当前位置:首页 » 基础知识 » 小学数学基础知识梳理图树

小学数学基础知识梳理图树

发布时间: 2022-08-27 07:25:24

1. 小学部分知识点该如何梳理

对于小学生来说,一定要注意整理日常学习的知识点,也就是说,知识点经过整理以后才能变成自己的知识,那么,如何整理知识点呢?

  • 5

    在整理知识点的时候,我们应该形成一种树状图,随时有补充的时候就要随时增加。

  • 很多小学学生,成绩一直不怎么高,而且越学到后面成绩越糟。小学知识其实并没有那么难,大部分都是基础知识点。但是为什么很多学生学起来还是那么费劲呢?

  • 很主要的原因就是很多学生的学习方法有问题。学到的知识点都是零散的,学了前面的忘了后面的。

  • 其实小学的知识并没有那么难,只要能够掌握好运算法则和重难题型,加上对知识的熟练运用,想要在考试中取得一个好成绩时也是比较容易的。

  • 今天我就为大家分享一份资料,是小学数学基础知识点最全归类!涵盖小学数学、语文、英语1~6年级的全部基础知识点,希望能帮助到孩子快速提高成绩。家长也可以为自己的孩子收藏之后,慢慢教给自己的孩子。

  • 2. 梳理小学数学网络图

    小学数学? 四则运算~基本公式~基本定率(交换率,分配率等总结) 图形~线与角,平行相交等相关概念 几何~周长,面积,体积相关知识点总结 应用~追赶,相遇,排水注水等 数列~小学主要就是看规率 概率~不知道现在小学有没有,我学的时候没有(96年~02年)…

    3. 我要做一个小学数学知识结构图,一到六年纪的全要,最好在一张表上做出来,就是结构图那种.谢谢!!!

    数学思想和方法 画线段辅助理解问题。 1.找出已知条件并列表整理问题。2.图形结合的思想。 1.数表结合解决问题。2.倒推思想解决问题。
    应用知识 1.方位辨别;2.统计知识:分类统计。3.概率知识:“可能性” 1.物体的正面、侧面和上面。2.统计知识:画“正”字表示次数。3.轴对称图形(对称轴) 1.间隔问题。2.平移和旋转(顺时针和逆时针)3.统计知识:各种统计图。 1.找规律:根据已知的推测未知的。2.确定位置:行和列。 概率知识
    应用题 题目中的条件和问题,列出加法、减法一步算式,并注明单位名称。 1.加法、减法、乘法和除法一步计算的应用题。2.各种量的应用题。 1.平均数问题。2.混合运算应用题。3.各种量的应用题。 1.量的计算问题。2.混合运算应用题。 1.解答三步计算的应用题。2.相遇问题 1.工程问题。2.百分数的实际应用。3.比例。
    几何初步知识 1.长方形、正方形、三角形和圆的直观认识;2.长方体、正方体、圆柱和球的直观认识。
    1.直线和线段的初步认识。2.多边形。3.角的认识。 长方形和正方形的特征。长方形和正方形的周长和面积计算。 1.角的测量。2.平行和相交。3.三角形的性质。4.平行四边形和梯形的认识。5.垂线。 1.圆的认识,圆的周长和面积计算。2.多边形面积的计算。 长方体、正方体、圆柱、圆锥的表面积和体积计算。
    量与计算 1.钟面的认识。2.人民币的认识和简单计算。 1.时间单位的认识。2.长度单位的认识和简单计算。3.重量单位的认识。
    1.面积单位的认识和换算。2.24时计时法;时间段的计算。3.年、月、日。4.千米和吨。 统计单位—升和毫升。 体积单位
    数与计算 20和100以内数的认识、加减法(口算、列竖式) 1.万以内数的读法和写法。2.两位数加、减两位数,用加法验算减法。3.表内乘法和表内除法。4.混合运算。 1.四则混合运算。2.分数的认识和分母相同的分数加减计算。3.小数的认识和加减计算。 1.积和商的性质。2.运算定律。3.倍数和因数。4.素数和和数。5.奇数和偶数。6.整数和自然数。 1.认识负数。2.小数的四则运算。3.公倍数、公因数。4.分数的性质及计算。5.初步代数知识—方程。 1.百分数。2.比和比例。3.分数的四则运算。
    年级 一年级 二年级 三年级 四年级 五年级 六年级

    4. 小学五年级数学的思维导图

    小学五年级数学的思维导图主要包括数与代数、空间与图形、统计与概率、实践与综合应用这些内容。

    一、人教版五年级数学上册第一单元知识树,内容包括小数乘法、积的近似值、小数混合运算、乘法运算定理。

    5. 如何制作数学知识树

    小学数学教学知识树通常含:(1)数与代数(2)空间图形(3)统计概率(4)实践与综合运用
    这四大块再具体到哪几个单元,什么专题。这就是整册教材的知识树。

    6. 一到六年级人教版数学书所有知识点。

    小学数学基础知识整理

    一、小学数学基础知识整理(一到六年级)
    小学一年级 九九乘法口诀表。学会基础加减乘。
    小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。
    小学三年级 学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。
    小学四年级 线角自然数整数,素因数梯形对称,分数小数计算。
    小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
    小学六年级 比例百分比概率,圆扇圆柱及圆锥。
    二、必背定义、定理公式
    三角形的面积=底×高÷2。 公式 S= a×h÷2
    正方形的面积=边长×边长 公式 S= a×a
    长方形的面积=长×宽 公式 S= a×b
    平行四边形的面积=底×高 公式 S= a×h
    梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
    内角和:三角形的内角和=180度。
    长方体的体积=长×宽×高 公式:V=abh
    长方体(或正方体)的体积=底面积×高 公式:V=abh
    正方体的体积=棱长×棱长×棱长 公式:V=aaa
    圆的周长=直径×π 公式:L=πd=2πr
    圆的面积=半径×半径×π 公式:S=πr2
    圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
    圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2
    圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
    圆锥的体积=1/3底面×积高。公式:V=1/3Sh
    分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
    分数的乘法则:用分子的积做分子,用分母的积做分母。
    分数的除法则:除以一个数等于乘以这个数的倒数。

    三、读懂理解会应用以下定义定理性质公式
    (一)、算术方面
    1、加法交换律:两数相加交换加数的位置,和不变。
    2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
    3、乘法交换律:两数相乘,交换因数的位置,积不变。
    4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
    5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5
    6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
    简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
    7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
    等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
    8、什么叫方程式?答:含有未知数的等式叫方程式。
    9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
    学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
    10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
    11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
    12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
    13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
    14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
    15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
    16、真分数:分子比分母小的分数叫做真分数。
    17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
    18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
    19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
    20、一个数除以分数,等于这个数乘以分数的倒数。
    21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
    (二)、数量关系计算公式方面
    1、单价×数量=总价
    2、单产量×数量=总产量
    3、速度×时间=路程
    4、工效×时间=工作总量
    5、加数+加数=和 一个加数=和+另一个加数
    被减数-减数=差 减数=被减数-差 被减数=减数+差
    因数×因数=积 一个因数=积÷另一个因数
    被除数÷除数=商 除数=被除数÷商 被除数=商×除数
    有余数的除法: 被除数=商×除数+余数
    一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)
    6、 1公里=1千米 1千米=1000米
    1米=10分米 1分米=10厘米 1厘米=10毫米
    1平方米=100平方分米 1平方分米=100平方厘米
    1平方厘米=100平方毫米
    1立方米=1000立方分米 1立方分米=1000立方厘米
    1立方厘米=1000立方毫米
    1吨=1000千克 1千克= 1000克= 1公斤= 1市斤
    1公顷=10000平方米。 1亩=666.666平方米。
    1升=1立方分米=1000毫升 1毫升=1立方厘米
    7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
    比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
    8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
    9、比例的基本性质:在比例里,两外项之积等于两内项之积。
    10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
    11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
    12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y
    百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
    13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
    把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
    14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
    把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
    15、要学会把小数化成分数和把分数化成小数的化发。
    16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
    17、互质数: 公约数只有1的两个数,叫做互质数。
    18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
    19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
    20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
    21、最简分数:分子、分母是互质数的分数,叫做最简分数。
    分数计算到最后,得数必须化成最简分数。
    个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
    22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
    23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
    24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
    28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
    29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
    30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
    31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
    32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。
    如3. 141592654
    33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
    34、什么叫代数? 代数就是用字母代替数。
    35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c
    (三)、一般运算规则
    1 每份数×份数=总数总数÷每份数=份数 总数÷份数=每份数
    2 1倍数×倍数=几倍数几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
    3 速度×时间=路程路程÷速度=时间 路程÷时间=速度
    4 单价×数量=总价总价÷单价=数量 总价÷数量=单价
    5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
    6 加数+加数=和和-一个加数=另一个加数
    7 被减数-减数=差被减数-差=减数 差+减数=被减数
    8 因数×因数=积积÷一个因数=另一个因数
    9 被除数÷除数=商被除数÷商=除数 商×除数=被除数
    四、小学数学图形计算公式
    1 正方形 C周长 S面积 a边长
    周长=边长×4 C=4a
    面积=边长×边长 S=a×a
    2 正方体 V:体积 a:棱长
    表面积=棱长×棱长×6 S表=a×a×6
    体积=棱长×棱长×棱长 V=a×a×a
    3 长方形 C周长 S面积 a边长
    周长=(长+宽)×2 C=2(a+b)
    面积=长×宽 S=ab
    4 长方体 V:体积 s:面积 a:长 b: 宽 h:高
    表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
    体积=长×宽×高 V=abh
    5 三角形 s面积 a底 h高
    面积=底×高÷2 s=ah÷2
    三角形高=面积 ×2÷底三角形底=面积 ×2÷高
    6 平行四边形 s面积 a底 h高
    面积=底×高 s=ah
    7 梯形 s面积 a上底 b下底 h高
    面积=(上底+下底)×高÷2 s=(a+b)× h÷2
    8 圆形 S面积 C周长 ∏ d=直径 r=半径
    周长=直径×∏=2×∏×半径 C=∏d=2∏r
    面积=半径×半径×∏
    9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长
    侧面积=底面周长×高表面积=侧面积+底面积×2
    体积=底面积×高体积=侧面积÷2×半径
    10 圆锥体 v:体积 h:高 s;底面积 r:底面半径
    体积=底面积×高÷3

    7. 四年级下册,第二单元数学知识树怎么做

    小学数学教学知识树通常含:(1)数与代数(2)空间图形(3)统计概率(4)实践与综合运用这四大块再具体到哪几个单元,什么专题。这就是整册教材的知识树。

    8. 六年级数学基础知识点总结

    学习从来无捷径,循序渐进登高峰。如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。学习需要勤奋,做任何事情都需要勤奋。下面是我给大家整理的一些 六年级数学 的知识点,希望对大家有所帮助。

    小学六年级数学总复习知识点:数的互化

    1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

    2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

    3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。

    4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

    5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

    6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

    7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。

    六年级数学知识点:图形计算公式

    1、正方形 (C:周长 S:面积 a:边长)

    周长=边长×4 C=4a 面积=边长×边长 S=a×a

    2、正方体 (V:体积 a:棱长 )

    表面积=棱长×棱长×6 S表=a×a×6

    体积=棱长×棱长×棱长 V=a×a×a

    3、长方形( C:周长 S:面积 a:边长)

    周长=(长+宽)×2 C=2(a+b)

    面积=长×宽 S=ab

    4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)

    (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)

    (2)体积=长×宽×高 V=abh

    5、三角形 (s:面积 a:底 h:高)

    面积=底×高÷2 s=ah÷2

    三角形高=面积 ×2÷底 三角形底=面积 ×2÷高

    6、平行四边形 (s:面积 a:底 h:高)

    面积=底×高 s=ah

    7、梯形 (s:面积 a:上底 b:下底 h:高)

    面积=(上底+下底)×高÷2 s=(a+b)× h÷2

    8、圆形 (S:面积 C:周长 л d=直径 r=半径)

    (1)周长=直径×л=2×л×半径 C=лd=2лr

    (2)面积=半径×半径×л

    9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)

    (1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2

    (3)体积=底面积×高 (4)体积=侧面积÷2×半径

    圆锥体 (v:体积 h:高 s:底面积 r:底面半径)

    体积=底面积×高÷3

    11、总数÷总份数=平均数

    12、和差问题的公式

    (和+差)÷2=大数 (和-差)÷2=小数

    13、和倍问题

    和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)

    数学 学习 方法 技巧

    一、明确教学目标,制订复习计划

    小学 毕业 班数学总复习知识容量多、时间跨度大,所学知识的遗忘率高,复习之前教师必须再次钻研教材,进一步了解教材的知识内容和编排特点,还要重新学习《数学课程标准》,把握好教学要点和数学知识重点,并对学生掌握知识的情况全面摸底,然后确定复习目标,制定复习计划,主要包括:复习的内容要点,分几节课完成,设计好每节课的内容和目标。例如,制订“数的运算”这一单元复习计划:第一节复习四则运算计算方法及其关系,第二节复习运算定律,第三节复习整数小数分数四则混合运算。这样才能使复习工作有计划、有步骤地进行,这种逻辑递进的 复习方法 可以从根本上克服复习的盲目性、随意性还有简单地以教材上的复习题为内容,让学生照书做完了事的思想。

    二、了解学情,制定复习方法

    俗话说:“知己知彼,百战不殆”。这句话虽是用于指挥行军打仗,但细斟此言,笔者认为它同样适用于指导教学。作为一名有 经验 的教师,首先要掌握学生一举一动,一言一行,及时对教学工作作出调整,以减少无效劳动,确保教学活动不偏离预定的教学目标。了解学情的途径很多,诸如“教学观察”、“师生谈心法”、“开展第二课堂法”等等,老师可在教学实践中,多留心观察,多 总结 经验,多开动脑筋,把多种的方法灵活运用,以期达到对学生的行为,思想情感,学习情况等做到心中有数,从而进行有的放矢的教学工作,提高课堂教学质量。

    三、梳理知识,形成知识网络

    小学毕业生通过六年的数学学习,大多都掌握了比较可观的知识点,如果没有一个清晰的思路来帮助学生,就好比是一堆货物,品种繁多,堆放零乱,要想记住特别困难。只有加以整理,有序分类,才能清清楚楚,一目了然。因此,在复习时应根据知识的重点、学习的难点和学生的薄弱环节,引导学生把已经学的知识进行梳理、分类、整合,弄清它们的来龙去脉,沟通其纵横联系,从整体上把握知识结构。引导学生自主整理,促进知识系统化的目的不仅要构建完整的知识网络,还要在构建知识网络的的同时,使学生对以前所学的知识有新的认识、提高。同时,要重视在复习整理过程中培养学生自主整理的意识,发展学生自主学习的能力。复习时,引导学生将知识分块,系统整理,按块复习,一块一块复习记忆。如果再将每一小类找出共性,规律,记忆效果就会大大加强。将知识分成大类,以表格形式呈现,细化到每一个知识点,逐一复习,巩固强化达到熟练,运用时,从块状知识记忆中调用,速度也可加快。例如空间与图形部分,笔者给学生搭建了这样的框架:点、线、面、体。点有:端点、顶点、起点、垂足等;线有直线、射线、线段等;面有长方形、正方形、三角形、平行四边形、梯形、圆等;体有长方体、正方体、圆柱、圆锥等。每一点知识都有其自身意义和特点,通过这样的逻辑顺利建构了一种复合学生思维规律的知识脉络,点是构成线的基础,点可以连成线,线可构成面,面可围成体,垂线实际就是面和体的高等等。这些知识即单独存在,也相互联系,形成一个体系,易于学生系统掌握。


    六年级数学基础知识点总结相关 文章 :

    ★ 六年级数学期末复习知识点汇总

    ★ 小学六年级数学知识点总结

    ★ 小学六年级数学学习方法和技巧大全

    ★ 六年级上册数学知识点整理归纳

    ★ 六年级数学上册知识点总结

    ★ 六年级数学几何的初步知识知识点总结

    ★ 六年级上册数学知识点总结

    ★ 六年级数学上册知识点复习

    ★ 小学数学基础知识点整理

    ★ 六年级数学的重难点知识总结

    9. 小学数学如何运用思维导图

    一、树形思维导图

    因为在最初指导学生认识思维导图的时候,我给学生展示的就是树形图。所以学生运用树形图对数学知识进行梳理比较熟练。学生在生活中早已认识了树的形状,对树干、树枝、树叶及分枝的感知非常清晰,也就很容易的联想到树干、树枝与主题、分主题的逻辑关系。所以学生运用树形图的时候比较多,也绘制的比较好。如图1是苏科版数学八年级下册第10章分式的树形思维导图.