当前位置:首页 » 基础知识 » 初中数学几何变换知识讲解
扩展阅读
日本有哪些动漫狗 2025-01-11 01:23:45
宋经典2021款水箱在哪里 2025-01-11 01:09:35

初中数学几何变换知识讲解

发布时间: 2022-08-23 16:40:55

Ⅰ 初中八年级下册数学知识

马上期末考试了,好多同学想要八年级数学下册的知识点,以便复习备考。下面我整理了初中八年级下册数学知识点,大家可以对照复习,供大家参考。

几何知识点

1、旋转和平移

平移和旋转是几何中全等变换的一种重要的方式,其中旋转是对大家几何变化能力进行考察的常用手段。

旋转问题之所以难,就是因为他通过旋转使得图形中出现很多相等的边和相等的角,但是这不是图中直接告诉的,是需要大家自己发现的,而旋转与后面的二次函数、反比例函数、四边形等知识结合在一起,会使的题目灵活性非常强,所以这一块在学基础知识的时候一定要牢固把握。

2、平行四边形

平行四边形,是学习矩形、菱形、正方形的基础,他的判定方式有五种,在实际应用的时候,同学们往往难以决定到底要采取哪种方式,这就需要同学们根据图形灵活的选择,不同的办法进行解决。

3、特殊平行四边形行

特殊平行四边形是初三的内容,但是很多地方都把它提到初二来讲。这部分知识灵活性强,变化大,综合难度高,往往是同学们觉得几何难学的开端。解决的办法就是把他们的性质和判定列表写出来,由于表述非常的类似和接近,记忆起来比较困难。这就需要同学们运用对比分析的方法,搞清楚这三种图形各自的性质和判定,这样才能在应用的时候不至于混淆。

整式的加减

1、都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。

2、单项式中的数字因数叫做这个单项式的系数(coefficient)。

3、一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a monomial)。

4、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly term)。

5、多项式里次数最高项的次数,叫做这个多项式的次数(degree of a polynomial)。

6、把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。

8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

轴对称知识点

1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

3.角平分线上的点到角两边距离相等。

4.线段垂直平分线上的任意一点到线段两个端点的距离相等。

5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

6.轴对称图形上对应线段相等、对应角相等。

7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

8.点(x,y)关于x轴对称的点的坐标为(x,-y)

点(x,y)关于y轴对称的点的坐标为(-x,y)

点(x,y)关于原点轴对称的点的坐标为(-x,-y)

9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为三线合一。

10.等腰三角形的判定:等角对等边。

11.等边三角形的三个内角相等,等于60,

12.等边三角形的判定:三个角都相等的三角形是等腰三角形。

有一个角是60的等腰三角形是等边三角形

有两个角是60的三角形是等边三角形。

13.直角三角形中,30角所对的直角边等于斜边的一半。

分解因式

一、公式:1、ma+mb+mc=m(a+b+c);

2、a2-b2=(a+b)(a-b);

3、a22ab+b2=(ab)2。

二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

1、把几个整式的积化成一个多项式的形式,是乘法运算。

2、把一个多项式化成几个整式的积的形式,是因式分解。

3、ma+mb+mcm(a+b+c)4、因式分解与整式乘法是相反方向的变形。

三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.

四、分解因式的一般步骤为:(1)若有-先提取-,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.

五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.

分解因式的方法:1、提公因式法.2、运用公式法。

Ⅱ 初中数学重点题型总结

初中数学合集网络网盘下载

链接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234 提取码:1234

简介:初中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

Ⅲ 初中数学知识点整理

初中数学宝典,你知道学习数学最重要的是什么吗?

在初中学习数学这们课程的时候很多的学生都是比较烦恼的,因为这们课程是非常难的,并且难点非常多,很多的学生在刚开始学习的时候还可以更得上,但是过一段时间之后就会变得非常的吃力,那么你知道初中数学宝典是什么吗?我们来了解一下吧!

复习知识点

以上就是初中数学宝典的内容,当学习吃力的时候可以先复习一下之前的内容,当然这个时候之前记得笔记就可以用来复习了,这样可以更好的帮助我们学习后期的内容,并且可以改善学习吃力的问题.

Ⅳ 几何图形变换方法

翻折,旋转,平移,简称“三大变换”(你说不一定要详细的”)

Ⅳ 初中数学几何题解题技巧

首先要明白几何就相当于是给你一些线索,破解谜题。
1要熟练掌握所有的定义,性质,判定。这是破解谜题对给出的线索延伸的最重要的一部分。
2要学会两种思想方法。顺推逆推,他们中间交汇的地方就是解题的关键。
3掌握几何的基本模型,常见模型。这样有利于你对做题时候的快速延伸,看到题目的本质。
4做题时很重要的一点就是要学会去标题目中的条件并快速延伸。因为这样的话,所见即所得,不用把所有的过程在脑海中去综合
5去总结。练习的过程中,看自己做的快的,为什么做的快,做不出来的去看一下,哪些方面的问题。

Ⅵ 初中的所有数学公式(包括几何计算公式)

请在星期天准备好大纸,把所有的公式、公理、定理、包括重要的知识整整齐齐地抄起来。高兴地话多抄几份,送给同学,同学们还会说声谢谢。
到时,你会有体会的?

Ⅶ 数学几何题解题技巧初二

初中数学几何尤其是在初二几何入门的时候,大家几乎都会觉得几何证明题难做,其实还是没有掌握好初中数学几何证明题的答题技巧和解题思路。那么怎么才能学好初中几何的题呢?

1按定义添辅助线:

如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:

每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下:

(1)平行线是个基本图形:

当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线

(2)等腰三角形是个简单的基本图形:

当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:

出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形

出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形

几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形:

全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线

(7)相似三角形:

相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。

(8)特殊角直角三角形

当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明

(9)半圆上的圆周角

出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦---直径;平面几何中总共只有二十多个基本图形就像房子不外有一砧,瓦,水泥,石灰,木等组成一样。

1.三角形问题添加辅助线方法

方法1:有关三角形中线的题目,常将中线加倍。含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。

方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。

方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于

第一条线段,而另一部分等于第二条线段。

2.平行四边形中常用辅助线的添法

平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:

(1)连对角线或平移对角线:

(2)过顶点作对边的垂线构造直角三角形

(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线

(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。

(5)过顶点作对角线的垂线,构成线段平行或三角形全等.

3.梯形中常用辅助线的添法

梯形是一种特殊的四边形。它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:

(1)在梯形内部平移一腰。

(2)梯形外平移一腰

(3)梯形内平移两腰

(4)延长两腰

(5)过梯形上底的两端点向下底作高

(6)平移对角线

(7)连接梯形一顶点及一腰的中点。

(8)过一腰的中点作另一腰的平行线。

(9)作中位线

当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。

4.圆中常用辅助线的添法

(1)见弦作弦心距

有关弦的问题,常作其弦心距(有时还须作出相应的半径),通过垂径平分定理,来沟通题设与结论间的联系。

(2)见直径作圆周角

在题目中若已知圆的直径,一般是作直径所对的圆周角,利用"直径所对的圆周角是直角"这一特征来证明问题。

(3)见切线作半径

命题的条件中含有圆的切线,往往是连结过切点的半径,利用"切线与半径垂直"这一性质来证明问题。

(4)两圆相切作公切线

对两圆相切的问题,一般是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系。

(5)两圆相交作公共弦

对两圆相交的问题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或圆心角联系起来。

人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。

也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。虚心勤学加苦练,成绩上升成直线。

几何证题难不难,关键常在辅助线;知中点、作中线,中线处长加倍看;底角倍半角分线,有时也作处长线;线段和差及倍分,延长截取证全等;公共角、公共边,隐含条件须挖掘;全等图形多变换,旋转平移加折叠;中位线、常相连,出现平行就好办;四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线;两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便;特殊角、特殊边,作出垂线就解决;

实际问题莫要慌,数学建模帮你忙;圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,遇到直径周角连;切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦;切割线,连结弦,两圆三圆连心线;基本图形要熟练,复杂图形多分解;以上规律属一般,灵活应用

Ⅷ 初中几何怎么学

作为和代数并列为初中数学两大知识点的几何,常常因为图形变化多端,方法多种多样而被称为数学中的变形金刚。话虽如此,变形金刚也不是无敌的,最终仍旧是人类的智慧更胜一筹。学大教育的专家表示,实际上,每一道几何题目背后都有着一定的法则和规律,每一类题都有着相似的解题思想,这种思想的集中体现,便是模型(变形金刚的原力所在)。对于几何,我们不仅仅要在战术上坚定执行,在战略层面上也要对几何在初中三年的整体学习有一个明确的了解。

步骤/方法

得模型者得几何,而模型思想的建立又并非一朝一夕,是需要同学们在大量的实战做题和不断总结方法中培养出来的。对于模型的理解和认识,分为很多层面,最浅的是基本的形似,看到图形相仿或相似的题目,能够有意识的联想以前学过的题型并加以运用,套用,这是最简单的模型思想。
高一些的是神似,看到一些关键点,关键线段或是题目所给条件的相似便能够联想到所学知识点,通过推理和演绎逐步取得正确的解法,记住的是一些具体模型,这是第二种层次。
最高的境界是,心中只有很少几种基本模型,这些模型就像种子,看到一道题目就会发芽,开花结果,随着对于题目的深入理解,不断地寻找适合的花朵,每一朵花上面都有着一种具体的模型,而每种模型之间,都会有树枝相连,相互间并不是孤立的,而是借由其他条件贯穿连接的。达到这样的理解才能算是包罗万象,驾轻就熟。
我们对于模型的把控能不应当仅限于会用于具有明显模型特征的题目,对于一些特征并不明显的题目,我们要有能力添加辅助线去挖掘图形当中的隐藏属性。这就要求同学们对于每一种基本图形的理解要十分深刻,不仅仅要认识模型,还要会补全模型,甚至构造模型来解决问题,这对于同学们动手添加辅助线的能力要求就很高了。
学好几何无非做好以下几点想学好几何,一定要注意以下几点:
1、多做题,在起步初期,多见一些题,对一些模型有初步认识。
2、多总结,尽量在老师的帮助下能够总结出一些模型的主要辅助线做法和解题方法。
3、多应用,多用模型解决问题,不要没有方法的撞大运,要根据图形特点思考解法。
4、多完善,不断做题总会有新的知识添加到已有的模型体系中来,不断壮大自己的知识树。
5、多思考,对于任何一道题都有可能存在不止一种方法,每种方法涉及到的模型不尽相同,要能够通过一题多解发现模型之间的相互关系,增强自己对模型的理解深度。
从长远的角度来说,中考几何压轴的考察趋势越来越倾向于竞赛化的趋势,而考察重点则是以三大变化为主题的综合题目。如今三大变换的思想也在不断的渗透在初二几何的题目中来,平移、旋转、轴对称这些技巧也会慢慢被我们所熟识。然而仅仅熟悉并不够,我们还要结合模型把他们灵活掌握并能够精确与用到实际的题目中去,这样才能使我们做几何题目的能力有所提高。
7
初二这一年是模型大爆炸得时期,上学期的全等三角形的模型,下学期的四边形模型以及很多学校在初二暑假就会开设的圆的知识,很多都是需要同学们运用模型思想解决的问题。这些知识点不仅多,而且十分重要,可以说初中几何部分的重点全部集中在初二这一年,故而打好基础,勤加练习,多做总结是我们不得不去完成的任务。

Ⅸ 初三数学,旋转图形怎么画。具体点~

平移、旋转和翻折是几何变换中的三种基本变换。所谓几何变换就是根据确定的法则,对给定的图形(或其一部分)施行某种位置变化,然后在新的图形中分析有关图形之间的关系。纵观近几年全国各地的中考,都加大了这方面的考查力度,特别是2018年中考,这一部分的分值比前两年大幅度提高。

为帮助大家把握好这部分知识,今天我们专门来讲讲旋转。

旋转的定义

总结:

旋转是几何变换中的基本变换,它一般先对给定的图形或其中一部分,通过旋转,改变位置后得新组合,然后在新的图形中分析有关图形之间的关系,进而揭示条件与结论之间的内在联系,找出证题途径。