时,am+an=ap+aq。

    ③等差数列的前n项和可以写成Sn=an²+bn的形式。

    ④Sn,S2n-Sn,S3n-S2n仍然成等差数列,公差为n²d。

    ⑤两个等差数列{am}与{bm},其前n项和分别为Sn和Tn,则有am/bm=S(2m-1)/T(2m-1)。

    ⑥项数n=(an-a1)/d+1,an=a1+(n-1)d。

    ⑦等差中项:若a,b,c满足2b=a+c,则称b为a和c的等差中项。

  5. 与等比数列的对比

    ①等差数列的通项公式为an=a1+(n-1)d,等比数列的通项公式为an=a1·q^(n-1)。

    ②等差数列的求和公式为Sn=na1+[n(n-1)d],等比数列求和公式在q≠1时为Sn=a1(1-q^n)/(1-q)。

    ③等差数列的公差d没有限制,等比数列的公比q不能为0,而且公比q为1时,数列实际上成为常数列(非零常数列也是等差数列和等比数列的唯一交集),此时不能适用一般的等比数列前n项和公式,而应当直接用Sn=na1。

    ④等比中项:如果a,b,c满足b²=ac,则b为a,c的等比中项。显然,两个同号的数的等比中项有两个,两个异号的数没有等比中项。而任意两个实数都有等差中项。

    ⑤下标和公式:对于等差数列,m+n=p+q时,am+an=ap+aq;对于等比数列,若m+m=p+q,则am·an=ap·aq。