当前位置:首页 » 基础知识 » 高二物理知识点大全总结汇总

高二物理知识点大全总结汇总

发布时间: 2022-08-22 21:33:25

1. 高二物理知识点总结大全

一、质点的运动----直线运动 1)匀变速直线运动 1.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0 2.末速度Vt=Vo+at 3. 位移S=Vot+at2/2=V平=tVt/2t 4. 有用推论Vt2 -Vo2=2as 5.平均速度V平=S/t (定义式) 6.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 中间位置速度Vs/2=[(Vo2 +Vt2)/2] 1/2 7. 实验用推论ΔS=aT2 ΔS为相邻连续相等时间(T)内位移之差 8. 主要物理量及单位:初速度(Vo):m/s 加速度(a):m/s2 末速度(Vt):m/s 时间(t):秒(s) 位移(S):米(m) 路程: 米(m) 速度单位换算:1m/s=3.6Km/h 注:(1)平均速度是矢量。 (2)物体速度大,加速度不一定大。 (3)a=(Vt-Vo)/t只是量度式,不是决定式。 (4)其它相关内容:质点、位移和路程、速度与速率、s--t图、v--t图 2) 自由落体 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2 4.推论Vt2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。 (2)a=g=9.8≈10m/s2 重力加速度在赤道附近较小;地球两极最大;在高山处比平地小。 3)* 竖直上抛 1.位移S=Vot- gt2/2 2.末速度Vt= Vo- gt (g=9.8≈10m/s2 ) 3.有用推论Vt2 -Vo2=-2gS 4.上升最大高度Hm=Vo2/2g (抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。 (2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。 (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动----曲线运动 万有引力 1)平抛运动 1.水平方向速度Vx=Vo 2.竖直方向速度Vy=gt 3.水平方向位移Sx=Vot 4.竖直方向位移Sy=gt2/2 5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo 7.合位移S=(Sx2+ Sy2)1/2 , 位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo 注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。 (2)运动时间由下落高度h(Sy)决定与水平抛出速度无关;在平抛运动中t是解题关键。 (3)α与β的关系为tgβ=2tgα。 (4)当速度方向与合力(加速度)方向不在同一直线上时物体做曲线运动;曲线运动必有加速度。 2)匀速圆周运动 1.线速度V=s/t=2πR/T =ωR 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V2/R=ω2R=(2π/T)2R 4.向心力F向心=mV2/R=mω2R=m(2π/T)2R 5.周期与频率T=1/f 6.角速度与线速度的关系V=ωR 7.角速度与转速的关系ω=2πf=2πn (统一单位后频率与转速大小相同) 8.主要物理量及单位:弧长(S):米(m) 角度(Φ):弧度(rad)频率(f):赫(Hz) 周期(T):秒(s) 转速(n):r/s 半径(R):米(m) 线速度(V):m/s 角速度(ω):rad/s 向心加速度:m/s2 注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。 (2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。 3)万有引力 1.开普勒第三定律T2/R3=K R:轨道半径 T :周期 K:常量(与行星质量无关) 2.万有引力定律F=Gm1m2/r2 G=6.67×10-11N�6�1m2/kg2方向在它们的连线上 3.任意天体上的重力和重力加速度:GM=gR2 (黄金代换) M:为天体的质量(Kg) g:为天体表面的重力加速度(m/s2) R:天体半径(m) 4.卫星绕行速度、角速度、周期都用: F万有=F向心 5.第一、二、三宇宙速度:V1=7.9Km/s V2=11.2Km/s V3=16.7Km/s 注:(1)天体运动所需的向心力由万有引力提供,F心=F万。 (2)应用万有引力定律可估算天体的质量密度等。 (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同,h≈36000km 。 (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。 (5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S,最小周期约为83min。 三、力(常见的力、力矩、力的合成与分解) 1)常见的力 1.重力:大小:G=mg 方向:竖直向下 作用点:重心 g=9.8m/s2 ≈10 m/s2,适用于地球表面附近 2.胡克定律:F=kX 方向:沿恢复形变方向 k:劲度系数(N/m) X:形变量(m) 3.滑动摩擦力:f=μN 方向:与物体相对运动方向相反 μ:摩擦因数 N:正压力(N) 4.静摩擦力0≤f静≤fm 方向:与物体相对运动趋势方向相反 fm为最大静摩擦力 5.万有引力F=Gm1m2/r2 G=6.67×10-11N�6�1m2/kg2 方向在它们的连线上 6.静电力F=KQ1Q2/r2 K=9.0×109N�6�1m2/C2 方向在它们的连线上 7.电场力F=Eq E:场强N/C q:电量C 正电荷受的电场力与场强方向相同 8.安培力F=BILsinθ θ为B与L的夹角 当 L⊥B时: F=BIL , B//L时: F=0 9.洛仑兹力f=qVBsinθ θ为B与V的夹角 当V⊥B时: f=qVB , V//B时: f=0 注:(1)劲度系数K由弹簧自身决定 (2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定。 (3)fm略大于μN 一般视为fm≈μN (4)物理量符号及单位 B:磁感强度(T), L:有效长度(m), I:电流强度(A),V:带电粒子速度(m/S), q:带电粒子(带电体)电量(C), (5)安培力按“电-磁力”与洛仑兹力方向均用判定。 2)*力矩 1.力矩M=FL L为对应的力的力臂,指力的作用线到转动轴(点)的垂直距离 2.转动平衡条件 M顺时针= M逆时针 M的单位为N�6�1m 此处N�6�1m≠J 3)力的合成与分解 1.同一直线上力的合成 同向: F=F1+F2 反向:F=F1-F2 (F1>F2) 2.互成角度力的合成 F=(F12+F22+2F1F2cosα)1/2 F1⊥F2时: F=(F12+F22)1/2 3.合力大小范围 |F1-F2|≤F≤|F1+F2| 4.力的正交分解:Fx=Fcosβ Fy=Fsinβ β为合力与x轴之间的夹角tgβ=Fy/Fx 注:(1)力(矢量)的合成与分解遵循平行四边形定则。 (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立。 (3)除公式法外,也可用作图法求解,此时要选择标度严格作图。 (4)F1与F2的值一定时,F1与F2的夹角(α角)越大合力越小。 (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化成代数运算。 四、动力学(运动和力) 1.第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态 间)
13、 竖直上抛运动: 上升过程是匀减速直线运动,下落过程是匀加速直线运动。全过程是初速度为VO、加速度为�8�2g的匀减速直线运动。
(1) 上升最大高度: H =
(2) 上升的时间: t=
(3) 上升、下落经过同一位置时的加速度相同,而速度等值反向
(4) 上升、下落经过同一段位移的时间相等。 从抛出到落回原位置的时间:t =
(5)适用全过程的公式: S = Vo t -- g t2 Vt = Vo-g t
Vt2 -Vo2 = - 2 gS ( S、Vt的正、负号的理解)
14、匀速圆周运动公式
线速度: V= R�8�6 =2 f R=
角速度:�8�6=
向心加速度:a = 2 f2 R
向心力: F= ma = m 2 R= m m4 n2 R
注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心。
(2)卫星绕地球、行星绕太阳作匀速圆周运动的向心力由万有引力提供。
(3) 氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供。
15、平抛运动公式:匀速直线运动和初速度为零的匀加速直线运动的合运动
水平分运动: 水平位移: x= vo t 水平分速度:vx = vo
竖直分运动: 竖直位移: y = g t2 竖直分速度:vy= g t
tg�8�0 = Vy = Votg�8�0 Vo =Vyctg�8�0
V = Vo = Vcos�8�0 Vy = Vsin�8�0
在Vo、Vy、V、X、y、t、�8�0七个物理量中,如果 已知其中任意两个,可根据以上公式求出其它五个物理量。
16、 动量和冲量: 动量: P = mV 冲量:I = F t
(要注意矢量性)
17 、动量定理: 物体所受合外力的冲量等于它的动量的变化。
公式: F合t = mv’ - mv (解题时受力分析和正方向的规定是关键)

18、动量守恒定律:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变。 (研究对象:相互作用的两个物体或多个物体)
公式:m1v1 + m2v2 = m1 v1‘+ m2v2’或�8�5p1 =- �8�5p2 或�8�5p1 +�8�5p2=O
适用条件:
(1)系统不受外力作用。 (2)系统受外力作用,但合外力为零。
(3)系统受外力作用,合外力也不为零,但合外力远小于物体间的相互作用力。
(4)系统在某一个方向的合外力为零,在这个方向的动量守恒。
19、 功 : W = Fs cos�8�0 (适用于恒力的功的计算)
(1) 理解正功、零功、负功
(2) 功是能量转化的量度
重力的功------量度------重力势能的变化
电场力的功-----量度------电势能的变化
分子力的功-----量度------分子势能的变化
合外力的功------量度-------动能的变化
20、 动能和势能: 动能: Ek =
重力势能:Ep = mgh (与零势能面的选择有关)
21、动能定理:外力所做的总功等于物体动能的变化(增量)。
公式: W合= �8�5Ek = Ek2 - Ek1 = 22、机械能守恒定律:机械能 = 动能+重力势能+弹性势能
条件:系统只有内部的重力或弹力做功.
公式: mgh1 + 或者 �8�5Ep减 = �8�5Ek增
23、能量守恒(做功与能量转化的关系):有相互摩擦力的系统,减少的机械能等于摩擦力所做的功。
�8�5E = Q = f S相
24、功率: P = (在t时间内力对物体做功的平均功率)
P = FV (F为牵引力,不是合外力;V为即时速度时,P为即时功率;V为平均速度时,P为平均功率; P一定时,F与V成正比)
25、 简谐振动: 回复力: F = -KX 加速度:a = -
单摆周期公式: T= 2 (与摆球质量、振幅无关)
(了解�8�9)弹簧振子周期公式:T= 2 (与振子质量、弹簧劲度系数有关,与振幅无关)
26、 波长、波速、频率的关系: V = =�8�5 f (适用于一切波)电场1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N�6�1m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q 8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)} 9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)} 10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值} 11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值) 12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数) 常见电容器〔见第二册P111〕 14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下) 类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d) 抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 注: (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分; (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直; (3)常见电场的电场线分布要求熟记〔见图[第二册P98]; (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关; (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面; (6)电容单位换算:1F=106μF=1012PF; (7)电子伏(eV)是能量的单位,1eV=1.60×10-19J; (8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。 恒定电流 1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)} 2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)} 3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω�6�1m),L:导体的长度(m),S:导体横截面积(m2)} 4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外 {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)} 5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)} 6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)} 7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R 8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率} 9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比) 电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+ 电流关系 I总=I1=I2=I3 I并=I1+I2+I3+ 电压关系 U总=U1+U2+U3+ U总=U1=U2=U3 功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+ 10.欧姆表测电阻 (1)电路组成 (2)测量原理 两表笔短接后,调节Ro使电表指针满偏,得 Ig=E/(r+Rg+Ro) 接入被测电阻Rx后通过电表的电流为 Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx) 由于Ix与Rx对应,因此可指示被测电阻大小 (3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。 (4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。 11.伏安法测电阻 电流表内接法: 电压表示数:U=UR+UA 电流表外接法: 电流表示数:I=IR+IV Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真 Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)<R真 选用电路条件Rx>>RA [或Rx>(RARV)1/2] 选用电路条件Rx<<RV [或Rx<(RARV)1/2] 12.滑动变阻器在电路中的限流接法与分压接法 限流接法 电压调节范围小,电路简单,功耗小 便于调节电压的选择条件Rp>Rx 电压调节范围大,电路复杂,功耗较大 便于调节电压的选择条件Rp<Rx 注1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω (2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大; (3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻; (4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大; (5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r); (6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。

2. 高二会考物理必考知识点有哪些

高二会考物理必考知识点有:

1、根据静电能吸引轻小物体的性质和同种电荷相排斥、异种电荷相吸引的原理,主要应用有:静电复印、静电除尘、静电喷漆、静电植绒,静电喷药等。

2、利用高压静电产生的电场,应用有:静电保鲜、静电灭菌、作物种子处理等。

3、利用静电放电产生的臭氧、无菌消毒等,雷电是自然界发生的大规模静电放电现象,可产生大量的臭氧,并可以使大气中的氮合成为氨,供给植物营养。

4、静电的主要危害是放电火花,如油罐车运油时,因为油与金属的振荡摩擦,会产生静电的积累,达到一定程度产生火花放电,容易引爆燃油,引起事故,所以要用一根铁链拖到地上,以导走产生的静电。

5、防止静电的主要途径:避免产生静电。如在可能情况下选用不容易产生静电的材料。避免静电的积累。产生静电要设法导走,如增加空气湿度,接地等。

6、功和能

力学部分大boss的存在,谁都可以结合,从弹簧到皮带到滑块,等你做多了你会感到世界的真谛就是动能定理和一堆物理物体,多过程、大计算、复杂分析。

7、电场:电荷的周围存在着电场,带电体间的相互作用是通过周围的电场发生的。

8、电场基本性质:对放入其中的电荷有力的作用。

9、电场力:电场对放入其中的电荷有作用力,这种力叫电场力,电荷间的静电力就是一个电荷受到另一个电荷激发电场的作用力。

10、电场强度:把电场中某一点的电荷受到的电场力F跟它的电荷量q的比值,定义为该点的电场强度,简称场强,用E表示。

11、电场线:如果在电场中画出一些曲线,使曲线上每一点的切线方向,都跟该点的场强方向一致,这样的曲线就叫做电场线。

3. 高二物理知识点归纳是什么

高二物理知识点归纳:

1、动量:可以从两个侧面对动量进行定义或解释:

①物体的质量跟其速度的乘积,叫做物体的动量。

②动量是物体机械运动的一种量度。

动量的表达式P=mv。单位是。动量是矢量,其方向就是瞬时速度的方向。因为速度是相对的,所以动量也是相对的。

2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。

运用动量守恒定律要注意以下几个问题:

①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。

②对于某些特定的问题,例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理,在这一短暂时间内遵循动量守恒定律。

③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。

④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。

⑤动量守恒定律也可以应用于分动量守恒的情况。有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。

⑥动量守恒定律有广泛的应用范围。只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。

4. 高二物理电学知识点有哪些

知识要点:

1、基础知识对于电学综合问题, 状态分析往往是解题的第一步, 如对带电粒子在电场、磁场中的运动和导线切割磁感线运动, 应分析其受力状态和运动状态; 对于直流电路的计算, 应首先分析其电路的连接状态; 对于电磁振荡, 通常需要分析振荡过程中的一些典型状态。

2、电场知识点:电荷在其周围空间激发电场,静止电荷激发的电场是静电场。电场对处在场中的其它电荷有力的作用;电荷在电场中移动时,一般说来电场力对电荷要做功,在静电场中,电场力对电荷所做的功与路径无关,所以在静电场中电荷具有电势能。

在静电场中引入场强和电势这两个物理量,来分别描写静电场有关力的性质和能的性质。只有深入地理解场强和电势的概念,才能加深对电场这一概念的理解。静电场是不随时间变化的场,在空间各点描写电场的物理量场强和电势,均不随时间变化。

但是,在场中的不同点,场强和电势的数值一般来说是不同的,它是随着空间点的位置的变化而变化的。关于这一点在中学物理中要特别注意,因为我们经常研究匀强电场,在这一特殊的匀强电场中,各点的场强的大小和方向是相同的,而一般的电场却不是这样,必须考虑场强和电势在场中不同点的分布情况。

电力线和等势面是分别用来形象地描写场强和电势在空间中的分布的工具。对于它们的性质及描写电场的方法的理解和掌握,不仅对于深入理解电场的概念、形象的建立电场的模型和图像非常重要,而且对于解决很多电学中的问题也是非常有用的。

值得注意的是,对于电场中一些概念的学习,如:电场力对电荷的功、电势能,应对照力学中的重力对物体做的功,重力势能来学习和理解。带电粒子在电场中的平衡和运动的问题,实际上,就是力学问题。所以静电场的学习是对力学问题的一次很好的复习和提高的机会。

5. 高二物理知识点总结

6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)

7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)

9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);

(6)安培力与洛仑兹力方向均用左手定则判定。

2)力的合成与分解

1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)

2.互成角度力的合成:

F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2

3.合力大小范围:|F1-F2|≤F≤|F1+F2|

4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4.电功:W=UIt(电场
1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
常见电容器〔见第二册P111〕
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记〔见图[第二册P98];
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106μF=1012PF;
(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;
(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。

十一、恒定电流
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系 I总=I1=I2=I3 I并=I1+I2+I3+
电压关系 U总=U1+U2+U3+ U总=U1=U2=U3
功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+
10.欧姆表测电阻
(1)电路组成 (2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11.伏安法测电阻
电流表内接法:
电压表示数:U=UR+UA

电流表外接法:
电流表示数:I=IR+IV

Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真
Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)<R真
选用电路条件Rx>>RA [或Rx>(RARV)1/2]
选用电路条件Rx<<RV [或Rx<(RARV)1/2]
12.滑动变阻器在电路中的限流接法与分压接法
限流接法
电压调节范围小,电路简单,功耗小
便于调节电压的选择条件Rp>Rx

电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件Rp<Rx
注1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;
(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;
(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;
(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);
(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。

十二、磁场
1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m
2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0
(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
注:
(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;
(2)磁感线的特点及其常见磁场的磁感线分布要掌握〔见图及第二册P144〕;(3)其它相关内容:地磁场/磁电式电表原理〔见第二册P150〕/回旋加速器〔见第二册P156〕/磁性材料
十三、电磁感应
1.[感应电动势的大小计算公式]
1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}
2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}
3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值}
4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}
2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}
3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
*4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}
注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。

十四、交变电流(正弦式交变电流)
1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)
2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总
3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2
4.理想变压器原副线圈中的电压与电流及功率关系
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出
5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;
6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);
S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。
注:
(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;
(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;
(3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;
(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;
(5)其它相关内容:正弦交流电图象〔见第二册P190〕/电阻、电感和电容对交变电流的作用〔见第二册P193〕。
普适式) {U:电压(V),I:电流(A),t:通电时间(s)}

3

6. 高中物理知识点汇总

高中物理公式总结
物理定理、定律、公式表
一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动、万有引力
1)平抛运动
1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g

7. 高中物理知识点总结

一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:①平均速度是矢量, ②物体速度大,加速度不一定大,
③a=(Vt-Vo)/t只是量度式,不是决定式,
④其它相关内容:质点、位移和路程、参考系、时间与时刻、s-t图、v--t图、速度与速率、瞬时速度。
2)自由落体运动
1.初速度Vo=0 a=g; 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
注:①自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
②a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,高山处比平地小,方向竖直向下)。
3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:①全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
②分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
③上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动、万有引力
1)平抛运动
1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2 (通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0=2tgα;
7.合位移:s=(x2+y2)1/2, 位移方向与水平夹角α:tgα=y/x=gt/2Vo=tgβ/2
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注①平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
②运动时间由下落高度h(y)决定与水平抛出速度无关;
③θ与β的关系为tgβ=2tgα;
④在平抛运动中时间t是解题关键;
⑤做曲线运动物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r
4.向心力F心=mV2/r=mω2r=m (2π/T)2r=mωv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:①向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直指向圆心.
②做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力永不做功,但动量不断改变.
(3)万有引力
1.开普勒第三定律:T2/R3=K=4π2/GM)
(R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量))
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 (R:天体半径(m),M:天体质量(kg))
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km.h:距地球表面的高度,r地:地球的半径}
注:①天体运动所需的向心力由万有引力提供,F向=F万;
②应用万有引力定律可估算天体的质量密度等;
③地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;线速度、离地高度、加速度都恒定。
④卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
⑤地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
三、力(常见的力、力的合成与分解)
1)常见的力
1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx (方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m))
3.滑动摩擦力F=μFN (与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N))
4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0×109N•m2/C2,方向在它们的连线上)
7.电场力F=qE (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qBVsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:①劲度系数k由弹簧自身决定;
②摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
③fm略大于μFN,一般视为fm≈μFN; ④其它相关内容:静摩擦力(大小、方向)〔〕;
⑤物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子电量(C); ⑥安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1.同一直线上力的合成 同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:F=(F12+F22+2F1F2cosα)1/2 (余弦定理)
F1⊥F2时(即正交):F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F合≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ (β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:①力(矢量)的合成与分解遵循平行四边形定则;
②合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
③除公式法外,也可用作图法求解,此时要选择标度,严格作图;
④F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
⑤同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/m (a由合外力决定,与合外力方向一致)
3.牛顿第三定律:F=-F´{负号表方向相反,两力各自作用在对方.平衡力与作用力反作用力区别.实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔〕 注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
五、振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(L/g)1/2 {L:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;L»r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用 〔〕
5.机械波、横波、纵波 〔〕
6.波速v=s/t=λf=λ/T {波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中) 0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大, λ大(f小)衍射明显。
9.波的干涉条件:两列波频率相同、(相位相同),
振动加强:到两振源的距离=波长整数倍 ΔS=nλ
振动减弱:到两振源的距离=半个波长的奇数倍 ΔS=(2n+1)λ/2
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同
{相互接近,接收频率增大,反之,减小〔〕}
注:①物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
②加强区是波峰与波峰或波谷与波谷相遇处(振动步调相同的地方),这些点也在作振动。
减弱区则是波峰与波谷相遇处;(振动步调反相的地方)
③波只是传播了振动形式,质点本身不随波发生迁移(只在平衡位置附近振动),是传递能量的一种方式; 也传递信号。
④反射、干涉、衍射、多普勒效应等是波特有的现像;
⑤振动图象与波动图象区别;
⑥其它相关内容:超声波及其应用、振动中的能量转化〔〕。
六、冲量与动量(物体的受力与动量的变化)
1.动量:p=mv= {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft {I:冲量(N•s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}
5.动量守恒定律:p前总=p后总(或p=p’)´也可以是m1v1+m2v2=m1v1´+m2v2´
6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1´=(m1-m2)v1/(m1+m2) v2´=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失 E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
注:①正碰又叫对心碰撞,速度方向在它们“中心”的连线上;
②以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;
③系统动量守恒条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);
④碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;
⑤爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;
⑥其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔〕。
七、功和能(功是能量转化的量度)
1.功:W=Fscosα {定义式}{功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab {m:物体质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab= a- b}
4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}
9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2=p2/2m {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能: A=q A {EA:带电体在A点电势能(J),q:电量(C), A:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加):W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:①功率大小表示做功快慢,做功多少表示能量转化数量;
②Oo≤α<90o 做正功;90o<α≤180o做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
③重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
④重力做功和电场力做功均与路径无关(见2、3两式);
⑤机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;
⑥能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;1u=931.5Mev
⑦*弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
八、分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米、埃;10-9米纳米.
膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m2)}
3.分子动理论内容:物质由大量分子组成;大量分子在做规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力 (1)r<r0,f引<f斥,F分子力表现为斥力
(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引<f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律ΔE=W+Q;------能的转化守恒定律;------第一类永动机不可能制成.
{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出
6.热力学第二定律---第二类永动机不能制成---实质:涉及热现象(自然界中实际)的宏观过程都具方向性.
热传递表述: 不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);
机械能与内能转化表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性)
7.热力学第三定律:热力学零度不可达到 {宇宙温度下限:-273.15摄氏度(热力学零度)}
注:①布朗粒子不是液体分子,而是固体颗粒,能够反映液体分子的无规则运动,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
②温度是分子平均动能的标志;
③分子间的引力和斥力同时存在,都随分子间距离的增大而减小,但斥力减小得比引力快;
④分子力做正功,分子势能减小,在r0处F引=F斥;且分子势能最小;
⑤气体膨胀,外界对气体做正功W>0, 内能增大ΔE>0;温度升高,吸收热量,Q>0, 内能增大ΔE>0;
⑥物体内能是指物体所有分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
⑦r0为分子处于平衡状态时,分子间的距离;
⑧其它相关内容:能的转化和守恒定律、能源的开发与利用、环保、物体的内能、分子的动能、分子势能。
九、气体的性质
1.气体的状态参量:
温度: 宏观上: 物体的冷热程度; 微观上: 物体内部分子无规则运动的剧烈程度的标志,
热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}
体积V:气体分子所能占据的空间, 单位换算:1m3=103L=106mL
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,
标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}
注:①理想气体的内能与理想气体的体积无关,与温度和物质的量有关;
②公式3成立条件为一定质量的理想气体,使用注意温度的单位,t为摄氏温度(℃),T为热力学温度(K)。
十、电场
1.两种电荷、电荷守恒定律、元电荷: (e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中) F:点电荷间的作用力(N),k:静电力常量k=9.0×109N•m2/C2, Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引
3.电场强度:E=F/q(定义式、计算式)
{E:电场强度(N/C)是矢量(电场的叠加原理)q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB= a- b, UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=qEd {WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),
UAB:电场中A,B两点间电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)
9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化Δ AB= B- A {带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化Δ AB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器电容C=εS/4πkd (S:两极板正对面积,d:两极板间的垂直距离,ε:介电常数)
电容器两种动态分析:①始终与电源相接u不变;②充电后与电源断开q不变.距离d变化时各物理量的变化情况
14.带电粒子在电场中的加速(Vo=0): W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平抛运动 :垂直电场方向: 匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
平行电场方向: 初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:①两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
②静电场的电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;变化电场的电场线是闭合的:电磁场.
③常见电场的电场线分布要求熟记,特别是等量同种电荷和等量异种电荷连线上及中垂线上的场强
④电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
⑤处于静电平衡导体是个等势体,其表面是个等势面,导体外表面附近的电场线垂直于导体表面(距导体远近不同的等势面的特点?),导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
⑥电容单位换算:1F=106μF=1012PF;
⑦电子伏(eV)是能量的单位,1eV=1.60×10-19J;
⑧其它相关内容:静电屏蔽、示波管、示波器及其应用、等势面〔〕。
十一、恒定电流
1.电流强度:宏观:I=q/t(定义式) (I:电流强度(A),q:在时间t内通过载面的电量(C),t:时间(s) 微观:I=nesv (n单位体积自由电何数,e自由电荷电量,s导体截面积,v自由电荷定向移动速率)
2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S {ρ:电阻率(Ω•m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=Pt= UIt, P=UI {W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt
{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因此W=QU=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总
{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系 I总=I1=I2=I3 I并=I1+I2+I3+
电压关系 U总=U1+U2+U3+ U总=U1=U2=U3
功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+
10.欧姆表测电阻
(1)电路组成 内电路和外电路
(2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得 Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为 Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11.伏安法测电阻
电流表内接法: 电流表外接法:
电压表示数:U=UR+UA 电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR Rx的测量值=U/I=UR/(IR+IV)
=RA+Rx>R真 =RVRx/(RV+R)<R真
选用电路条件Rx»RA [或Rx>(RARV)1/2] 选用电路条件Rx»RV [或Rx<(RARV)1/2]
12.滑动变阻器在电路中的限流接法与分压接法
限流接法 分压供电
电压调节范围小,电路简单,功耗小 电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件Rp>Rx 便于调节电压的选择条件Rp<Rx
注:①单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
②各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;
③串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;
④当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;
⑤当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(4r);效率50%
⑥其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔〕。
十二、磁场
1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位:(T),1T=1N/A•m
2.安培力F=BIL; (注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
3.洛仑兹力f=qVB (注V⊥B);质谱仪〔〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)
4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0
(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下:
(a) F向=f洛=mV2/r=mω2r=m (2π/T)2r=qVB;
r=mV/qB; T=2πm/qB;
(b) 运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);
(c) 解题关键:画轨迹、找圆心、定半径、圆心角=二倍弦切角。
注:1安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;
2磁感线的特点及其常见磁场的磁感线分布要掌握〔〕;
(d)其它相关内容:地磁场、磁电式电表原理、回旋加速器、磁性材料

8. 高二物理会考知识点有哪些

高二物理会考知识点有:

1、把物体视为质点的条件:物体的形状、大小相对所研究对象小的可忽略不计时。

2、物体在某一瞬间的速度较瞬时速度;物体在某一段时间的速度叫平均速度。

3、速度大加速度不一定大;速度为零加速度不一定为零;加速度为零速度不一定为零。

4、热力学第一定律:W+Q=ΔU(做功和热传递,这两种改变物体内能的方式,在效果上是等效的)。

5、分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快。