当前位置:首页 » 基础知识 » 数学规律知识大全
扩展阅读
动漫字典怎么搜 2024-11-16 13:28:26
儿童水饺有什么馅 2024-11-16 13:26:42

数学规律知识大全

发布时间: 2022-08-29 00:13:43

㈠ 生活中神奇的数学规律有哪些

生活中神奇的数学规律:

1如果我们去参加一场婚礼,人数超过367人,那么其中必然有生日相同的人(并非同年)。

这就是抽屉原理。

把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。

由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。

2冬天,猫睡觉时总是把身体抱成一个球形,是因为这样身体散发的热量最少。

在数学中,体积一定,表面积最小的物体是球体。

猫缩成一个球体,可以减小和外界接触的面积,降低热交换的速度,减少热量损失的速度,节省能量,保持体温。

3车轮为什么都是圆的而不是其他形状:

圆的中心叫圆心,圆上任何一点到圆心的距离都是相等的。把车轮做成圆形,车轴在圆心上,当车轮在地面滚动时,车轴离地面的距离,总是等于车轮半径。

因此,车里坐的人,就能平稳地被车子拉着走。假如车轮变了形,不成圆形了,轮上高一块低一块,到轴的距离不相等了,车就不会再平稳。

㈡ 数学规律题有哪些

找规律题目,一般是从特殊到一般,或是观察已有的式子或等式,看有什么规律。这需要平时积累经验,离中考还有三个月,希望你能通过多做此类题目,找到这类题目的答题技巧。

如:找规律 8 17 25 33……

(序号)1 (已知条件)8

2 17=8×2+1

3 25=8×3+1

4 33=8×4+1

(发现规律了,8×序号+1)

n 8×n+1

规定

1,2,4,7,11,16,(22),(29), ——相差为:1,2,3,4,5,6,…

2,5,10,17,26,(37),(50), ——相差为:3,5,7,9,…

0,3,8,15,24,(35),(48),——相差为:3,5,7,9,…

找规律填空:9-1=8,16-4=12,25-9=16,36-16=20,49-25=24。

㈢ 求高中数学知识点总结(最全版)

高中数学合集网络网盘下载

链接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

㈣ 初中数学必背公式归纳整理

很多初中同学想要初中的公式,所以我整理了一些,希望大家多多理解并进行记忆,以便考个好的数学成绩。
初中数学必背公式归纳
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h

正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2

圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=s*h 圆柱体 V=pi*r2h

常见的初中数学公式

1.过两点有且只有一条直线

2.两点之间线段最短

3.同角或等角的补角相等

4.同角或等角的余角相等

5.过一点有且只有一条直线和已知直线垂直

6.直线外一点与直线上各点连接的所有线段中,垂线段最短

7.平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8.如果两条直线都和第三条直线平行,这两条直线也互相平行

9.同位角相等,两直线平行

10.内错角相等,两直线平行

11.同旁内角互补,两直线平行

12.两直线平行,同位角相等

13.两直线平行,内错角相等

14.两直线平行,同旁内角互补

15.定理 三角形两边的和大于第三边

16.推论 三角形两边的差小于第三边

17.三角形内角和定理 三角形三个内角的和等于180°

18.推论1 直角三角形的两个锐角互余

19.推论2 三角形的一个外角等于和它不相邻的两个内角的和

20.推论3 三角形的一个外角大于任何一个和它不相邻的内角

21.全等三角形的对应边、对应角相等

22.边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23.角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24.推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25.边边边公理(SSS) 有三边对应相等的两个三角形全等

26.斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27.定理1 在角的平分线上的点到这个角的两边的距离相等

28.定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29.角的平分线是到角的两边距离相等的所有点的集合

30.等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31.推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33.推论3 等边三角形的各角都相等,并且每一个角都等于60°

34.等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35.推论1 三个角都相等的三角形是等边三角形

36.推论 2 有一个角等于60°的等腰三角形是等边三角形

37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38.直角三角形斜边上的中线等于斜边上的一半

39.定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40.逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42.定理1 关于某条直线对称的两个图形是全等形

43.定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44.定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45.逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46.勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47.勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48.定理 四边形的内角和等于360°

49.四边形的外角和等于360°

50.多边形内角和定理 n边形的内角的和等于(n-2)×180°
初中数学学习方法
1、配方法

所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法

因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理

一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
初中数学学习方建议
一、课前认真预习,简单梳理知识体系

每节数学课前都要好好看一看接下来老师所要讲授的内容,做到心中有数,带着自己的问题走进课堂,以便在课堂中做到有的放矢,这是学好数学的关键。

良好的预习习惯是学习新知识的必要前提,我在教学时对学生提出的预习要求是:动笔画一画,动手做一做,动脑想一想。

1、画一画

在阅读新的教学内容时,要把自己认为重点的内容和自己没有弄懂的地方分别用不同颜色的笔画下来。自己认为是重点的内容或不确定的知识上课时要认真听讲,跟住老师的教学思路;自己没有弄懂的内容是上课时重点突破的地方,或在课堂知识探究中小伙伴之间取长补短式的学习,或在老师重点指导时认真咀嚼。只有经常这样做,才会对数学产生一种善思好问的好习惯。

2、做一做

每节数学课的后面的练习可以自己试着先做一做,最好是每节新授内容能看懂百分之七十,会做的练习题达到百分之八十。以便于每节新授内容学习后就很容易的按照课本的习题设置能做到从易到难,从简到繁,一步一步地把预习过的知识与自己的实践进行比较。找到自己所欠缺的地方,以便在课堂探究中找到准确的答案。

3、想一想

对自己预习时的知识要学会归纳,对概念、定理、公式做出初步的归纳、总结,通过例题加深对知识的理解,最好把书中的习题自己做一遍,激发自己强烈的求知欲望。对教材中的概念、定理、公式做一下简单的推理,在头脑中建立对知识的初步整体认知。

二、课堂中要注意集中,突破知识的重难点

每节数学课,老师大多要在课堂教学中进行集中讲解或采用分组探究的模式进行教学,突破本节授课的重难点,这就要求学生在每一节课上带着问题去听课,带着问题去思考,攻克本节教学任务的重点内容。学会把预习中存在的问题放在课堂上着重听,必要时还需做好笔记,并通过练习题加以巩固。

在课堂教学中,我要求学生做到:会听、会记、会练

1、会听

听课要会听,不是你集中经历去听就行,而是要结合自己预习时自己所突破不了的知识去听,做到有的放矢,如果采用小组探究形式学习,一定要有自己的见解,不能人云亦云,小伙伴之间要取长补短,把重点和难点知识把握好,做到当堂课的内容一定要当堂消化理解,不要欠债。

2、会记

数学课往往涉及到很多,这些都是学生在解答数学问题的依据,要求学生对概念、定理、公理、公式等进行熟记,并逐渐养成归纳、整理的好习惯,让学生形成一定的知识体系,形成对知识的整体认知。

上课做笔记不是简单的记录老师的板书,而是要把老师所讲的知识点、解题技巧和容易犯的错误进行分类整理,还要做到经常回顾,加深理解和记忆。

3、会练

数学不同于其他学科,只把概念、定理、公理、公式等进行熟记还不够,有时无法解决一些实际问题,只有通过不断的练习才能做到熟能生巧,减少运算中出现的错误。此环节要求学生做题要快,准确率要高,书写干净利落。让学生养成学习中认真、严谨的科学态度。

三、课后要认真复习,保证作业质量

刚步入初中阶段,学生每天都要接触很多科目的学习,有时候会感觉到力不从心,不会合理分配时间,这就要求学生在当天课业结束后马上进行知识的反馈,即及时完成老师布置的作业任务。在这一环节需要学生做到:巩固当天学习的知识,反思好老师的授课内容,整理好易错的知识。

1、巩固

完成作业前一定要再阅读一遍教材,认真回顾老师在课堂上所讲的内容,然后再去写作业。作业一定要养成独立思考的好习惯,针对一道问题要学会多从不同的方法,不同的角度入手,多从典型题目中探索多种解题方法,从中得到联想和启发。

在较短的时间里进行知识的巩固,对知识的理解及运用的效果是最佳的,反之则效果不会明显,要做到学而时习之。

2、反思

学生在完成学习任务的基础上还要进行知识的梳理,多树立数学解题的思想,比如分类的思想,整体的思想,方程的思想,数形结合的思想,方程的思想函数的思想等常用的解题思想。同时还要对重点习题多问几个为什么,如果把这些题目中所示的已知条件改变、添加一些条件,结论与条件互换,原来的结论还存在吗?只有多多练习才会做到游刃有余。

3、整理

对于数学学习中,如试卷、作业中出现的错误,一定要及时弄懂,分析好自己做错题目的原因,最好在错题本中及时记录下来,每隔一段时间就巩固一下。在学习中绝对不能让同样的错误出现第二次。

数学是人类文化的重要组成部分,良好的数学素养是当代社会每个公民应该具备的基本素养。作为促进学生全面发展教育的重要组成部分,数学教学既要是学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的思维能力和创造能力。学习数学要做到有方法、有计划与合理的安排,只有做到循序渐进,才会获得最终的胜利。

猜你喜欢:

1. 初中数学公式知识大全

2. 初中数学规律题公式

3. 中考数学知识点总结

4. 初中数学公式怎么记

5. 初中数学考试规律题公式

㈤ 高中数学知识点大全

有的学生认为高中数学难做难做。其实高中数学整体上很简单,很简单,很多知识只要读两遍就可以了。下面是我整理的高中数学知识点大全,希望对你们有所帮助!

高中数学知识点

1、基本初等函数

指数、对数、幂函数三大函数的运算性质及图像

函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。关于这三大函数的运算公式,多记多用,多做一点练习,基本就没问题。

函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考点。另外指数函数和对数函数的对立关系及其相互之间要怎样转化等问题,需要着重回看课本例题。

2、函数的应用

这一章主要考是函数与方程的结合,其实就是函数的零点,也就是函数图像与X轴的交点。这三者之间的转化关系是这一章的重点,要学会在这三者之间灵活转化,以求能最简单的解决问题。关于证明零点的 方法 ,直接计算加得必有零点,连续函数在x轴上方下方有定义则有零点等等,这些难点对应的证明方法都要记住,多练习。二次函数的零点的Δ判别法,这个需要你看懂定义,多画多做题。

3、空间几何

三视图和直观图的绘制不算难,但是从三视图复原出实物从而计算就需要比较强的空间感,要能从三张平面图中慢慢在脑海中画出实物,这就要求学生特别是空间感弱的学生多看书上的例图,把实物图和平面图结合起来看,先熟练地正推,再慢慢的逆推(建议用纸做一个立方体来找感觉)。

在做题时结合草图是有必要的,不能单凭想象。后面的锥体、柱体、台体的表面积和体积,把公式记牢问题就不大。

4、点、直线、平面之间的位置关系

这一章除了面与面的相交外,对空间概念的要求不强,大部分都可以直接画图,这就要求学生多看图。自己画草图的时候要严格注意好实线虚线,这是个规范性问题。

关于这一章的内容,牢记直线与直线、面与面、直线与 面相 交、垂直、平行的几大定理及几大性质,同时能用图形语言、文字语言、数学表达式表示出来。只要这些全部过关这一章就解决了一大半。这一章的难点在于二面角这个概念,大多同学即使知道有这个概念,也无法理解怎么在二面里面做出这个角。对这种情况只有从定义入手,先要把定义记牢,再多做多看,这个没有什么捷径可走。

5、圆与方程

能熟练地把一般式方程转化为标准方程,通常的考试形式是等式的一边含根号,另一边不含,这时就要注意开方后定义域或值域的限制。通过点到点的距离、点到直线的距离、圆半径的大小关系来判断点与圆、直线与圆、圆与圆的位置关系。另外注意圆的对称性引起的相切、相交等的多种情况,自己把几种对称的形式罗列出来,多思考就不难理解了。

6、三角函数

考试必在这一块出题,且题量不小!诱导公式和基本三角函数图像的一些性质,没有太大难度,只要会画图就行。难度都在三角函数形函数的振幅、频率、周期、相位、初相上,及根据最值计算A、B的值和周期,及恒等变化时的图像及性质变化,这部分的知识点内容较多,需要多花时间,不要再定义上死扣,要从图像和例题入手。

7、平面向量

向量的运算性质及三角形法则、平行四边形法则的难度都不大,只要在计算的时候记住要“同起点的向量”这一条就OK了。向量共线和垂直的数学表达,是计算当中经常用到的公式。向量的共线定理、基本定理、数量积公式。分点坐标公式是重点内容,也是难点内容,要花心思记忆。

8、三角恒等变换

这一章公式特别多,像差倍半角公式这类内容常会出现,所以必须要记牢。由于量比较大,记忆难度大,所以建议用纸写好后贴在桌子上,天天都要看。要提一点,就是三角恒等变换是有一定规律的,记忆的时候可以集合三角函数去记。

9、解三角形

掌握正弦、余弦公式及其变式、推论、三角面积公式即可。

10、数列

等差、等比数列的通项公式、前n项及一些性质常出现于填空、解答题中,这部分内容学起来比较简单,但考验对其推导、计算、活用的层面较深,因此要仔细。考试题中,通项公式、前n项和的内容出现频次较多,这类题看到后要带有目的的去推导就没问题了。

11、不等式

这一章一般用线性规划的形式来考察学生,这种题通常是和实际问题联系的,所以要会读题,从题中找不等式,画出线性规划图,然后再根据实际问题的限制要求来求最值。



高中数学公式大全

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1_X2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac<0 注:方程没有实根,有共轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c_h 斜棱柱侧面积 S=c'_h

正棱锥侧面积 S=1/2c_h' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi_r2

圆柱侧面积 S=c_h=2pi_h 圆锥侧面积 S=1/2_c_l=pi_r_l

弧长公式 l=a_r a是圆心角的弧度数r >0 扇形面积公式 s=1/2_l_r

锥体体积公式 V=1/3_S_H 圆锥体体积公式 V=1/3_pi_r2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=s_h 圆柱体 V=pi_r2h

高考前数学知识点 总结

选择填空题

1、易错点归纳:

九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。

针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。

2、答题方法:

选择题十大速解方法:

排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;

填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。

解答题

专题一、三角变换与三角函数的性质问题

1、解题路线图

①不同角化同角

②降幂扩角

③化f(x)=Asin(ωx+φ)+h

④结合性质求解。

2、构建答题模板

①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

④ 反思 :反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。

专题二、解三角形问题

1、解题路线图

(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

2、构建答题模板

①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。

专题三、数列的通项、求和问题

1、解题路线图

①先求某一项,或者找到数列的关系式。

②求通项公式。

③求数列和通式。

2、构建答题模板

①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。

③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

④写步骤:规范写出求和步骤。

⑤再反思:反思回顾,查看关键点、易错点及解题规范。

专题四、利用空间向量求角问题

1、解题路线图

①建立坐标系,并用坐标来表示向量。

②空间向量的坐标运算。

③用向量工具求空间的角和距离。

2、构建答题模板

①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。

②写坐标:建立空间直角坐标系,写出特征点坐标。

③求向量:求直线的方向向量或平面的'法向量。

④求夹角:计算向量的夹角。

⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。

专题五、圆锥曲线中的范围问题

1、解题路线图

①设方程。

②解系数。

③得结论。

2、构建答题模板

①提关系:从题设条件中提取不等关系式。

②找函数:用一个变量表示目标变量,代入不等关系式。

③得范围:通过求解含目标变量的不等式,得所求参数的范围。

④再回顾:注意目标变量的范围所受题中其他因素的制约。

专题六、解析几何中的探索性问题

1、解题路线图

①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)

②将上面的假设代入已知条件求解。

③得出结论。

2、构建答题模板

①先假定:假设结论成立。

②再推理:以假设结论成立为条件,进行推理求解。

③下结论:若推出合理结果, 经验 证成立则肯。 定假设;若推出矛盾则否定假设。

④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。

专题七、离散型随机变量的均值与方差

1、解题路线图

(1)①标记事件;②对事件分解;③计算概率。

(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。

2、构建答题模板

①定元:根据已知条件确定离散型随机变量的取值。

②定性:明确每个随机变量取值所对应的事件。

③定型:确定事件的概率模型和计算公式。

④计算:计算随机变量取每一个值的概率。

⑤列表:列出分布列。

⑥求解:根据均值、方差公式求解其值。

专题八、函数的单调性、极值、最值问题

1、解题路线图

(1)①先对函数求导;②计算出某一点的斜率;③得出切线方程。

(2)①先对函数求导;②谈论导数的正负性;③列表观察原函数值;④得到原函数的单调区间和极值。

2、构建答题模板

①求导数:求f(x)的导数f′(x)。(注意f(x)的定义域)

②解方程:解f′(x)=0,得方程的根

③列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。

④得结论:从表格观察f(x)的单调性、极值、最值等。

⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步骤规范性。

以上模板仅供参考,希望大家能针对自己的情况整理出来最适合的“套路”。

高中数学 学习心得

数学是一们基础学科,我们从小就开始接触到它。现在我们已经步入高中,由于高中数学对知识的难度、深度、广度要求更高,有一部分同学由于不适应这种变化,数学成绩总是不如人意。甚至产生这样的困惑:“我在初中时数学成绩很好,可现在怎么了?”其实,学习是一个不断接收新知识的过程。正是由于你在进入高中后 学习方法 或 学习态度 的影响,才会造成学得累死而成绩不好的后果。那么,究竟该如何学好高中数学呢?以下我谈谈我的高中数学学习心得。

一、 认清学习的能力状态。

1、 心理素质。我们在高中学习环境下取决于我们是否具有面对挫折、冷静分析问题的办法。当我们面对困难时不应产生畏惧感,面对失败时不应灰心丧气,而要勇于正视自己,及时作出总结教训,改变学习方法。

2、 学习方式、习惯的反思与认识。(1) 学习的主动性。我们在进入高中以后,不能还像初中时那样有很强的依赖心理,不订 学习计划 ,坐等上课,课前不预习,上课忙于记笔记而忽略了真正的听课,顾此失彼,被动学习。(2) 学习的条理性。我们在每学习一课内容时,要学会将知识有条理地分为若干类,剖析概念的内涵外延,重点难点要突出。不要忙于记笔记,而对要点没有听清楚或听不全。笔记记了一大摞,问题也有一大堆。如果还不能及时巩固、总结,而忙于套着题型赶作业,对概念、定理、公式不能理解而死记硬背,则会事倍功半,收效甚微。(3) 忽视基础。在我身边,常有些“自我感觉良好”的同学,忽视基础知识、基本技能和基本方法,不能牢牢地抓住课本,而是偏重于对难题的攻解,好高骛远,重“量”而轻“质”,陷入题海,往往在考试中不是演算错误就是中途“卡壳”。(4) 不良习惯。主要有对答案,卷面书写不工整,格式不规范,不相信自己的结论,缺乏对问题解决的信心和决心,遇到问题不能独立思考,养成一种依赖于老师解说的心理,做作业不讲究效率,学习效率不高。

二、 努力提高自己的学习能力。

1、 抓要点提高学习效率。(1) 抓教材处理。正所谓“万变不离其中”。要知道,教材始终是我们学习的根本依据。教学是活的,思维也是活的,学习能力是随着知识的积累而同时形成的。我们要通过老师教学,理解所学内容在教材中的地位,并将前后知识联系起来,把握教材,才能掌握学习的主动性。(2) 抓问题暴露。对于那些典型的问题,必须及时解决,而不能把问题遗留下来,而要对遗留的问题及时、有效的解决。(3) 抓 思维训练 。数学的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。我们在平时的训练中,要注重一个思维的过程,学习能力是在不断运用中才能培养出来的。(5) 抓45分钟课堂效率。我们学习的大部分时间都在学校,如果不能很好地抓住课堂时间,而寄希望于课外去补,则会使学习效率大打折扣。

高中数学知识点大全相关 文章 :

★ 高二数学知识点总结

★ 高一数学必修一知识点汇总

★ 高中数学学习方法:知识点总结最全版

★ 高中数学知识点总结

★ 高一数学知识点总结归纳

★ 高三数学知识点考点总结大全

★ 高中数学基础知识大全

★ 高三数学知识点梳理汇总

★ 高中数学必考知识点归纳整理

★ 高一数学知识点总结期末必备

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

㈥ 小学数学计算中的规律有哪些

小学数学计算中的规律有哪些

小学数学运算定律

✍ 加法交换律

两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。

✍ 加法结合律

三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

✍ 乘法交换律

两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。

✍ 乘法结合律

三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。

✍ 乘法分配律

两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。

✍ 减法的性质

从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。

运算法则

✍ 整数加法计算法则

相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。

✍ 整数减法计算法则

相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。

✍ 整数乘法计算法则

先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。

✍ 整数除法计算法则

先从被除数的高位除起,除数是几位数,就看被除数的前几位; 如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。

✍ 小数乘法法则

先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。

✍ 除数是整数的小数除法计算法则

先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。

✍ 除数是小数的除法计算法则

先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。

✍ 同分母分数加减法计算方法

同分母分数相加减,只把分子相加减,分母不变。

✍ 异分母分数加减法计算方法

先通分,然后按照同分母分数加减法的的法则进行计算。

✍ 带分数加减法的计算方法

整数部分和分数部分分别相加减,再把所得的数合并起来。

✍ 分数乘法的计算法则

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

✍ 分数除法的计算法则

甲数除以乙数(0除外),等于甲数乘乙数的倒数。

㈦ 初中数学必考公式归纳汇总

数学是一门基础学科,对于广大中学生来说,学好数学比较困难。为了帮助同学们更好的学习数学,我特地整理了初中数学必考公式归纳,一起来看看吧。
初中数学必考公式归纳
点线角定理:

点的定理:过两点有且只有一条直线

点的定理:两点之间线段最短

角的定理:同角或等角的补角相等

角的定理:同角或等角的余角相等

直线定理:过一点有且只有一条直线和已知直线垂直

直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短

平行定理:

经过直线外一点,有且只有一条直线与这条直线平行

推论:如果两条直线都和第三条直线平行,这两条直线也互相平行

平行性质:

1、同位角相等,两直线平行

2、内错角相等,两直线平行

3、同旁内角互补,两直线平行

平行推论:

1、两直线平行,同位角相等

2、两直线平行,内错角相等

3、两直线平行,同旁内角互补

三角形内角定理:

定理:三角形两边的和大于第三边

推论:三角形两边的差小于第三边

三角形内角和定理:三角形三个内角的和等于180°

推论1:直角三角形的两个锐角互余

推论2:三角形的一个外角等于和它不相邻的两个内角的和

推论3:三角形的一个外角大于任何一个和它不相邻的内角

全等三角形判定定理:

定理:全等三角形的对应边、对应角相等

边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等

角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等

推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等

边边边定理(SSS):有三边对应相等的两个三角形全等

斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

角的平分线定理:

定理1:在角的平分线上的点到这个角的两边的距离相等

定理2:到一个角的两边的距离相同的点,在这个角的平分线上

角的平分线是到角的两边距离相等的所有点的集合

等腰三角形的性质定理:

等腰三角形的两个底角相等(即等边对等角)

推论1:等腰三角形顶角的平分线平分底边并且垂直于底边

等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

推论3:等边三角形的各角都相等,并且每一个角都等于60°

等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等 角对等边)

推论1:三个角都相等的三角形是等边三角形

推论2:有一个角等于60°的等腰三角形是等边三角形

对称定理

定理:线段垂直平分线上的点和这条线段两个端点的距离相等

逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

定理1:关于某条直线对称的两个图形是全等形

定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

直角三角形定理:

定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

判定定理:直角三角形斜边上的中线等于斜边上的一半

勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a²+b²=c²。

勾股定理的逆定理:如果三角形的三边长a、b、c有关系a²+b²=c²,那么这个三角形是直角三角形。

多边形内角和定理:

定理:四边形的内角和等于360°;四边形的外角和等于360°

多边形内角和定理:n边形的内角的和等于(n-2)×180°

推论:任意多边的外角和等于360°

平行四边形定理:

平行四边形性质定理1:平行四边形的对角相等

2:平行四边形的对边相等

3:平行四边形的对角线互相平分

推论:夹在两条平行线间的平行线段相等

平行四边形判定定理1:两组对角分别相等的四边形是平行四边形

2:两组对边分别相等的四边形是平行四边形

3:对角线互相平分的四边形是平行四边形

4:一组对边平行相等的四边形是平行四边形

矩形的定理

性质:1:矩形的四个角都是直角

2:矩形的对角线相等

判定:1:有三个角是直角的四边形是矩形

2:对角线相等的平行四边形是矩形

菱形性质定理

1:菱形的四条边都相等

2:菱形的对角线互相垂直,并且每一条对角线平分一组对角

菱形面积=对角线乘积的一半,即S=(a×b)÷2

菱形判定定理

1:四边都相等的四边形是菱形

2:对角线互相垂直的平行四边形是菱形

正方形定理:

正方形性质定理1:正方形的四个角都是直角,四条边都相等

2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

中心对称定理:

定理1:关于中心对称的两个图形是全等的

2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

等腰梯形性质定理:

等腰梯形性质定理:1.等腰梯形在同一底上的两个角相等

2.等腰梯形的两条对角线相等

等腰梯形判定定理:1.在同一底上的两个角相等的梯形是等腰梯形

2.对角线相等的梯形是等腰梯形

平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰

推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边

中位线定理

三角形:三角形的中位线平行于第三边,并且等于它的一半

梯形:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h

相似三角形定理:

平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

相似三角形判定定理1:两角对应相等,两三角形相似(ASA)

直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

2:两边对应成比例且夹角相等,两三角形相似(SAS)

3:三边对应成比例,两三角形相似(SSS)

相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

相似性质:

1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

2:相似三角形周长的比等于相似比

3:相似三角形面积的比等于相似比的平方

三角函数定理:

任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

圆的定理:

1.不共线的三点确定一个圆,经过一点可以作无数个圆,经过两点也可以作无数个圆,且圆心都在连结这两点的线段的垂直平分线上

定理:过不共线的三个点,可以作且只可以作一个圆

推论:三角形的三边垂直平分线相交于一点,这个点就是三角形的外心

三角形的三条高线的交点叫三角形的垂心

2.垂径定理

圆是中心对称图形;圆心是它的对称中心,圆是周对称图形,任一条通过圆心的直线都是它的对称轴

定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧

推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧

推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧

推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧

3.弧、弦和弦心距

定理:在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等

4.圆与直线的位置关系

如果一条直线和一个圆没有公共点,我们就说这条直线和这个圆相离

如果一条直线和一个圆只有一个公共点,我们就说这条直线和这个圆相切,这条直线叫做圆的切线,这个公共点叫做它们的切点

定理:经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线

定理:圆的切线垂直经过切点的半径

推论1:经过圆心且垂直于切线的直线必经过切点

推论2:经过切点且垂直于切线的直线必经过圆心

如果一条直线和一个圆有两个公共点,我们就说,这条直线和这个圆相交,这条直线叫这个圆的割线,这两个公共点叫做它们的交点

直线和圆的位置关系只能由相离、相切和相交三种

5.三角形的内切圆

如果一个多边形的各边所在的直线,都和一个圆相切,这个多边形叫做圆的外切多边形,这个圆叫做多边形的内切圆

定理:三角形的三个内角平分线交于一点,这点是三角形的内心

6.切线长定理

定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

7.圆的外切四边形

定理: 圆的外切四边形的两组对边的和相等

定理:如果四边形两组对边的和相等,那么它必有内切圆

8.两圆的位置关系

在平面内,不重合的两圆它们的位置关系,有以下五种情况:外离、外切、相交、内切、外切

经过两个圆的圆心的直线,叫做两圆的连心线,两个圆心之间的距离叫做圆心距

定理:两圆的连心线是两圆的对称轴,并且两圆相切时,它们切点在连心线上

(1)两圆外离d>R+r (2)两圆外切d=R+r

(3)两圆相交R-rr) (4)两圆内切d=R-r(R>r)

(5)两圆内含dr)

特殊情况,两圆是同心圆d=0

9.两圆的公切线

定理:两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等

比例性质定理:

(1)比例的基本性质

如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

(2)合比性质

如果a/b=c/d,那么(a±b)/b=(c±d)/d

(3)等比性质

如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
初中数学学习方法
(一)制定合理学习计划,及时检查落实。

1.制定符合自己的实际情况的学习计划。

2、要有明确的学习目标。通过一个阶段的学习,要达到什么水平,掌握那些知识等,这些都是在制定学习计划前应该非常明确。

3、长期目标和短期安排要相互结合好。应先制定长期计划,据此确定短期学习安排,来促使长期学习计划的实现。学期计划,半期计划,月计划,周计划。

4、要合理安排计划。计划不能太古板,可根据执行过程中出现的新情况及时做适当调整。

5、措施落实要有力。可附带制定计划落实情况的自我检查表,以便监督自己如期完成学习目标。

(二)做好课前预习,提高听课效率。

通过预习,了解要学习的课程的主要内容和重、难点,预习的任务是通过初步阅读,先理解感知新课的内容(如概念、定义、公式、论证方法等),为顺利听懂新课扫除障碍。

1、预习的最佳时间是晚上的8:00到9:00这一段时间,单科的预习的时间一般控制在15分钟到30分钟左右。

2、课前预习:先看书做到:一、粗读,先粗略浏览教材的有关内容,了解本节知识的概貌也就是大体内容。二、细读,对重要概念、公式、 法则、定理反复阅读、体会、思考,注意该知识的形成过程,了解课程的内容的重、难点,新旧知识的联系及新知识在学科体系中的地位与意义,对难以理解的概念作出记号,以便带着疑问去听课,而后再做练习,通过练习来检查自己的预习时掌握的情况,最后再带着自己不懂的问题去听课。

(三)听好每一节课,解决疑点,吸纳新知。

耳到:就是专心听讲,听老师如何讲授,如何分析问题,如何归纳总结,另外,还要认真听同学们的答问,看它是否对自己有所启发。老师对一些重点难点会作出某些语言、强调的语气,听老师对每节课的学习要求;听知识引人及知识形成过程;听懂重点、难点剖析(尤其是预习中的疑点);听例题解法的思路和数学思想方法的体现;听好每节课的小结。

眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势和演示实验的动作,接受老师某种动作的提示、以及所要表达的思想。

心到:集中注意力,避免走神,学习目标要明确,增强自己学习自觉性。课堂上用心思考,跟上老师的教学思路,领会、分析老师是如何抓住重点,解决疑难。老师在讲例题时,在脑海中跟着老师,每一步都得自己想通。多思、勤思,随听随思;深思,即追根溯源地思考,大胆的提出问题;善思,由听和观察去联想、猜想、归纳;树立批判意识,学会反思。

口到:就是在老师的指导下,主动回答问题或参加讨论,也可避免走神。同时有利于知识的记忆。

手到:记笔记服从听讲,要掌握记录时机,就是在听、看、想、的基础上划出课文的重点,记下讲课的要点、疑问、记解题思路和方法以及自己的感受或有创新思维的见解、课前疑点的答、记小结、记课后思考题的分析。

笔记要有重点。记录形式多种多样可以在书上或笔记本上划线(直线、曲线)、圈点、作标记、使用不同颜色的笔(如红色就比较显眼)、记录的格式不同、书写的字体不同,这些都是记笔记的好方法。

(四)扎实搞好复习,减少遗忘。

当天上完课的课,必须做好当天的复习。不能只停留在一遍遍地看书或笔记,可以采取回忆式的复习:先把书,笔记合起来,回忆上课时老师讲的内容,例题:分析问题的思路、方法等(也可边想边在草稿本上写)尽量想得完整些。然后打开笔记与书本对照,看一下还有哪些没记清的,及时把它补记起来。同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。

通过复习,把自己的想法,思路写成小结、列出图表、或者用提纲摘要的方法,把前后知识贯穿起来,形成一个完整的知识网。复习中遇到问题,要先想后看(问)。

做好单元复习。利用单元知识系统框架,采取回忆式复习。也要做好单元小节。本单元(章)的知识网络;本章的基本思想与方法(应以典型例题形式将其表达出来);自我体会:对本章内,自己做错的典型问题应有记载,分析其原因及正确答案(如:错题本),应记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

(五)做好小结或总结,提升对知识的领悟。

在进行单元小结或学期总结时,做到:

一看:看书、看笔记、看习题。通过看,回忆、熟悉所学内容;

二列:列出相关的知识点的框架,标出重点、难点,列出各知识点之间的关系;

三做:有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。

最后归纳出体现所学知识的各种题型及解题方法(倍速在章末有归纳)。学会总结是数学学习的最高层次。平时放学回家,坚持复习当天所学的内容,加深印象。并做相应的练习题以巩固上课所学的知识。

对所学知识系统地小结,具体如下:小结的频率:最好就是每周一次,将本周所学的知识进行系统归纳。小结的内容:可以把识记知识(如概念、公式等)系统化,也可以对题型作归纳,并附上自己的解题心得和注意事项等。当然可以参考章末小结。

(六)做练习题强化、巩固新的知识结构。

复习中要适当看点题、做点题。选的题要围绕复习的中心来选。在解题前,要先回忆一下过去做过的有关习题的解题思路,在这基础上再做题。
初中数学学习建议
一、转变学习习惯

小学生学数学有三种不同的类型:

1.记忆型:这种学生的学习方法是大量做题,然后记背做过的题,考试时靠记忆解题。这种学生用记忆代替思维,思维能力没有得到有效的训练和提升。当他们进入初中后,由于初中数学内容增多,难度明显增大,难以理解也记不住,因此,这种学生很快就出现学习困难,成绩一落千丈。

2.模仿型:这种学生的学习方法是模仿老师讲的例题和做过的练习题,考试时用模仿类型题的方法解题。这种学生训练出来的是模仿性思维,思维能力提升甚少,当他们升入高中后,由于高中的题型太多,千变万化,他们已经很难模仿,学习很累,事倍功半,成绩自然不理想。

3.思维型:这种学生的学习方法是通过思考、寻找知识与题目的联系,通过做通做透一题,学会一片题。考试时活用知识解题,这种学生的思维能力得到有效的训练,升入高中后,能够做到举一反三、融会贯通,这样既能适应高中的学习,又能轻松考高分。

由此可知,小学升入初中后,不能再用记忆、模仿的思维方式学习,必须转变学习习惯。

二、思维模式

小学升入初中后,由于初中数学知识明显加宽,难度明显加大,对学生思维能力的要求自然增强。这些能力主要包括以下六种:

① 理性思维能力

② 逆向思维能力

③ 多角度思维能力

④ 抽象问题的思维能力

⑤ 复杂问题的思维能力

⑥ 陌生问题的思维能力

学生如果不具备这些思维能力,学习肯定会受影响,轻者学习跟不上,重者会导致厌学。而这些思维,全部都可以通过训练提升。

三、必须掌握的学习方法

有人认为,学好数学就是要认真听课,认真做作业,大量做题,有错必改,经常复习。就是要“头悬梁,锥刺股”,要和疲劳顽强抵抗,用刻苦与之抗争。对于这种做法,专家认为:“精神诚可贵,效果未必好”。因为学习本身是一门科学,讲究技术、方法和技巧。真正学习好的学生,你会发现他不用怎么花时间就可以学得很好。因此,小升初的学生必须开始掌握学习方法,主要包括以下几个方面:

① 深入知识的本质,了解知识的联系和规律,做到融会贯通;

② 做题时要一题多解、多解归一、多题归一,通过做题善于总结,善于发现规律,总结规律;

③ 主动学习,超前思维,对于书本的例题,在老师未讲之前提前思考,在老师讲时与之对比,这样可以大大提高效率。

四、做好小升初数学衔接

第一,从知识能做好小升初数学衔接学习的必要性力上来看,小学学得太“浮”(这是很普遍的现象),对知识没有进行系统的整理和归纳(小学老师要负一定的责任)。如前所述,小学学习注重感性的形象思维,但是从初中开始,对数学逻辑严密性的要求就开始加强了。如北师大版七年级数学上册的第二单元《有理数及其运算》和第三单元《字母表示数》,引入负数、数轴和字母后,分类讨论的思想就随之而来,很多时候答案不再唯一,这与小学的学习可以说是“天壤之别”。

另外,很多孩子在小学阶段,数学的基本功——计算能力很欠缺,进入初一上第二单元《有理数及其运算》学习后,计算能力跟不上,作业和考试经常计算出错,弄得自己焦头烂额,信心大大受损,接下来的第三单元《字母表示数》对探究能力要求又高,学习起来也有一定难度,这两单元学下来,信心彻底被摧垮,后面的学习情况可想而知。

第二,从学习习惯和方法上来看,小学生在答题规范和专题总结方面普遍欠缺很多。小学对答题规范要求很低,学奥数几乎不要求,这就导致很多孩子很善于“凑答案”,但要写出严密的推理过程却“难如登天”。但是,从初中开始,对答题规范的要求“突然”提高很多,如果没有提前的规范,学习成绩自然会大受影响。

就学习方法而言,只是跟着老师走,完全不够。自己一定要学会归纳、总结、改错。这些方法小学完全可以不要,但是到了初中,不掌握这些方法,学习会比较吃力,相反,用好了这些方法,学习起来会“如鱼得水”。

猜你喜欢:

1. 初中数学公式知识大全

2. 初中数学规律题公式

3. 初中数学学习方法大全

4. 初中数学三年的知识点归纳

5. 初中数学知识点归纳

㈧ 小升初数学总复习总归纳(必备知识点大全)

一、和差倍问题:

1、适用范围:

已知两个数的和,差,倍数关系。

2、公式:(和-差)÷2=较小数,较小数+差=较大数,和-较小数=较大数,(和+差)÷2=较大数,较大数-差=较小数。

二、年龄问题三个基本特征:

1、两个人的年龄差是不变的。

2、两个人的年龄是同时增加或者同时减少的。

3、两个人的年龄的倍数是发生变化的。

三、植树问题:

1、基本类型:在直线或者不封闭的曲线上植树,两端都植树 在直线或者不封闭的曲线上植树,两端都不植树。在直线或者不封闭的曲线上植树,只有一端植树。

2、基本公式:棵数=段数+1、棵距×段数=总长、棵数=段数-1、棵距×段数=总长。

四、鸡兔同笼问题

1、基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来。

2、基本公式:把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)。把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)。

五、盈亏问题:

1、基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。

2、基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。

六、周期循环与数表规律

1、周期现象:事物在运动变化的过程中,某些特征有规律循环出现。

2、周期:我们把连续两次出现所经过的时间叫周期。

㈨ 生活中存在着哪些数学规律

生活中比较常见的数学规律:

1、两点之间直线最短:人们走路的时候,会有意识的选择最短的直线距离行走;

2、三角形具有稳定性:生活中很多东西都做成三角形,比如墙上的固定支架等;

3、两条平行线之间的距离总是一定的:在设计公路时候,会让公路的两边尽量平行,以保持公路宽度不变;

4、勾股定理:家装时工人判断一个墙角是否标准直角,分别在墙角向两个墙面量出30和40厘米,并标记在一个点,然后量这两点间距离是否是50厘米,等于这个数值就代表为直角。