① 小学五年级上册数学第二单元所学了哪些知识
小学五年级上册数学是《小数除法》主要有:小数除以整数、一个数除以小数、商的近似数、循环小数、用计算器探索规律和解决问题等六部分.是整数除法推广应用到小数.我说的是人教版
② 数学五年级上册人教版知识点归纳 15条
小学五年级数学上册复习知识点归纳总结
第一单元小数乘法
1.小数乘法计算方法:按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
2、一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。
3、求近似数的方法一般有三种:
⑴四舍五入法 (常用) ; ⑵进一法; ⑶去尾法
4、计算钱数,保留两位小数,表示精确到分。保留一位小数,表示精确到角。
5、小数四则运算顺序跟整数四则运算顺序是一样的。
6、运算定律和性质:
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
乘法:乘法交换律:a×b=b×a
乘法结合律:三个数相乘,先把前两个数相乘,再和最后一个数相乘,或先把后两个数相乘,再和第一个数相乘,积不变. (a×b)×c=a×(b×c)
乘法分配律:两个数的和(或者差)同一个数相乘,可以先把这两个数(或者被减数与减数)分别同这个数相乘,再相加(或者再相减)。 (a+b)×c=a×c+b×c或 (a-b)×c=a×c-b×c
减法性质:从一个数里连续减去两个数,我们可以减去两个减数的和,或者交换两个减数的位置。 a-b-c=a-(b+c) a-b-c=a-c-b
除法性质:从一个数里连续除数两个数,我们可以除以两个除数的积,或者交换两个除数的位置。a÷b÷c=a÷(b×c) a÷b÷c=a÷c÷b
去括号: 括号前是加号的,去掉括号后,括号内的符号不变号;括号前是减号的,去掉括号后,括号内的符号要变号。
a+(b-c)=a+b-c a-(b-c)=a-b+c
第二单元小数除法
9、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
10、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数(把小数点向右移动相同的位数),使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:向右移动小数点时,如果被除数的位数不够,在被除数的末尾用0补足。
12、除法中的变化规律:①商不变性质:被除数和除数同时乘或除以同一个数(0除外),商不变。②除数不变,被除数乘或除以几,商随着乘或除以几。③被除数不变,除数乘或除以几,商就除以或乘几。④被除数大于除数,商就大于1;被除数小于除数,商就小于1。⑤一个数除以大于1的数,商就小于被除数;一个数除以小于1的数,商就大于被除数。⑥积不变性质:一个因数乘一个数,另一个除以同一个数(0除外),积不变。⑦一个因数不变,另一个数乘几,积就乘几。⑧一个因数不变,另一个因数除以几,积就除以几。
13、一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。 X
一个循环小数的小数部分,依次不断重复出现的数字。(如6.321321…的循环节是321,简便记法为6.321;如0.33…的循环节是3,简便记法为0.3。)循环小数是无限小数,无限小数不一定是循环小数。
14、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。无限小数分为无限循环小数和无限不循环小数。
第三单元观察物体
15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面,最少看到一个面。圆柱体从上面看到的形状是圆形,从其他方向看到的是长形或正方形。球体无论从哪个角度看,看到的形状都是圆形。
第四单元简易方程
16、在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写。加号、减号、除号以及数与数之间的乘号不能省略。
17、a×a可以写作a•a或a ,a 读作a的平方 2a表示a+a
(1a=a这里的“1”我们不写)
18、方程:含有未知数的等式称为方程(★方程必须满足的条件:必须是等式 必须有未知数,两者缺一不可)。使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。
19、解方程原理:天平平衡
等式性质一:方程两边同时加上或减去同一个数,左右两边仍然相等。等式性质二:方程两边同时乘或除以同一个不为0数,左右两边仍然相等。
21、所有的方程都是等式,但等式不一定都是方程。
22、方程的检验过程:方程左边 = 方程右边
23、方程的解是一个数; 解方程式是一个计算过程。 所以,X=…是方程的解。
常见的等量关系:①路程=速度×时间
②工作总量=工作效率×工作时间
③总价=单价 × 数量
第五单元多边形的面积
23、长方形周长=(长+宽)×2 字母公式:C=(a+b)×2
长方形面积=长×宽 字母公式:S=ab
正方形周长=边长×4 字母公式:C=4a
正方形面积=边长×边长 字母公式:S=a2
平行四边形的面积=底×高 字母公式: S=ah
三角形的面积=底×高÷2 字母公式: S=ah÷2
(三角形的底=面积×2÷高; 三角形的高=面积×2÷底)
梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2(上底=面积×2÷高-下底,下底=面积×2÷高-上底;
高=面积×2÷(上底+下底) )
25、三角形面积公式推导: 平行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个平行四边形,
长方形的长相当于平行四边形的底;长方形的宽相当于平行四边形的高;因为长方形面积=长×宽,所以平行四边形面积=底×高,长方形的面积等于平行四边形的面积。 平行四边形的底相当于三角形的底;平行四边形的高相当于三角形的高;平行四边形的面积等于等底等高三角形面积的2倍。
27两个完全一样的梯形可以拼成一个平行四边形。
平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍。
29、长方形框架拉成平行四边形,周长不变,面积变小。
第六单元统计与可能性
31、平均数=总数量÷总份数
32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。
第七单元数学广角
33、数不仅可以用来表示数量和顺序,还可以用来编码。
34、邮政编码:由6位组成,前2位表示省(直辖市、自治区)
0 5 4 0 0 1
前3位表示邮区, 前4位表示县(市),最后2位表示投递局
35、身份证18位,如130521197803010019
13表示河北省 05表示邢台市 21表示邢台县 19780301是出生日期 001是顺序码 9校验码
倒数第二位的数字用来表示性别,单数表示男,双数表示女。
③ 五年级上册数学第一单元的知识总汇是什么
小学五年级数学上册期末复习知识点归纳
第一单元小数乘法
1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:(P10)
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
6、(P11)小数四则运算顺序跟整数是一样的。
7、运算定律和性质:
加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
除法:除法性质:a÷b÷c=a÷(b×c)
④ 人教版小学数学五年级上册知识点有哪些
小学五年级数学上册复习教学知识点归纳总结
第一单元小数乘法
1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算.
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算.
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.
2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少.
如:1.5×0.8就是求1.5的十分之八是多少.
1.5×1.8就是求1.5的1.8倍是多少.
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位.
3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小.
4、求近似数的方法一般有三种:(P10)
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分.保留一位小数,表示计算到角.
6、(P11)小数四则运算顺序跟整数是一样的.
7、运算定律和性质:
加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
除法:除法性质:a÷b÷c=a÷(b×c)
第二单元小数除法
8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算.
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算.
9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除.,商的小数点要和被除数的小数点对齐.整数部分不够除,商0,点上小数点.如果有余数,要添0再除.
10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算.
注意:如果被除数的位数不够,在被除数的末尾用0补足.
11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数.
12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变.②除数不变,被除数扩大,商随着扩大.③被除数不变,除数缩小,商扩大.
13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数.
循环节:一个循环小数的小数部分,依次不断重复出现的数字.如6.3232……的循环节是32.
14、小数部分的位数是有限的小数,叫做有限小数.小数部分的位数是无限的小数,叫做无限小数.
第三单元观察物体
15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面.
第四单元简易方程
16、(P45)在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写.
加号、减号除号以及数与数之间的乘号不能省略.
17、a×a可以写作a•a或a ,a 读作a的平方. 2a表示a+a
18、方程:含有未知数的等式称为方程.
使方程左右两边相等的未知数的值,叫做方程的解.
求方程的解的过程叫做解方程.
19、解方程原理:天平平衡.
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立.
20、10个数量关系式:加法:和=加数+加数 一个加数=和-两一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数×因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
21、所有的方程都是等式,但等式不一定都是等式.
22、方程的检验过程:方程左边=……
23、方程的解是一个数;
解方程式一个计算过程.=方程右边
所以,X=…是方程的解.
第五单元多边形的面积
23、公式:长方形:周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】 字母公式:C=(a+b)×2
面积=长×宽 字母公式:S=ab
正方形:周长=边长×4 字母公式:C=4a
面积=边长×边长 字母公式:S=a
平行四边形的面积=底×高 字母公式: S=ah
三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】
字母公式: S=ah÷2
梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2
【上底=面积×2÷高-下底,下底=面积×2÷高-上底;
高=面积×2÷(上底+下底)】
24、平行四边形面积公式推导:剪拼、平移
25、三角形面积公式推导:旋转
平行四边形可以转化成一个长方形;
两个完全一样的三角形可以拼成一个平行四边形,
长方形的长相当于平行四边形的底;
平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高;
平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积,
平行四边形的面积等于三角形面积的2倍,
因为长方形面积=长×宽,所以平行四边形面积=底×高.
因为平行四边形面积=底×高,所以三角形面积=底×高÷2
26、梯形面积公式推导:旋转
27、三角形、梯形的第二种推导方法老师已讲,自己看书
两个完全一样的梯形可以拼成一个平行四边形, 知道就行.
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的2倍,
因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍.
29、长方形框架拉成平行四边形,周长不变,面积变小.
30、组合图形:转化成已学的简单图形,通过加、减进行计算.
第六单元统计与可能性
31、平均数=总数量÷总份数
32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适.
第七单元数学广角
33、数不仅可以用来表示数量和顺序,还可以用来编码.
34、邮政编码:由6位组成,前2位表示省(直辖市、自治区)
0 5 4 0 0 1
前3位表示邮区
前4位表示县(市)
最后2位表示投递局
35、身份证码: 18位
1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
河北省 邢台市 邢台县 出生日期 顺序码 校验码
倒数第二位的数字用来表示性别,单数表示男,双数表示女.
⑤ 五年级上册数学第一单元,第二单元,第三单元,第四单元,第六单元,各总结。
第一单元:小数乘法 掌握乘法的运算定律
第二单元:位置
第三单元:小数除法 掌握除法的运算定律
第四单元:可能性 知道可能性大小即可
第五单元:简易方程
⑥ 五年级上册数学重要知识点有哪些
五年级上册数学重要知识点有:
1、小数乘整数与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2、一个因数不变,另一个因数扩大(缩小)n倍,积也跟着扩大(缩小)n倍;一个因数扩大n倍,另一个因数缩小n倍,积不变。
3、一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
5、在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数求出商的近似数。
⑦ 五年级上册数学第一单元知识
人教版五年级数学上册第一单元知识点+图文讲解
⑧ 五年级数学上册第二单元学了哪些知识
重点搞好以下七大块的分类复习。
1、数的认识(整数和小数、数的整除、分数百分数)
知识要点包括“数的意义”、“数的读法与写法”、“数的改写”、“数的大小比较”、“数的整除”“小数、分数、百分数的互化”“约分和通分”等知识点。 重点确定在数的意义概念的理解,数的读写,数的整除。
本部分重点加强数学基本概念和基本性质的理解和掌握。具体通过一系列的练习,如填空题、选择题、判断题为主,适当穿插进行整数和小数的简单计算、约分和通分练习。复习本部分知识教师应该根据学生的实际学习水平灵活处理,对于班级基础较差的学生可适当放慢,万事开头难,本部分知识必须做到教一点使学生会一点,切忌贪多图快。复习题可参考以前的专项复习题或专项复习试卷。
2、四则运算(四则运算的意义与法则、运算定律与简便计算、四则混合运算、简易方程)。
这节重点四则运算和简便运算上。 全面概括四则运算和计算方法,提高计算水平和计算能力,包括“四则运算的意义和法则”、“四则混合运算”。 利用运算定律,掌握简便运算,提高计算效率,包括“运算定律和简便运算”。 结合教材按照先复习(整数、小数、分数)四则运算意义和运算法则,要求教师结合教材必须搞好学生相关的口算训练和基本的四则运算练习,然后再复习(整数、小数、分数)的四则混合运算,教师要加强四则混合运算中运算顺序的教学,在此基础上教师要精心设计练习,提高学生综合计算能力。第三,要搞好运算定律与简便计算复习,三种运算定律要求学生熟练掌握。最后,在简易方程复习中,教师要重点规范学生的答题行为,解方程必须写解。本部分练习题可参考以前下发的专项复习题。
3、量的计量
本节重点放在名数的改写和实际观念上。
(1)、整理量的计量知识结构,包括“长度、面积、体积单位”、“重量与时间单位”。
(2)、巩固计量单位,强化实际观念,包括“名数的改写”。
(3)、综合训练与应用,练习题可刻印或参考试卷。
4、几何初步知识(线和角、平面图形、立体图形)
本节重点放在对特征的辨析和对公式的应用上。
(1)、强化概念理解和系统化,包括“平面图形的特征”、“立体图形的特征”。
(2)、准确把握图形特征,加强对比分析,揭示知识间的联系与区别,包括“平面图形的周长与面积”、“立体图形的表面积和体积”。
(3)、加强对公式的应用,提高掌握计算方法。能让学生对周长、面积、体积进行的正确计算。
(4)、整体感知、实际应用。
练习题可刻印或参考试卷。
5、比和比例(比的意义和性质、比例的意义和性质、正比例和反比例)
本部分要求学生掌握比和比例意义和性质的同时,必须做到使学生正确辨析概念,加深理解,包括“比和比例”、“正比例和反比例”,会判断简单的正、反比例。重点要求学生掌握求比值、化简比,按比例分配,应用比例尺计算,解比例。在练习中很抓解题训练,提高解方程和解比例的能力,包括“简易方程”、“解比例”。
练习题可刻印或参考试卷。
6、简单的统计
本节重点结合考纲要求应放在对图表的认识和理解上,能回答一些简单的问题。
(1)、求平均数的方法。
(2)、加深统计图表的特点和作用的认识,包括“统计表”、“统计图”。
(3)、进一步对图表分析和回答问题,包括填图和根据图表回答问题。(本部分是复习的重点)
练习题可参考教材或试卷。
7、应用题解(整数和小数应用题、分数和百分数应用题、列方程解应用题、比和比例应用题)
这部分重点应放在应用题的分析和解题技能的发展上,难点内容是分数应用题。
(1)、简单应用题的分析与整理。 (一步计算)
(2)、复合应用题的分析与整理。 (两步以上)
(3)、列方程解应用题的分析与整理。
(4)、分数应用题的分析与整理。(重点)
(5)、用比例知识解答应用题的分析与整理。
(6)、应用题的综合训练。