当前位置:首页 » 基础知识 » 初中数学圆的图像知识点
扩展阅读
什么叫群众性的自我教育 2024-11-16 04:05:39

初中数学圆的图像知识点

发布时间: 2022-08-28 08:08:08

1. 初中数学几何知识点总结

初中数学几何知识点总结

数学几何的空间思维能力是培养出来的,因此相关的知识点需要牢记,下面初中数学几何知识点总结是我想跟大家分享的,欢迎大家浏览。

初中数学几何知识点总结1

三角形的知识点

1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三角形的分类

3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7、高线、中线、角平分线的意义和做法

8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

9、三角形内角和定理:三角形三个内角的和等于180°

推论1直角三角形的两个锐角互余

推论2三角形的一个外角等于和它不相邻的两个内角和

推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半

10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

11、三角形外角的性质

(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

(2)三角形的一个外角等于与它不相邻的两个内角和;

(3)三角形的一个外角大于与它不相邻的任一内角;

(4)三角形的外角和是360°。

四边形(含多边形)知识点、概念总结

一、平行四边形的定义、性质及判定

1、两组对边平行的四边形是平行四边形。

2、性质:

(1)平行四边形的对边相等且平行

(2)平行四边形的对角相等,邻角互补

(3)平行四边形的对角线互相平分

3、判定:

(1)两组对边分别平行的四边形是平行四边形

(2)两组对边分别相等的四边形是平行四边形

(3)一组对边平行且相等的四边形是平行四边形

(4)两组对角分别相等的四边形是平行四边形

(5)对角线互相平分的四边形是平行四边形

4、对称性:平行四边形是中心对称图形

二、矩形的定义、性质及判定

1、定义:有一个角是直角的平行四边形叫做矩形

2、性质:矩形的四个角都是直角,矩形的对角线相等

3、判定:

(1)有一个角是直角的平行四边形叫做矩形

(2)有三个角是直角的四边形是矩形

(3)两条对角线相等的平行四边形是矩形

4、对称性:矩形是轴对称图形也是中心对称图形。

三、菱形的定义、性质及判定

1、定义:有一组邻边相等的平行四边形叫做菱形

(1)菱形的四条边都相等

(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角

(3)菱形被两条对角线分成四个全等的直角三角形

(4)菱形的面积等于两条对角线长的积的一半

2、s菱=争6(n、6分别为对角线长)

3、判定:

(1)有一组邻边相等的平行四边形叫做菱形

(2)四条边都相等的四边形是菱形

(3)对角线互相垂直的平行四边形是菱形

4、对称性:菱形是轴对称图形也是中心对称图形

四、正方形定义、性质及判定

1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形

2、性质:

(1)正方形四个角都是直角,四条边都相等

(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形

(4)正方形的对角线与边的夹角是45°

(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形

3、判定:

(1)先判定一个四边形是矩形,再判定出有一组邻边相等

(2)先判定一个四边形是菱形,再判定出有一个角是直角

4、对称性:正方形是轴对称图形也是中心对称图形

五、梯形的定义、等腰梯形的性质及判定

1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形

4、对称性:等腰梯形是轴对称图形

六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。

七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。

八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。

九、多边形

1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

2、多边形的内角:多边形相邻两边组成的角叫做它的内角。

3、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

4、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

5、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

6、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

7、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

8、公式与性质

多边形内角和公式:n边形的内角和等于(n-2)·180°

9、多边形外角和定理:

(1)n边形外角和等于n·180°-(n-2)·180°=360°

(2)边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

10、多边形对角线的条数:

(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形

(2)n边形共有n(n-3)/2条对角线

圆知识点、概念总结

1、不在同一直线上的三点确定一个圆。

2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1①(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2圆的两条平行弦所夹的弧相等

3、圆是以圆心为对称中心的中心对称图形

4、圆是定点的距离等于定长的点的集合

5、圆的内部可以看作是圆心的距离小于半径的点的集合

6、圆的外部可以看作是圆心的距离大于半径的点的集合

7、同圆或等圆的半径相等

8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

12、①直线L和⊙O相交d

②直线L和⊙O相切d=r

③直线L和⊙O相离d>r

13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

14、切线的性质定理:圆的切线垂直于经过切点的半径

15、推论1经过圆心且垂直于切线的直线必经过切点

16、推论2经过切点且垂直于切线的直线必经过圆心

17、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

18、圆的外切四边形的两组对边的和相等,外角等于内对角

19、如果两个圆相切,那么切点一定在连心线上

20、①两圆外离d>R+r

②两圆外切d=R+r

③两圆相交R-rr)

④两圆内切d=R-r(R>r)⑤两圆内含dr)

21、定理:相交两圆的连心线垂直平分两圆的公共弦

22、定理:把圆分成n(n≥3):

(1)依次连结各分点所得的多边形是这个圆的内接正n边形

(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

23、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

24、正n边形的每个内角都等于(n-2)×180°/n

25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

26、正n边形的面积Sn=pnrn/2p表示正n边形的周长

27、正三角形面积√3a/4a表示边长

28、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

29、弧长计算公式:L=n兀R/180

30、扇形面积公式:S扇形=n兀R^2/360=LR/2

31、内公切线长=d-(R-r)外公切线长=d-(R+r)

32、定理:一条弧所对的圆周角等于它所对的圆心角的一半

33、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

34、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

35、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

初中数学几何知识点总结2

直角三角形的知识点

基本简介:

等腰直角三角形的边角之间的关系:

(1)三角形三内角和等于180°;

(2)三角形的一个外角等于和它不相邻的两个内角之和;

(3)三角形的一外角大于任何一个和它不相邻的内角;

(4)三角形两边之和大于第三边,两边之差小于第三边;

(5)在同一个三角形内,大边对大角,大角对大边。

等腰直角三角形中的四条特殊的线段:角平分线,中线,高,中位线。

(1)三角形的角平分线的交点叫做三角形的内心,它是三角形内切圆的圆心,它到各边的距离相等。

(三角形的外接圆圆心,即外心,是三角形三边的垂直平分线的交点,它到三个顶点的距离相等)。

(2)三角形的.三条中线的交点叫三角形的重心,它到每个顶点的距离等于它到对边中点的距离的2倍。

(3)三角形的三条高的交点叫做三角形的垂心。

(4)三角形的中位线平行于第三边且等于第三边的二分之一。

(5)三角形的一条内角平分线与两条外角平分线交于一点,该点即为三角形的旁心。

注意:

①任意三角形的内心、重心都在三角形的内部。

②钝角三角形垂心、外心在三角形外部。

③直角三角形垂心、外心在三角形的边上。(直角三角形的垂心为直角顶点,外心为斜边中点。)

④锐角三角形垂心、外心在三角形内部。

⑤任意三角形的旁心一定在三角形的外部。

直角三角形的`相关线段:

1、中线:顶点与对边中点的连线,平分三角形。

2、角平分线:平分三角形一内角的线段。

3、高线:三角形中一顶点向对边作的垂线。

等腰梯形的知识点

定义

一组对边平行(不相等),另一组对边不平行但相等的四边形叫做等腰梯形。顾名思义,等腰梯形是两腰相等的梯形,它是梯形的一种特殊情况。

判定

1、以下判定可作为定理使用:

(1)一组对边相等且不平行,另一组对边平行的四边形是等腰梯形。

(2)同一底上的两个角相等的梯形是等腰梯形。

(3)对角线相等的`梯形是等腰梯形。

(4)两腰相等的梯形是等腰梯形。

以下判定不作为定理使用:

(1)对角线相等且能形成两个等腰三角形的四边形是等腰梯形。

(2)对角互补的梯形是等腰梯形。

面积公式

对于等腰梯形,其面积计算方法与普通梯形一致。用a、b、h分别表示梯形的上底、下底、高,S表示梯形的面积,则S=(a+b)×h÷2。

通俗的说,梯形的面积=(上底+下底)×高÷2。

特殊情况

1、若等腰梯形对角线互相垂直,则面积为1/2乘以两对角线长度的乘积。

2、在已知中位线情况下,等腰梯形的面积等于中位线的长度乘以高。

棱柱的知识点

棱柱的定义

有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的'侧面。两个侧面的公共边叫做棱柱的侧棱。侧面与底的公共顶点叫做棱柱的顶点,不在同一个面上的两个顶点的连线叫做棱柱的对角线,两个底面的距离叫做棱柱的高。

棱柱的性质

①棱柱的各个侧面都是平行四边形,所有的侧棱都相等,直棱柱的各个侧面都是矩形,正棱柱的各个侧面都是全等的矩形;

②与底面平行的截面是与底面对应边互相平行的全等多边形;

③过棱柱不相邻的两条侧棱的截面都是平行四边形。

棱台的定义

用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台,原棱锥的底面和截面分别叫做棱台的下底面和上底面。

棱锥的定义

如果一个多面体的一个面是多边形,其余各个面是有一个公共顶点的三角形,那么这个多面体叫棱锥。在棱锥中有公共顶点的各三角形叫做棱锥的侧面,棱锥中这个多边形叫做棱锥的底面,棱锥中相邻两个侧面的交线叫做棱锥的侧棱,棱锥中各侧棱的公共顶点叫棱锥的顶点。棱锥顶点到底面的距离叫棱锥的高,过棱锥不相邻的两条侧棱的截面叫棱锥的对角面。

按照棱锥底面多边形的边数可将棱锥分为:三棱锥

;

2. 中考数学圆知识点总结

中考数学圆知识点总结

在中考数学中, 圆是初中几何课程中很重要的内容之一。下面是我推荐给大家的中考数学圆知识点总结,希望大家有所收获。

中考数学圆知识点总结

一、圆及圆的相关量的定义

1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

2.圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。

二、有关圆的字母表示方法

圆--⊙ 半径—r 弧--⌒ 直径—d

扇形弧长/圆锥母线—l 周长—C 面积—S三、有关圆的基本性质与定理(27个)

1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):

P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO

2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

5.一条弧所对的圆周角等于它所对的圆心角的一半。

6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

7.不在同一直线上的3个点确定一个圆。

8.一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。

9.直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距离):

AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO

10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

11.圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):

外离P>R+r;外切P=R+r;相交R-r

三、有关圆的计算公式

1.圆的周长C=2πr=πd 2.圆的面积S=s=πr² 3.扇形弧长l=nπr/180

4.扇形面积S=nπr² /360=rl/2 5.圆锥侧面积S=πrl

四、圆的方程

1.圆的标准方程

在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是

(x-a)^2+(y-b)^2=r^2

2.圆的一般方程

把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是

x^2+y^2+Dx+Ey+F=0

和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2

相关知识:圆的离心率e=0.在圆上任意一点的曲率半径都是r.

五、圆与直线的位置关系判断

链接:圆与直线的位置关系(一.5)

平面内,直线Ax+By+C=O与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是

讨论如下2种情况:

(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0.

利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:

如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切

如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离

(2)如果B=0即直线为Ax+C=0,即x=-C/A.它平行于y轴(或垂直于x轴)

将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2

令y=b,求出此时的两个x值x1,x2,并且我们规定x1

当x=-C/Ax2时,直线与圆相离

当x1

当x=-C/A=x1或x=-C/A=x2时,直线与圆相切

圆的定理:

1不在同一直线上的三点确定一个圆。

2垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2 圆的两条平行弦所夹的弧相等

3圆是以圆心为对称中心的中心对称图形

4圆是定点的距离等于定长的点的集合

5圆的内部可以看作是圆心的距离小于半径的点的集合

6圆的外部可以看作是圆心的距离大于半径的点的集合

7同圆或等圆的半径相等

8到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

9定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

10推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角

12①直线L和⊙O相交 d

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r

13切线的'判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

14切线的性质定理 圆的切线垂直于经过切点的半径

15推论1 经过圆心且垂直于切线的直线必经过切点

16推论2 经过切点且垂直于切线的直线必经过圆心

17切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角

18圆的外切四边形的两组对边的和相等 外角等于内对角

19如果两个圆相切,那么切点一定在连心线上

20①两圆外离 d>R+r ②两圆外切 d=R+r

③两圆相交 R-rr)

④两圆内切 d=R-r(R>r) ⑤两圆内含dr)

21定理 相交两圆的连心线垂直平分两圆的公共弦

22定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

23定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

24正n边形的每个内角都等于(n-2)×180°/n

25定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

26正n边形的面积Sn=pnrn/2 p表示正n边形的周长

27正三角形面积√3a/4 a表示边长

28如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

29弧长计算公式:L=n兀R/180

30扇形面积公式:S扇形=n兀R^2/360=LR/2

31内公切线长= d-(R-r) 外公切线长= d-(R+r)

32定理 一条弧所对的圆周角等于它所对的圆心角的一半

33推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

34推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径

35弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

;

3. 初中数学圆的知识点归纳

初中数学关于圆的知识点归纳

圆又是“正无限多边形”,而“无限”只是一个概念。当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是概念性的图形。下面是我整理的关于圆的知识点归纳,欢迎大家参考!

集合:

圆:圆可以看作是到定点的距离等于定长的点的集合;

圆的外部:可以看作是到定点的距离大于定长的点的集合;

圆的内部:可以看作是到定点的距离小于定长的点的集合

轨迹:

1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;

2、到线段两端点距离相等的点的轨迹是:线段的中垂线;

3、到角两边距离相等的点的轨迹是:角的平分线;

4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;

5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

圆的知识点

1、不在同一直线上的三点确定一个圆。

2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1: ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

推论2: 圆的两条平行弦所夹的弧相等。

3、圆是以圆心为对称中心的中心对称图形。

4、圆是定点的'距离等于定长的点的集合。

5、圆的内部可以看作是圆心的距离小于半径的点的集合。

6、圆的外部可以看作是圆心的距离大于半径的点的集合。

7、同圆或等圆的半径相等。

8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

9、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

10、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

12、①直线L和⊙O相交 d r

13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

14、切线的性质定理:圆的切线垂直于经过切点的半径。

15、推论1:经过圆心且垂直于切线的直线必经过切点。

16、推论2:经过切点且垂直于切线的直线必经过圆心。

17、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

18、圆的外切四边形的两组对边的和相等外角等于内对角。

19、如果两个圆相切,那么切点一定在连心线上。

20、①两圆外离 d>R+r; ②两圆外切 d=R+r;③两圆相交 R-r<d r);④两圆内切 d=R-r(R>r) ⑤两圆内含d r) </d

21、定理:相交两圆的连心线垂直平分两圆的公共弦

22、定理:把圆分成n(n≥3):

①依次连结各分点所得的多边形是这个圆的内接正n边形;②经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。

23、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。

24、正n边形的每个内角都等于(n-2)×180°/n。

25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。

26、正n边形的面积Sn=pnrn/2p表示正n边形的周长。

27、正三角形面积√3a/4 a表示边长。

28、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

29、弧长计算公式:L=n兀R/180

30、扇形面积公式:S扇形=n兀R^2/360=LR/2

31、内公切线长= d-(R-r) 外公切线长= d-(R+r)

32、定理:一条弧所对的圆周角等于它所对的圆心角的一半。

33、推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

34、推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

35、弧长公式:l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

;

4. 初二数学几何知识点归纳有哪些

数学的几何题是同学们的一大死穴,想要学好初二数学几何需要找到正确的学习方法。为了帮助大家更好的学习初二数学几何,下面是我分享给大家的初二数学几何知识点,希望大家喜欢!

初二数学几何知识点一
四边形(含多边形)知识点、概念总结

一、平行四边形的定义、性质及判定

1. 两组对边平行的四边形是平行四边形。

2. 性质:

(1)平行四边形的对边相等且平行

(2)平行四边形的对角相等,邻角互补

(3)平行四边形的对角线互相平分

3. 判定:

(1)两组对边分别平行的四边形是平行四边形

(2)两组对边分别相等的四边形是平行四边形

(3)一组对边平行且相等的四边形是平行四边形

(4)两组对角分别相等的四边形是平行四边形

(5)对角线互相平分的四边形是平行四边形

4. 对称性:平行四边形是中心对称图形

二、矩形的定义、性质及判定

1. 定义:有一个角是直角的平行四边形叫做矩形

2. 性质:矩形的四个角都是直角,矩形的对角线相等

3. 判定:

(1)有一个角是直角的平行四边形叫做矩形

(2)有三个角是直角的四边形是矩形

(3)两条对角线相等的平行四边形是矩形

4. 对称性:矩形是轴对称图形也是中心对称图形。

三、菱形的定义、性质及判定

1. 定义:有一组邻边相等的平行四边形叫做菱形

(1)菱形的四条边都相等

(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角

(3)菱形被两条对角线分成四个全等的直角三角形

(4)菱形的面积等于两条对角线长的积的一半

2. s菱=争6(n、6分别为对角线长)

3. 判定:

(1)有一组邻边相等的平行四边形叫做菱形

(2)四条边都相等的四边形是菱形

(3)对角线互相垂直的平行四边形是菱形

4. 对称性:菱形是轴对称图形也是中心对称图形

四、正方形定义、性质及判定

1. 定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形

2. 性质:

(1)正方形四个角都是直角,四条边都相等

(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形

(4)正方形的对角线与边的夹角是45°

(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形

3. 判定:

(1)先判定一个四边形是矩形,再判定出有一组邻边相等

(2)先判定一个四边形是菱形,再判定出有一个角是直角

4. 对称性:正方形是轴对称图形也是中心对称图形

五、梯形的定义、等腰梯形的性质及判定

1. 定义:一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯

形.一腰垂直于底的梯形是直角梯形

2. 等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

3. 等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形

4. 对称性:等腰梯形是轴对称图形

六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。

七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。

八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。

九、多边形

1. 多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

2. 多边形的内角:多边形相邻两边组成的角叫做它的内角。

3. 多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

4. 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

5. 多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

6. 正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

7. 平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

8. 公式与性质

多边形内角和公式:n边形的内角和等于(n-2)·180°

9. 多边形外角和定理:

(1)n边形外角和等于n·180°-(n-2)·180°=360°

(2)边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

10. 多边形对角线的条数:

(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形

(2)n边形共有n(n-3)/2条对角线
初二数学几何知识点二
圆知识点、概念总结

1. 不在同一直线上的三点确定一个圆。

2. 垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1 ① (不是直径)的直径垂直于弦,并且平分弦所对的两条弧

② 弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2 圆的两条平行弦所夹的弧相等

3. 圆是以圆心为对称中心的中心对称图形

4. 圆是定点的距离等于定长的点的集合

5. 圆的内部可以看作是圆心的距离小于半径的点的集合

6. 圆的外部可以看作是圆心的距离大于半径的点的集合

7. 同圆或等圆的半径相等

8. 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

9. 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

10. 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11. 定理:圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角

12. ① 直线L和⊙O相交 d

② 直线L和⊙O相切 d=r

③ 直线L和⊙O相离 d>r

13. 切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

14. 切线的性质定理:圆的切线垂直于经过切点的半径

15. 推论1 经过圆心且垂直于切线的直线必经过切点

16. 推论2 经过切点且垂直于切线的直线必经过圆心

17. 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角

18. 圆的外切四边形的两组对边的和相等 ,外角等于内对角

19. 如果两个圆相切,那么切点一定在连心线上

20. ① 两圆外离 d>R+r

② 两圆外切 d=R+r

③ 两圆相交 R-rr)

④ 两圆内切 d=R-r(R>r) ⑤两圆内含dr)

21. 定理:相交两圆的连心线垂直平分两圆的公共弦

22. 定理:把圆分成n(n≥3):

(1)依次连结各分点所得的多边形是这个圆的内接正n边形

(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

23. 定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

24. 正n边形的每个内角都等于(n-2)×180°/n

25. 定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

26. 正n边形的面积Sn=pnrn/2 p表示正n边形的周长

27. 正三角形面积√3a/4 a表示边长

28. 如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

29. 弧长计算公式:L=n兀R/180

30. 扇形面积公式:S扇形=n兀R^2/360=LR/2

31. 内公切线长= d-(R-r) 外公切线长= d-(R+r)

32. 定理:一条弧所对的圆周角等于它所对的圆心角的一半

33. 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

34. 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

35. 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
初二数学几何知识点三
三角形知识点、概念总结

1. 三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2. 三角形的分类

3. 三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4. 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5. 中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6. 角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7. 高线、中线、角平分线的意义和做法

8. 三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

9. 三角形内角和定理:三角形三个内角的和等于180°

推论1 直角三角形的两个锐角互余

推论2 三角形的一个外角等于和它不相邻的两个内角和

推论3 三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半

10. 三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

11. 三角形外角的性质

(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

(2)三角形的一个外角等于与它不相邻的两个内角和;

(3)三角形的一个外角大于与它不相邻的任一内角;

(4)三角形的外角和是360°。

猜你喜欢:

1. 初三上数学知识点归纳

2. 初中数学知识点归纳

3. 高考必备数学公式知识点

4. 初中数学圆的知识点归纳

5. 3年级数学归纳知识点有哪些

5. 九年级数学下册知识点

课堂临时报佛脚,不如 课前预习 好。其实任何学科都是一样的,学习任何一门学科,勤奋都是最好的 学习 方法 ,没有之一,书山有路勤为径。下面是我给大家整理的 九年级数学 知识点,希望对大家有所帮助。

九年级下册数学知识点归纳

★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。

☆内容提要☆

一、圆的基本性质

1.圆的定义(两种)

2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。

3.“三点定圆”定理

4.垂径定理及其推论

5.“等对等”定理及其推论

6.与圆有关的角:⑴圆心角定义(等对等定理)

⑵圆周角定义(圆周角定理,与圆心角的关系)

⑶弦切角定义(弦切角定理)

二、直线和圆的位置关系

1.切线的性质(重点)

2.切线的判定定理(重点)

3.切线长定理

三、圆换圆的位置关系

1.五种位置关系及判定与性质:(重点:相切)

2.相切(交)两圆连心线的性质定理

3.两圆的公切线:⑴定义⑵性质

四、与圆有关的比例线段

1.相交弦定理

2.切割线定理

五、与和正多边形

1.圆的内接、外切多边形(三角形、四边形)

2.三角形的外接圆、内切圆及性质

3.圆的外切四边形、内接四边形的性质

4.正多边形及计算

中心角:初中数学复习提纲

内角的一半:初中数学复习提纲(右图)

(解Rt△OAM可求出相关元素,初中数学复习提纲、初中数学复习提纲等)

六、一组计算公式

1.圆周长公式

2.圆面积公式

3.扇形面积公式

4.弧长公式

5.弓形面积的计算方法

6.圆柱、圆锥的侧面展开图及相关计算

初三下册数学知识点 总结

一、锐角三角函数

正弦等于对边比斜边

余弦等于邻边比斜边

正切等于对边比邻边

余切等于邻边比对边

正割等于斜边比邻边

二、三角函数的计算

幂级数

c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)

c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)

它们的各项都是正整数幂的幂函数,其中c0,c1,c2,...cn...及a都是常数,这种级数称为幂级数.

泰勒展开式(幂级数展开法)

f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...

三、解直角三角形

1.直角三角形两个锐角互余。

2.直角三角形的三条高交点在一个顶点上。

3.勾股定理:两直角边平方和等于斜边平方

四、利用三角函数测高

1、解直角三角形的应用

(1)通过解直角三角形能解决实际问题中的很多有关测量问.

如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.

(2)解直角三角形的一般过程是:

①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).

②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.

初三 数学学习方法

一、该记的记,该背的背,不要以为理解了就行

有的同学认为,数学不像英语、史地,要背单词、背年代、背地名,数学靠的是智慧、技巧和推理。我说你只讲对了一半。数学同样也离不开记忆。试想一下,小学的加、减、乘、除运算要不是背熟了“乘法九九表”,你能顺利地进行运算吗?尽管你理解了乘法是相同加数的和的运算,但你在做9.9时用九个9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同样,是运用大家熟记的法则做出来的。同时,数学中还有大量的规定需要记忆,比如规定(a≠0)等等。因此,我觉得数学更像游戏,它有许多游戏规则(即数学中的定义、法则、公式、定理等),谁记住了这些游戏规则,谁就能顺利地做游戏;谁违反了这些游戏规则,谁就被判错,罚下。因此,数学的定义、法则、公式、定理等一定要记熟,有些能背诵,朗朗上口。比如大家熟悉的“整式乘法三个公式”,我看在座的有的背得出,有的就背不出。在这里,我向背不出的同学敲一敲警钟,如果背不出这三个公式,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这三个公式,特别是初二即将学的因式分解,其中相当重要的三个因式分解公式就是由这三个乘法公式推出来的,二者是相反方向的变形。

对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打不出家具的;有了这些工具,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具。同样,记不住数学的定义、法则、公式、定理就很难解数学题。而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手。

二、几个重要的数学思想

1、“方程”的思想

数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度.时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。初二、初三我们还将学习解一元二次方程、二元二次方程组、简单的三角方程;到了高中我们还将学习指数方程、对数方程、线性方程组、、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好 其它 形式的方程。

所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。

2、“数形结合”的思想

大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支枣-代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。在初三,建立平面直角坐标系后,研究函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的 思维训练 ,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人慢慢会养成一种“数形结合”的好习惯。

九年级数学下册知识点相关 文章 :

★ 九年级数学下册圆的知识点整理

★ 人教版九年级数学知识点归纳

★ 最新初三数学知识点总结大全

★ 初三数学知识点考点归纳总结

★ 初三数学知识点归纳总结

★ 初中初三数学知识点

★ 初三数学知识点归纳人教版

★ 九年级下学期期末数学复习资料

★ 初中九年级数学知识点总结归纳

★ 初三数学基础知识点总结

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

6. 初中数学圆的知识点总结

即将步入初三的同学们,掌握好有关于圆的知识内容,对于后面接触弧、扇形、椭圆等相关知识内容都有一定的帮助。下面是我为大家整理的关于初中数学圆的知识点 总结 ,希望对您有所帮助。欢迎大家阅读参考学习!

定义:

(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。

(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

圆心:

(1)如定义(1)中,该定点为圆心

(2)如定义(2)中,绕的那一端的端点为圆心。

(3)圆任意两条对称轴的交点为圆心。

(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

注:圆心一般用字母O表示

直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

圆的周长与直径的比值叫做圆周率。圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。

直径所对的圆周角是直角。90°的圆周角所对的弦是直径。

圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2,用字母S表示。

一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

周长计算公式

1.、已知直径:C=πd

2、已知半径:C=2πr

3、已知周长:D=cπ

4、圆周长的一半:12周长(曲线)

5、半圆的长:12周长+直径

面积计算公式:

1、已知半径:S=πr平方

2、已知直径:S=π(d2)平方

3、已知周长:S=π(c2π)平方

点、直线、圆和圆的位置关系

1.点和圆的位置关系

①点在圆内<=>点到圆心的距离小于半径

②点在圆上<=>点到圆心的距离等于半径

③点在圆外<=>点到圆心的距离大于半径

2.过三点的圆不在同一直线上的三个点确定一个圆。

3.外接圆和外心经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心。

4.直线和圆的位置关系

相交:直线和圆有两个公共点叫这条直线和圆相交,这条直线叫做圆的割线。

相切:直线和圆有一个公共点叫这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。

相离:直线和圆没有公共点叫这条直线和圆相离。

5.直线和圆位置关系的性质和判定

如果⊙O的半径为r,圆心O到直线l的距离为d,那么

①直线l和⊙O相交<=>d

②直线l和⊙O相切<=>d=r;

③直线l和⊙O相离<=>d>r。

圆和圆

定义:

两个圆没有公共点且每个圆的点都在另一个圆的外部时,叫做这两个圆的外离。

两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做两个圆的外切。

两个圆有两个交点,叫做两个圆的相交。

两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的内部,叫做两个圆的内切。

两个圆没有公共点且每个圆的点都在另一个圆的内部时,叫做这两个圆的内含。

原理:圆心距和半径的数量关系:

两圆外离<=>d>R+r两圆外切<=>d=R+r两圆相交<=>R-r=r)

两圆内切<=>d=R-r(R>r)两圆内含<=>dr)

正多边形和圆

1、正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。

2、正多边形与圆的关系:

(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。

(2)这个圆是这个正多边形的外接圆。

3、正多边形的有关概念:

(1)正多边形的中心——正多边形的外接圆的圆心。

(2)正多边形的半径——正多边形的外接圆的半径。

(3)正多边形的边心距——正多边形中心到正多边形各边的距离。

(4)正多边形的中心角——正多边形每一边所对的外接圆的圆心角。

4、正多边形性质:

(1)任何正多边形都有一个外接圆。

(2)正多边形都是轴对称图形,当边数是偶数时,它又是中心对称图形,正n边形的对称轴有n条。(3)边数相同的正多边形相似。

相关 文章 :

1. 初中数学的常考知识点20条

2. 九年级数学下册圆的知识点整理

3. 初中数学知识点整理:

4. 初三数学圆的思维导图

5. 初中数学圆教学反思

7. 九年级数学下册圆的知识点整理

圆的应用在数学领域中非常的广泛且常见,下面是我给大家带来的 九年级数学 下册《圆》知识点整理,希望能够帮助到大家!

九年级数学下册《圆》知识点整理

第十章 圆

★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。

☆ 内容提要☆

一、圆的基本性质

1.圆的定义(两种)

2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。

3.“三点定圆”定理

4.垂径定理及其推论

5.“等对等”定理及其推论

5. 与圆有关的角:⑴圆心角定义(等对等定理)

⑵圆周角定义(圆周角定理,与圆心角的关系)

⑶弦切角定义(弦切角定理)

二、直线和圆的位置关系

1.三种位置及判定与性质:

初中数学复习提纲

2.切线的性质(重点)

3.切线的判定定理(重点)。圆的切线的判定有⑴…⑵…

4.切线长定理

三、圆换圆的位置关系

初中数学复习提纲1.五种位置关系及判定与性质:(重点:相切)

2.相切(交)两圆连心线的性质定理

3.两圆的公切线:⑴定义⑵性质

四、与圆有关的比例线段

初中数学复习提纲1.相交弦定理

2.切割线定理

五、与和正多边形

1.圆的内接、外切多边形(三角形、四边形)

2.三角形的外接圆、内切圆及性质

3.圆的外切四边形、内接四边形的性质

4.正多边形及计算

中心角: 初中数学复习提纲

内角的一半: 初中数学复习提纲 (右图)

(解Rt△OAM可求出相关元素, 初中数学复习提纲 、 初中数学复习提纲 等)

六、一组计算公式

1.圆周长公式

2.圆面积公式

3.扇形面积公式

初中数学复习提纲4.弧长公式

5.弓形面积的计算 方法

6.圆柱、圆锥的侧面展开图及相关计算

七、点的轨迹

六条基本轨迹

八、有关作图

1.作三角形的外接圆、内切圆

2.平分已知弧

3.作已知两线段的比例中项

4.等分圆周:4、8;6、3等分

九、基本图形

十、重要辅助线

1.作半径

2.见弦往往作弦心距

3.见直径往往作直径上的圆周角

4.切点圆心莫忘连

5.两圆相切公切线(连心线)

6.两圆相交公共弦

8. 初中数学圆知识点总结

圆是我们学习初中数学中重要的知识点,下面是我整理了初中数学有关圆的知识点,供大家参考。

一、圆及圆的相关量的定义

1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

2.圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。

二、有关圆的基本性质与定理

1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r

2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

5.一条弧所对的圆周角等于它所对的圆心角的一半。

6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

7.不在同一直线上的3个点确定一个圆。

8.一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。

9.直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO。

10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

11.圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):外离P>R+r;外切P=R+r;相交R-r。

三、圆的方程

1.圆的标准方程

在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是:(x-a)^2+(y-b)^2=r^2

2.圆的一般方程

把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是:x^2+y^2+Dx+Ey+F=0

和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。

相关知识:圆的离心率e=0.在圆上任意一点的曲率半径都是r。

四、圆的定理

1.垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧。

推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

推论2:圆的两条平行弦所夹的弧相等。

2.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

3.推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

4.定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。

5.定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

9. 初中数学圆知识点总结归纳

数学是一门很重要的学科,下面是我为大家整理出来的一些初中数学圆的重要知识点,希望能帮助到大家。

一.圆的定义

1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。

2.平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

二.圆心

1.定义1中的定点为圆心。

2.定义2中绕的那一端的端点为圆心。

3.圆任意两条对称轴的交点为圆心。

4.垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

注:圆心一般用字母O表示

5.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

6.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

7.圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。

8.圆的半径或直径决定圆的大小,圆心决定圆的位置。

三.圆的基本性质

1.圆的对称性

(1)圆是轴对称图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是旋转对称图形。

2.垂径定理

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:

平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3.圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4.在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5.夹在平行线间的两条弧相等。

(1)过两点的圆的圆心一定在两点间连线段的中垂线上。

(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

(直角三角形的外心就是斜边的中点。)

6.直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。

直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。

四.圆和圆

1.两个圆没有公共点且每个圆的点都在另一个圆的外部时,叫做这两个圆的外离。

2.两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做两个圆的外切。

3.两个圆有两个交点,叫做两个圆的相交。

4.两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的内部,叫做两个圆的内切。

5.两个圆没有公共点且每个圆的点都在另一个圆的内部时,叫做这两个圆的内含。

五.正多边形和圆

1.正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。

2.正多边形与圆的关系:

(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。

(2)这个圆是这个正多边形的外接圆。

10. 求初中高中数学中,关于三角函数、圆、弧一系列相关知识点的讲解及公式

I、定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b(k,b为常数,k≠0)
则称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。

II、一次函数的性质:
y的变化值与对应的x的变化值成正比例,比值为k
即 △y/△x=k

III、一次函数的图象及性质:
1. 作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。
2. 性质:在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
3. k,b与函数图象所在象限。
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

IV、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:
y1=kx1+b① 和 y2=kx2+b②。
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。

V、一次函数在生活中的应用
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。