当前位置:首页 » 基础知识 » 数学二分法知识点
扩展阅读
动漫cg在哪里找的素材 2024-11-09 03:11:33
儿童房用什么装修好 2024-11-09 03:06:58
儿童10岁晕车是什么原因 2024-11-09 02:56:41

数学二分法知识点

发布时间: 2022-08-23 20:16:45

A. 关于数学必修一之“二分法”

数学方面: 一般地,对于函数f(x),如果存在实数c,当x=c时,若f(c)=0,那么把x=c叫做函数f(x)的零点。 解方程即要求f(x)的所有零点。 假定f(x)在区间(x,y)上连续 先找到a、b属于区间(x,y),使f(a),f(b)异号,说明在区间(a,b)内一定有零点,然后求f[(a+b)/2], 现在假设f(a)<0,f(b)>0,a<b ①如果f[(a+b)/2]=0,该点就是零点, 如果f[(a+b)/2]<0,则在区间((a+b)/2,b)内有零点,(a+b)/2=>a,从①开始继续使用 中点函数值判断。 如果f[(a+b)/2]>0,则在区间(a,(a+b)/2)内有零点,(a+b)/2=>b,从①开始继续使用 中点函数值判断。 这样就可以不断接近零点。 通过每次把f(x)的零点所在小区间收缩一半的方法,使区间的两个端点逐步迫近函数的零点,以求得零点的近似值,这种方法叫做二分法。 给定精确度ξ,用二分法求函数f(x)零点近似值的步骤如下: 1 确定区间[a,b],验证f(a)·f(b)<0,给定精确度ξ. 2 求区间(a,b)的中点c. 3 计算f(c). (1) 若f(c)=0,则c就是函数的零点; (2) 若f(a)·f(c)<0,则令b=c; (3) 若f(c)·f(b)<0,则令a=c.

B. 二分法数学的介绍

二分法的思想为:首先确定有根区间,将区间二等分,通过判断F(x)的符号和单调性,逐步将有根区间缩小,直至有根区间在所求范围内,便可求出满足精度要求的近似根。

C. 什么叫二分法

从数学角度看,二分法, 又称分半法, 是一种方程式根的近似值求法.
若要求已知函数 f(x) = 0 的根 (x 的解), 则:

先定义一个区间 [a, b], 使其包含着方程式的根.
求该区间的中点, 并找出 f(m) 的值
若 f(m) 与 f(a) 正负号相同则取 [m, b] 为新的区间, 否则取 [a, m].
重覆第2步至理想精确度为止.

例子
例: 求方程 sinh x = cos x 的解, 其中 sinh 是双曲正弦、cos 是余弦 及 x 以弧度量度.

定义 f(x) = sinh x - cos x. 因此这里是要求 f(x) = 0 的根.
画出 y = f(x) 可大约得知其根约在 0.5 和 1 之间, 故使初始区间的 [0.5, 1].
此区间之中点为 0.75.
因 f(0.5) ≈ -0.3565, f(0.75) ≈ 0.0906, 其正负号不同, 故令新区间为 [0.5, 0.75]
又新区间的中点为 0.625, 而 f(0.625) ≈ -0.1445, 与 f(0.5) 正负号相同, 故新区间为 [0.625, 0.75].
不断重覆运算即得 f(x) = 0 的根约为 0.7033.
从哲学角度就是考虑问题的方法,要懂得考虑问题的利弊或正反两面.

D. 数学中的二分法是什么

比如说一个区间
你不停取中点,这样长度变成一半
就是所谓的二分法
在闭区间套定理中常用

E. 什么是数学上二分法

一般地,对于函数f(x),如果存在实数c,当x=c是f(c)=0,那么把x=c叫做函数f(x)的零点。
解方程即要求f(x)的所有零点。
先找到a、b,使f(a),f(b)异号,说明在区间(a,b)内一定有零点,然后求f[(a+b)/2],
现在假设f(a)<0,f(b)>0,a<b
如果f[(a+b)/2]=0,该点就是零点,
如果f[(a+b)/2]<0,则在区间((a+b)/2,b)内有零点,按上述方法在求该区间中点的函数值,这样就可以不断接近零点
如果f[(a+b)/2]>0,同上
通过每次把f(x)的零点所在小区间收缩一半的方法,使区间的两个端点逐步迫近函数的零点,以求得零点的近似值,这种方法叫做二分法。
由于计算过程的具体运算复杂,但每一步的方式相同,所以可通过编写程序来运算。

F. 什么是二分法

二分法(Bisection method) 即一分为二的方法. 设[a,b]为R的闭区间. 逐次二分法就是造出如下的区间序列([an,bn]):a0=a,b0=b,且对任一自然数n,[an+1,bn+1]或者等于[an,cn],或者等于[cn,bn],其中cn表示[an,bn]的中点。

(6)数学二分法知识点扩展阅读

典型算法

算法:当数据量很大适宜采用该方法。采用二分法查找时,数据需是排好序的。

基本思想:假设数据是按升序排序的,对于给定值key,从序列的中间位置k开始比较,

如果当前位置arr[k]值等于key,则查找成功;

若key小于当前位置值arr[k],则在数列的前半段中查找,arr[low,mid-1];

若key大于当前位置值arr[k],则在数列的后半段中继续查找arr[mid+1,high],

直到找到为止,时间复杂度:O(log(n))。

G. 二分法是什么意思

二分法是数学领域术语。

二分法即,对于区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法。

算法:当数据量很大适宜采用该方法。采用二分法查找时,数据需是排好序的。

基本思想:假设数据是按升序排序的,对于给定值key,从序列的中间位置k开始比较,

如果当前位置arr[k]值等于key,则查找成功;

若key小于当前位置值arr[k],则在数列的前半段中查找,arr[low,mid-1];

若key大于当前位置值arr[k],则在数列的后半段中继续查找arr[mid+1,high],

直到找到为止,时间复杂度:O(log(n))。

C++语言中的二分查找法:

基本思想:假设数据是按升序排序的,对于给定值x,从序列的中间位置开始比较,如果当前位置值等于x,则查找成功;若x小于当前位置值,则在数列的前半段中查找;若x大于当前位置值则在数列的后半段中继续查找,直到找到为止。

假如有一组数为3,12,24,36,55,68,75,88要查给定的值24.可设三个变量front,mid,end分别指向数据的上界,中间和下界,mid=(front+end)/2。

1、开始令front=0(指向3),end=7(指向88),则mid=3(指向36)。因为mid>x,故应在前半段中查找。

2、令新的end=mid-1=2,而front=0不变,则新的mid=1。此时x>mid,故确定应在后半段中查找。

3、令新的front=mid+1=2,而end=2不变,则新的mid=2,此时a[mid]=x,查找成功。

如果要查找的数不是数列中的数,例如x=25,当第三次判断时,x>a[mid],按以上规律,令front=mid+1,即front=3,出现front>end的情况,表示查找不成功。