当前位置:首页 » 基础知识 » 数学知识要点是什么意思
扩展阅读
达利教育怎么样 2025-01-10 21:48:18
画画动漫线稿怎么练 2025-01-10 21:48:14

数学知识要点是什么意思

发布时间: 2022-08-23 08:13:09

A. 小学数学要点是什么

一看到这个问题,同学们可能会说:学数学嘛,就是解题,题目做得越多,数学成绩就会越好。这种认识对不对呢?对,但不完全对。我们不妨留心一下自己周围的同学,思考这样一个问题:学校或班级里数学成绩优秀的同学,他们为什么成绩比自己好呢?如果自己的学习成绩就是班级或学校的尖子,那么也请总结一下:自己的学习成绩为什么总能领先于其他同学呢?是自己题目做得多吗?为什么有许多同学英语、语文成绩很不错,数学题目做得也不算少,但就是数学成绩不行呢?如果我们能进行这样的思考,那么很快就会发觉,这其中还有一个重要的因素在左右着我们的数学成绩的提高,那就是数学的学习方法。
数学是中小学的重要工具学科,许多同学由于没有正确掌握数学学习方法,有的负担很重但不得要领;有的陷入题海,茫茫然不知所措。因此在学习数学的时候,我们必须学会如何掌握数学知识?掌握数学技能,发展数学能力,以及养成良好的数学心理品质,从掌握数学学习方法进而形成综合学习的能力。下面我们一起来探讨一下数学学习中要注意的一些问题:
一、 扎实打好数学基础
初中数学的基础知识是指数学教材中的概念、法则、公式、定理等必学内容以及其中蕴含的数学思想方法,还包括学习数学的经验和解题的经验,具体是以下几个方面:
1.正确理解和掌握所学的基本概念、法则、公式、定理,把握他们之间的内在联系。
例如:分式 无意义,x的取值范围应为 。有的同学填x=3,这是错误的。因为这里有个概念,即分式无意义的概念和一个运算绝对值的法则,只有充分理解和掌握这一个概念和一个法则,才知道|x|-9=0,解出x=±3的正确答案。而且由于数学是一个连贯性很强的学科,正确掌握了绝对值以后会为我们初二学习二次根式、初三学习无理方程等打下良好的基础。因此,如果在学习某一内容或解一题时碰到了困难,那么很有可能就是因为有关的、以前的一些基本知识没有掌握好所造成的,因此要注意查缺补漏,找到问题及时解决,努力做到发现一个问题及时解决一个问题。只有基础扎实,我们成绩才会提高。
2.培养数学运算能力,养成良好的学习习惯。
每次考完试后,我们常会听到一些同学说:这次考试我又粗心了。而粗心最多的一种现象就是由于跳步骤产生的错误,并且屡错不改。这实际上是不良的学习习惯、求快心理造成的数学运算技能的不过关。要知道数学题的每一步都是符合一定的法则来完成的,如果在解题过程中忽视了某一步,那么就会发生这一步的法则没有正确的运用,进而产生错解。因此,运算能力的提高从根本上说是要弄懂“算理”,不仅知道怎样算,而且知道为什么这样算,从而把握运算的方向、途径和程序,一步一步仔细完成,形成准确快捷的运算能力。同学们要注意,如果你有上述类似跳步的现象应及时改正,不然长期下去,你会有一种恐惧心理,还没有开始解题就已经担心自己会做错,这样就会错得越多。有这样感受的同学必须迅速走出误区,学习的效率才有渐长的可能。
3.要学会一些必要的检验手段,培养自己的求异思维。
中国有句老话:“百密一疏”。疏漏是难免的,如果有多种检验手段,那么就可以做到万无一失了。那么多种检验手段如何掌握呢?这就需要我们在平时学习中有意识的训练自己的求异思维。如若数学问题要求解答的不是计算结果,而且寻求解决的方法或途径,其可运用的方法不是一种,解决的途径不止一条,而可有多种多条解答的方式,则不一定相同而是相异的答案。这种情况则属于求异思维的运用。例如:把正方形四等分,同学们在等分时多为这些方法:把它分成四个相等的小正方形或者是把它分成四个全等的等腰直角三角形,我们应该问自己还有吗?决不可以满足找出一种或两种,就认为大功告成,实际上它的方法还有好多。你能找到吗?这就是求异思维,平时有很多题目,虽然他只有一个答案,但是如果我们考虑用多种方法去解决他的话,对于我们创造性思维的发展是十分有利的。
二、 逻辑思维能力的培养
在数学中,一个数学概念的形成,一个数学命题的建立,一个题目的解答通常要经过对概念、命题或题目进行观察、比较、分析、综合、概括、抽象、归纳、演绎的过程,这些都需要在头脑里进行思维活动,并能正确的阐述自己的思想和观点,这就是逻辑思维能力,为了提高自己的逻辑思维能力,同学们应做到以下几点:
1.严格遵守思维规律,养成严谨的思维习惯。
严格遵守思维规律,推理严谨,言必有据,这是逻辑思维的核心。这首先要求我们要准确的使用概念、定义或定理、公式,能符合逻辑的判断。我们常会碰到这样的情况,当我们在证明两角相等的时候,有一种方法叫“等边对等角”。如果我们没注意到它的前题条件是在同一三角形中的话,那么就会产生错误,或者当解不出题时就乱做一通,出现偷换命题、假选论据、自相矛盾、循环论证等这样一系列的问题,为了防止这类现象的发生,我们必须在平时的学习中严格思维规律,严格按照正确的思维方法解题,对学习中出现的错误,要严格对待、决不马虎,培养自己严谨求实的思维习惯。
2.重视知识的获取过程,培养抽象、概括、分析综合、推理证明能力。
老师上课在讲解公式、定理、概念时,一般都揭示他们的形成过程,而这个过程却又是同学们最容易忽视的,认为:我只需听懂这个定理本身到时会用就行了,不需要知道他们是怎么得出的。这样的想法是不对的。因为老师在讲解知识的形成,发生的过程中,讲解的就是问题的一个思维过程,揭示的是问题解决的一种思想和方法,其中包含了抽象、概括分析、综合、推理等能力。如果我们不重视的话,实际就失去了一次从中吸取经验,锻炼和发展逻辑思维能力的机会。以上是数学学习的一些方法,供同学们参考。
数学成绩的提高,数学方法的掌握都和同学们良好的学习习惯分不开的,因此在最后我们再一起探讨一下数学的学习习惯。
良好的数学学习习惯包括:听讲、阅读、探究、作业。
听讲。应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记。每堂课结束以后应深思一下进行归纳,做到一课一得。
阅读。阅读时应仔细推敲,弄懂弄通每一个概念、定理和法则,对于例题还应与同类参考书联系起来一同学习,博采众长,增长知识,发展思维。
探究。要学会思考,在问题解决之后再探求一些新的方法,学会从不同角度去思考问题,甚至改变条件或结论去发现新问题,经过一段学习,应当将自己的思路整理一下,以形成自己的思维规律。

作业。要先复习后作业,先思考再动笔,做会一类题领会一大片,作业要认真、书写要规范,只有这样脚踏实地,一步一个脚印,才能学好数学。

B. 到底什么叫知识点请以数学为例进行解释

在教育实践中,对某一个知识的泛称,多用于口语化,特指教科书上或考试的知识

我个人认为知识点应该具有中国特色,因为现在是应试教育,一切为了考试,知识点就是考试时会涉及的知识,也就是大纲的分支,比如数学集合的知识点
1.什么是集合
2.集合包括什么
3.集合的分类
知识点分为了解,掌握,熟练运用,纯属个人观点,希望帮到你(PS非复制)

C. 初一数学知识要点有哪些

初一数学概念
实数:
—有理数与无理数统称为实数.
有理数:
整数和分数统称为有理数.
无理数:
无理数是指无限不循环小数.
自然数:
表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数.
数轴:
规定了圆点、正方向和单位长度的直线叫做数轴.
相反数:
符号不同的两个数互为相反数.
倒数:
乘积是1的两个数互为倒数.
绝对值:
数轴上表示数a的点与圆点的距离称为a的绝对值.一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0.
数学定理公式
有理数的运算法则
⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.
⑵减法法则:减去一个数,等于加上这个数的相反数.
⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0.
⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.
角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线.
数学第一章相交线
一、邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角.邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角.
二、对顶角:是两条直线相交形成的.两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”.
对顶角的性质:对顶角相等.
三、垂直
1、垂直:两条直线所成的四个角中,有一个是直角时,就说这两条直线互相垂直.其中一条叫做另一条的垂线,它们的交点叫做垂足.记做a⊥b
垂直是相交的一种特殊情形.
2、垂线的性质:
①过一点有且只有一条直线与已知直线垂直;
②连接直线外一点与直线上各点的所有线段中,垂线段最短.
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.
3、画法:①一靠(已知直线)②二过(定点)③三画(垂线)
4、空间的垂直关系
四、平行线
1、 平行线:在同一平面内,不相交的两条直线叫做平行线.记做a‖b
2、 “三线八角”:两条直线被第三条直线所截形成的
① 同位角:“同方同位”即在两条直线的上方或下方,在第三条直线的同一侧.
② 内错角:“之间两侧”即在两条直线之间,在第三条直线的两侧.
③ 同旁内角“之间同旁”即在两条直线之间,在第三条直线的同旁.
3、 平行公理:经过直线外一点,有且只有一条直线与这条直线平行
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
4、 平行线的判定方法
① 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;
② 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;
③ 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;
④ 平行于同一条直线的两条直线平行;
⑤ 垂直于同一条直线的两条直线平行.
5、 平行线的性质:
①两条平行线被第三条直线所截,同位角相等;
②两条平行线被第三条直线所截,内错角相等;
③两条平行线被第三条直线所截,同旁内角互补.
6、 两条平行线的距离:同时垂直于两条平行线并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.
7、 命题:判断一件事情的语句,叫做命题,由题设和结论两部分组成.
五平移
1、平移:在平面内将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.
说明:①、平移不改变图形的形状和大小,改变图形的位置;②“将一个图形沿某个方向移动一定的距离”意味着“图形上的每一点都沿着同一方向移动了相同的距离 ”这也是判断一种运动是否为平移的关键.③图形平移的方向,不一定是水平的
2、平移的性质:经过平移,对应线段、对应角分别相等,对应点所连的线段平行且相等. 初一数学知识点归纳 第一单元 位置1、 能在具体的情景中,确定位置的方法,说出某一物体的位置.2、 用“数对”表示位置,对应列上的数字在前,行上的数字在后,记为(x,y).3、 “数对”表示位置,易错的是(x,0),(0,y).4、 认识方位,上北下南左西右东,两个事物一个在另一个的方向. 第二单元 分数乘法一、分数乘整数1、 意义:表示几个相同分数相加.2、 计算方法:(1)、分母不变,分子和整数相乘. (2)、当分母和整数可以约分时,要先约分.二、分数乘分数1、意义:就是一个分数的几分之几.2、计算方法:(1)、分子乘分子,分母乘分母. (2)、分子和分母有能约分的要约分,再计算.三、运算律的运用1、整数乘法的运算律对于分数乘法同样适用.2、应用运算律简便计算.四、倒数1、乘积是1的两个数互为倒数.2、求法:把数的分子和分母的位置颠倒.3、1的倒数就是1本身,0没有倒数.五、解决问题1、求一个数的几分之几.列式:标准量×几分之几2、求一个数多(或少)几分之几.列式:标准量×(1±几分之几) 标准量土标准量×几分之几3、 求一个数占另一个数的几分之几.列式:几分之几4、 用画线段图分析分数乘法应用题的数量关系. 第三单元 分数除法一、 类型1、 分数除以整数,表示把分数平均分成整数份.2、 分数除以分数,表示b/a中有多少个d/c.3、 整数除以分数,表示a中有多少个c/d.二、 计算方法:除以一个数等于乘这个数的倒数(0除外).三、 分数除法的意义与整数除法相同,都是乘法的逆运算.四、 分数混合运算顺序,简便算法.五、 解决问题1、 甲数是乙数的几分之几.列式:甲/乙.2、 乙数的几分之几等于甲数.列式:甲数=乙数×几分之几.乙数=甲数÷几分之几.3、 甲数比乙数多(或少)几分之几.列式:甲数=乙数×(1土几分之几)甲数=乙数土乙数×几分之几.标准量:“比”字后面的为标准量.4、 若求长方形的长是宽的几倍:就是求长和宽的比:长/宽.若求长方形的宽是长的几分之几,就是求长和宽的比:长/宽.六、 比的意义:用两个数相除,又叫两个数的比,符号“:”比的结果叫做比值.1、 在a:b中,a叫比的前项,b叫比的后项.2、 比与除法和分数的关系.a:b=a÷b=a/b.3、 求比值两项的单位名称要统一,比值是一个数,没有单位.4、 比的基本性质a:b=am:bma:b=a÷m:b÷m5、 比化成最简整数比:(1) 有分数,前项和后项都乘分母的最小公倍数.(2) 无分数,前项和后项都除以最大公约数.(3) 有小数,可先化为整数或分数.6、解决问题总量×被分份数/总份数=要求的量 第四单元圆一、 圆的认识,由曲线围成,外形美,易滚动.1、 圆心,用o表示.2、 半径,连接圆心和圆上任意一点的线段叫半径,用r表示.3、 直径,通过圆心并且两端都在圆上的线段叫直径,用d表示.4、 半径和直径的关系.5、 轴对称图形及对称轴,圆又无数条对称轴,是直径所在的直线.二、 圆的周长1、 圆周率,是周长与直径的比,是无限不循环小数.2、 公式:c=πd或c=2πr3、 已知圆的周长求半径和直径.三、 圆的面积1、公式S=πR22、已知圆的半径、直径或周长能分别求圆的面积.3、环形面积公式S=πR2-πr24、扇形、弧、圆心角.5、在周长一定的情况下,圆的面积最大.在面积一定的情况下,圆的周长最短.6、 确定起跑线的位置. 第五单元百分数1、 百分数的写法.百分号“%”2、 百分数的意义:表示一个数是另一个数的百分之几.3、 百分数与分数的区别:分数既可以表示一个具体的数,又可以表示两个数之间的关系.百分数表示一个数是另一个数的百分之几,只表示两个数的关系,不是具体的数,不能写单位名称.另外百分数的分子可以是小数和大于一百的数.4、 百分数与分数、小数的互化.百分数化为小数:去掉百分号,小数点向左移动两位;小数化为百分数:小数点向右移动两位,添上百分号;百分数化为分数:可先化为分母是一百的分数,能约分的要约分;分数化为百分数:先把分数化为小数,再化为百分数.5、解决问题①、达标率,发芽率的公式.(甲占乙的百分之几.)达标率=达标的人数/总人数×100%发芽率=发芽的数量/种子的总数×100%②、甲比乙少(或多)百分之几.确定单位“1”.③、甲增加了百分之几是多少?增加了多少?6、折扣,表示十分之几,也就是百分之几十.折扣问题求实求一个数的百分之几是多少的问题.7、纳税.①、根据国家各种税法的规定,按照一定的比率,把集体或个人的收入的一部分缴纳给国家叫做纳税.②、缴纳的税款叫做应纳税额.按一定的比率纳税叫做税率.③、税率=应纳税款/各种收入×100%应纳税款=税率×各种收入.8、利率.①、存款的好处.②、利息=本金×利率×时间③、取款=本金+利息-利息税(本金+税后利息). 第六单元统计一、 扇形统计图1、 能反映部分量同总量之间的关系2、 用整个圆表示总量,用各个扇形表示各部分数量占总量的百分之几.3、 利用扇形统计图计算分析.二、 合理存款1、 教育储蓄.2、 国债利率3、 设计存款方案4、 合理存款 第七单元数学广角鸡兔同笼问题利用解方程的方法解决问题.

D. 小学数学要掌握哪些知识点

小学数学知识点:一是计算,包括加减乘除四则运算,其中有整数和小数以及分数的计算,这是数学的基础。二是,加减乘除的应用题。三,关于数的认识,大数,分数的读写以及数位顺序。四,关于长度,重量,时间的单位及应用。五,图形的认识,周长,面积以及图形的运动位置。六,初步的方程概念。

E. 小学数学知识点有哪些

数学作为一门具有很强逻辑性和连续性的学科,是每个小学生都应该掌握的基础知识.小学数学重点是基础知识的掌握基和学习,学习数学的标准就是能够对该学籍范围内的题目进行正确的解答.考察公式概念是小学数学重点要掌握的知识,下面这几个学习方法带你学好数学.

(同学们开讲)

学习小学数学重点就是注重学习的方法,但是也需要学生有坚持不懈的精神.勤学多问不耻下问是学习的良好态度,他们会把你带到一个更高的层次,掌握好学习方法,你会对每一天的新知识充满兴趣.

F. 数学中什么叫做知识点是重点吗

数学中基本知识很少,一般不会有要被的知识点。要被的都是公式。数学考试大多考的都是你对公式的灵活运用,初中的话就是几个公理和定理比较重要,高中就是公式,知识点在初中是重点,因为在证明时你要用。高中知识点就没有那么重要了,因为高中证明不要公理和定理,不像初中你要写出来。

G. 初中数学知识要点

初中数学知识要点----公式和法则
一、数的有关概念和运算
1、正数都大于零,负数都小于零,正数大于负数.
2、零的相反数是零
3、一个正数的绝对值是它本身;零的绝对值是零;一个负数的绝对值是它的相反数.
4、两个负数,绝对值大的反而小.
5、有理数的运算:
(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得零;一个数同零相加,仍得这个数.
(2)有理数减法法则:减去一个数,等于加上这个数的相反数.
(3)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对植相乘.任何数同零相乘,都得零.
不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.
几个数相乘,有一个因数为零,积就为零.
(4)有理数除法则:除以一个数等于乘上这个数的倒数.
(注意:0不能作除数.)
有理数除法符号法则:两数相除,同号得正,异号得负,并把绝对值相除.
零除以任何一个不等于零的数,都得零.
(5)有理数乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.
(6)有理数混合运算的运算顺序规定如下:①
先算乘方,再算乘除,最后算加减;②同级运算,按照从左至右的顺序进行;③如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.
6、(1)加法交换律:a+b=b+a;加法结合律:a+b+c=a+(b+c);乘法交换律:a·b=b·a;乘法结合律:abc=a(bc);乘法分配律:a(b+c)=ab+ac.
二、式的有关概念和运算
1、合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.
2、去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.
3、添括号法则:所添括号前面是“+”号,括到括号里的各项都不变符号;所添括号前面是“-”号,括到括号里的各项都改变符号.
4、整式加减的一般步骤可以总结为:
(1)
如果有括号,那么先去括号;(2)
如果有同类项,再合并同类项.
三、方程
四、不等式的性质
1、
1、如果a>b,那么a+c>b+c,a-c>b-c;
2、如果a>b,且c>0,那么ac>bc;如果a>b,且c<0,那么ac
http://hi..com/sx321/blog/item/6e3367c2fba7781f0ff47702.html

H. 初中数学的所有要点是什么

1.1正数和负数

以前学过的0以外的数前面加上负号“-”的书叫做负数。

以前学过的0以外的数叫做正数。

数0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,分别用正数和负数表示的量具有相反的意义

1.2有理数

1.2.1有理数

正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

1.2.2数轴

规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

1.2.3相反数

只有符号不同的两个数叫做互为相反数。

数轴上表示相反数的两个点关于原点对称。

在任意一个数前面添上“-”号,新的数就表示原数的相反数。

1.2.4绝对值

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

⑵两个负数,绝对值大的反而小。

1.3有理数的加减法

1.3.1有理数的加法

有理数的加法法则:

⑴同号两数相加,取相同的符号,并把绝对值相加。

⑵绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

⑶一个数同0相加,仍得这个数。

两个数相加,交换加数的位置,和不变。

加法交换律:a+b=b+a

三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

加法结合律:(a+b)+c=a+(b+c)

1.3.2有理数的减法

有理数的减法可以转化为加法来进行。

I. 小学六年级数学知识要点

小学数学是学习生涯的关键阶段,为了能够使同学们在数学方面有所建树,小编特此整理了小学六年级数学重要知识点 梳理以供大家参考。
一、常用的数量关系式
1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、加数+加数=和 和-一个加数=另一个加数
7、被减数-减数=差 被减数-差=减数 差+减数=被减数
8、因数×因数=积 积÷一个因数=另一个因数
9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
二、小学数学图形计算公式
1、正方形 (C:周长 S:面积 a:边长)
周长=边长×4 C=4a
面积=边长×边长 S=a×a
2、正方体 (V:体积 a:棱长 )
表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a
3、长方形( C:周长 S:面积 a:边长 )
周长=(长+宽)×2 C=2(a+b)
面积=长×宽 S=ab
4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5、三角形 (s:面积 a:底 h:高)
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6、平行四边形 (s:面积 a:底 h:高)
面积=底×高 s=ah
7、梯形 (s:面积 a:上底 b:下底 h:高)
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圆形 (S:面积 C:周长 л d=直径 r=半径)
(1)周长=直径×л=2×л×半径 C=лd=2лr
(2)面积=半径×半径×л
9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)
(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2
(3)体积=底面积×高 (4)体积=侧面积÷2×半径
10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径)
体积=底面积×高÷3
11、总数÷总份数=平均数
12、和差问题的公式
(和+差)÷2=大数 (和-差)÷2=小数
13、和倍问题
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
14、差倍问题
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
15、相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
16、浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
17、利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
三、常用单位换算
1、长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面积单位换算
1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
2、体(容)积单位换算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量单位换算
1吨=1000 千克 1千克=1000克 1千克=1公斤
人民币单位换算
1元=10角 1角=10分 1元=100分
3、时间单位换算
1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时
1时=60分 1分=60秒 1时=3600秒

J. 初中数学的知识要点

一、数的有关概念和运算

1、正数都大于零,负数都小于零,正数大于负数.

2、零的相反数是零

3、一个正数的绝对值是它本身;零的绝对值是零;一个负数的绝对值是它的相反数.

4、两个负数,绝对值大的反而小.

5、有理数的运算:

(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得零;一个数同零相加,仍得这个数.

(2)有理数减法法则:减去一个数,等于加上这个数的相反数.

(3)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对植相乘.任何数同零相乘,都得零.

不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正. 几个数相乘,有一个因数为零,积就为零.

(4)有理数除法则:除以一个数等于乘上这个数的倒数. (注意:0不能作除数.)

有理数除法符号法则:两数相除,同号得正,异号得负,并把绝对值相除. 零除以任何一个不等于零的数,都得零.

(5)有理数乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.

(6)有理数混合运算的运算顺序规定如下:① 先算乘方,再算乘除,最后算加减;②同级运算,按照从左至右的顺序进行;③如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.

6、(1)加法交换律:a+b=b+a;加法结合律:a+b+c=a+(b+c);乘法交换律:a·b=b·a;乘法结合律:abc=a(bc);乘法分配律:a(b+c)=ab+ac.

二、式的有关概念和运算

1、合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.

2、去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.

3、添括号法则:所添括号前面是“+”号,括到括号里的各项都不变符号;所添括号前面是“-”号,括到括号里的各项都改变符号.

4、整式加减的一般步骤可以总结为: (1) 如果有括号,那么先去括号;(2) 如果有同类项,再合并同类项.

三、方程

四、不等式的性质

1、 1、如果a>b,那么a+c>b+c,a-c>b-c;

2、如果a>b,且c>0,那么ac>bc;如果a>b,且c<0,那么ac<bc.

五、锐角三角函数

六、弧长和扇形面积的计算: