㈠ 初一数学全部知识点有哪些
1、单项式:数字与字母的积,叫做单项式。
2、多项式:几个单项式的和,叫做多项式。
3、整式:单项式和多项式统称整式。
4、单项式的次数:单项式中所有字母的指数的和叫弹项式的次数。
5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。
6、余角:两个角的和为90度,这两个角叫做互为余角。
7、补角:两个角的和为180度,这两个角叫做互为补角。
8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。
9、同位角:在“三线八角”中,位置相同的角,就是同位角。
㈡ 求初中数学的知识点(初一,二的就行了)要带些例题和解法。
一、基本知识
一、数与代数A、数与式:
1、有理数
有理数:①整数→正整数/0/负整数
②分数→正分数/负分数
数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:
加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数
无理数:无限不循环小数叫无理数
平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。
3、代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式
整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一样。
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式
整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。
B、方程与不等式
1、方程与方程组
一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程
1)一元二次方程的二次函数的关系
大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了
2)一元二次方程的解法
大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程变为完全平方公式,在用直接开平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解
(3)公式法
这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步骤:
(1)配方法的步骤:
先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式
(2)分解因式法的步骤:
把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式
(3)公式法
就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c
4)韦达定理
利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a
也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用
5)一元一次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:
I当△>0时,一元二次方程有2个不相等的实数根;
II当△=0时,一元二次方程有2个相同的实数根;
III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)
2、不等式与不等式组
不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。②一个含有未知数的不等式的所有解,组成这个不等式的解集。③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。③求不等式组解集的过程,叫做解不等式组。
一元一次不等式的符号方向:
在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。
在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C
在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C<B*C(C<0)
如果不等式乘以0,那么不等号改为等号
所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;
3、函数
变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。②当B=0时,称Y是X的正比例函数。
一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数Y=KX的图象是经过原点的一条直线。③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。
二空间与图形
A、图形的认识
1、点,线,面
点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。
2、角
线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。
比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。
垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等;
判定定理:到线段2端点距离相等的点在这线段的垂直平分线上
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
正方形:一组邻边相等的矩形是正方形
性质:正方形具有平行四边形、菱形、矩形的一切性质
判定:1、对角线相等的菱形2、邻边相等的矩形
二、基本定理
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
14、两直线平行,同旁内角互补
15、定理 三角形两边的和大于第三边
16、推论 三角形两边的差小于第三边
17、三角形内角和定理 三角形三个内角的和等于180°
18、推论1 直角三角形的两个锐角互余
19、推论2 三角形的一个外角等于和它不相邻的两个内角的和
20、推论3 三角形的一个外角大于任何一个和它不相邻的内角
21、全等三角形的对应边、对应角相等
22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23、角边角公理( ASA)有两角和它们的夹边对应相等的 两个三角形全等
24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25、边边边公理(SSS) 有三边对应相等的两个三角形全等
26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27、定理1 在角的平分线上的点到这个角的两边的距离相等
28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29、角的平分线是到角的两边距离相等的所有点的集合
30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33、推论3 等边三角形的各角都相等,并且每一个角都等于60°
34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35、推论1 三个角都相等的三角形是等边三角形
36、推论 2 有一个角等于60°的等腰三角形是等边三角形
37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38、直角三角形斜边上的中线等于斜边上的一半
39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42、定理1 关于某条直线对称的两个图形是全等形
43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形
48、定理 四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理 n边形的内角的和等于(n-2)×180°
51、推论 任意多边的外角和等于360°
52、平行四边形性质定理1 平行四边形的对角相等
53、平行四边形性质定理2 平行四边形的对边相等
54、推论 夹在两条平行线间的平行线段相等
55、平行四边形性质定理3 平行四边形的对角线互相平分
56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形
58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60、矩形性质定理1 矩形的四个角都是直角
61、矩形性质定理2 矩形的对角线相等
62、矩形判定定理1 有三个角是直角的四边形是矩形
63、矩形判定定理2 对角线相等的平行四边形是矩形
64、菱形性质定理1 菱形的四条边都相等
65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66、菱形面积=对角线乘积的一半,即S=(a×b)÷2
67、菱形判定定理1 四边都相等的四边形是菱形
68、菱形判定定理2 对角线互相垂直的平行四边形是菱形
69、正方形性质定理1 正方形的四个角都是直角,四条边都相等
70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71、定理1 关于中心对称的两个图形是全等的
72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等
㈢ 初一数学知识点梳理
第一章有理数总复习
一、知识归纳:
1、数轴是一条规定了原点、方向、长度单位的直线。有了数轴,任何一个有理数都可以用它上面的一个确定的点来表示。在数的研究上它起着重要的作用。它使数和最简单的图形——直线上的点建立了对应关系,它揭示了数和形之间的内在关系,因此它是数形结合的基础。但要注意数轴上的所有点并不是都有有理数和它对应。借助于数轴上点的位置关系可以比较有理数的大小,法则是:在数轴上表示的两个有理数,右边的数总比左边的数大。
2、相反数是指只有符号不同的两个数。零的相反数是零。互为相反的两个数位于数轴上原点的两边,离开原点的距离相等。有了相反数的概念后,有理数的减法运算就可以转化为加法运算。
3、绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。显然有:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。对于任何有理数a,都有≥0。
4、倒数可以这样理解:如果a与b是非零的有理数,并且有a×b=1,我们就说a与b互为倒数。有了倒数的概念后,有理数的除法运算就可以转化为乘法运算。
5、有理数的大小比较:
(1)正数都大于零,负数都小于零,即负数<零<正数;(2)两个正数,绝对值大的数较大;
(3)两个负数,绝对值大的数反而小;(4)在数轴上表示的有理数,右边的数总比左边的大;
6、科学记数法:是指任何数记成a×10n的形式,其中用式子表示|a|的范围是0<|a|<10。
7、近似数与有效数字:
近似数:一个与实际数很接近的数,称为近似数;
有效数字:从左边第一个不为0的数字起,到精确到的数位止,这些数字都是这个数的有效数字。
(1)有效数字越多,近似数就越精确;(2)由四舍五入得到的近似数0.003206,左边第一个不是零的数是3,最后一位四舍五入所得到的数是6,从3到6中间的所有的数字是3、2、0、6,左边的三个不算,但2和6之间的0要算,这个近似数有4个有效数字。
二、有理数的运算法则
1、有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。由此可得,互为相反数的两数相加的0;三个数相加先把前两个数相加,或先把后两个数相加,和不变。
2、有理数的减法法则:减去一个数等于加上这个数的相反数。注意:一切加法和减法运算都可以统一成加法运算。
3、有理数的乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。任何数同零相乘都得零。
4、有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除。零除以任何一个不为零的数都得零。
5、有理数混合运算的顺序:有理数混合运算中,先算乘方,再算乘除,最后算加减。运算中,如果有括号,就先算括号里面的。、
6、有理数的运算律:
交换律:a+b=b+a,ab=ba.
结合律:(a+b)+c=a+(b+c),(ab)c=a(bc).
乘法对加法的分配律:a(b+c)=ab+ac.
三、值得注意的几个问题
1、数的范围扩大到有理数后,一定要注意考虑负数。如不能认为“最小的整数是零”。
2、有理数都可以用数轴上的点表示;但数轴上的点不都表示有理数。
3、单独的一个数或字母,省略的指数是“1”,而不是零。
4、对负数或分数进行乘方运算要注意加括号。如当时,;而不是。
5、有理数的运算要特别注意符号。
第二章整式的加减
一、 知识梳理
1、______和______统称整式。
①单项式:由与的乘积式子称为单项式。单独一个数或一个字母也是单项式,如a,5。
•单项式的系数:单式项里的叫做单项式的系数。
•单项式的次数:单项式中叫做单项式的次数。
②多项式:几个的和叫做多项式。其中,每个单项式叫做多项式的,不含字母的项叫做。
•多项式的次数:多项式里的次数,叫做多项式的次数。
•多项式的命:一个多项式含有几项,就叫几项式。所以我们就根据多项式的项数和次数来命名一个多项式。如:3n4-2n2+1是一个四次三项式。
2、同类项——必须同时具备的两个条件(缺一不可):
①所含的相同;
②相同也相同。
•合并同类项,就是把多项式中的同类项合并成一项。
方法:把各项的相加,而不变。
3、去括号法则
法则1.括号前面是“+”号,把括号和它前面的“+”号去掉,
括号里各项都符号;
法则2.括号前面是“-”号,把括号和它前面的“-”号去掉,
括号里各项都符号。
▲去括号法则的依据实际是。
〖注意1〗要注意括号前面的符号,它是去括号后括号内各项是否变号的依据.
〖注意2〗去括号时应将括号前的符号连同括号一起去掉.
〖注意3〗括号前面是“-”时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.若括号前是数字因数时,可运用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.
〖注意4〗遇到多层括号一般由里到外,逐层去括号,也可由外到里.数“-”的个数.
4、整式的加减
整式的加减的过程就是。如遇到括号,则先,再,合并到为止。
5、本单元需要注意的几个问题
①整式(既单项式和多项式)中,分母一律不能含有字母。
②π不是字母,而是一个数字,
③多项式相加(减)时,必须用括号把多项式括起来,才能进行计算。
④去括号时,要特别注意括号前面的因数。
第三章一元一次方程
一、 知识梳理
1.方程
(1)方程的定义:含有未知数的等式叫做方程.
(2)方程的解:能够使方程左、右两边的值相等的未知数的值叫做方程的解.
(3)解方程:求方程解的过程叫做解方程.
2.一元一次方程:
只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程.
3.解一元一次方程的步骤:
①去分母,在方程的两边都乘以各分母的最小公倍数,注意不要漏乘不含分母的项,分子为多项式的要加上括号;
②去括号,一般先去小括号,再去中括号,最后去大括号,注意不要漏乘括号里的项,当括号前是“-”时,去掉括号时注意括号内的项都要变号;
③移项,将含有未知数的项移到方程的一边,不含未知数的项移到方程的另一边,注意移项要变号,移项和交换位置不同;
④合并同类项,将同类项合并成一项,把方程化为ax=b(a≠0)的形式,注意只合并同类项的系数;
⑤系数化为1,在方程ax=b的两边都除以a,求出方程的解x=,注意符号,不要把方程ax=b的解写成x=。
4.列方程解应用题的步骤:
(1)读题找相等关系:认真读题,理解题意,分清已知与未知,找出相等关系.
(2)设出适当的未知数:根据问题的实际情况,设未知数可以直接设未知数,也可以间接设未知数.
(3)列方程:根据问题中的一个相等关系列出方程.
(4)解方程:解所列的方程,求出未知数的值.
(5)写出所求解的答案:求到方程的解,要检验它是否符合实际意义,如果符合实际意义,要写出完整的答案.
5.实际问题的常见类型
(1)利息问题:①相关公式:本金×利率×期数=利息(未扣税);②相等关系:本息=本金+利息.
(2)利润问题:①相关公式:利润率=利润÷进价;②相等关系:利润=售价-进价.
(3)等积变形问题:①相关公式:长方体的体积=长×宽×高;圆柱的体积=底面积×高.
②相等关系:变形前的体积=变形后的体积.
(4)工程问题
①数量关系:工作量=工作时间×工作效率.②相等关系:总工作量=各部分工作量的和.
(5)行程问题:①相关数量关系:路程=时间×速度;②相等关系:(相遇问题)两者路程和=总路程;(追及问题)两者路程差=相距路程.
二、思想方法总结
1.方程的思想:方程的思想就是把末知数看成已知数,让代替未知数的字母和已知数一样参与运算,这是一种很重要的数学思想,很多问题都能归结为方程来处理。
2、数形结合的思想:数形结合的思想是指在研究问题的过程中,由数思形,由形思数,把数和形结合起来分析问题的思想方法。本章在列方程解应用题时常采用画图,列表格的方法展示数量关系。使问题更形象、直观。
3、“化归思想”:所谓化归思想,是指在如解数学问题时,如果对当前的问题感到困惑,可把它先进行交换,使之筒化,并得到解决的思维方法。如本章解方程的过程,就是把形式比较复杂的方程,逐步化简为最简方程ax=b(a=0),从而求出方程的解,通过对解一元一次方程的学习要体会并掌据化归这一数学思想方法。
三、易错点突破
1、应用等式的基本性质时出现错误
例1下列说法正确的是()
A、在等式ab=ac中,两边都除以a,可得b=c
B、在等式a=b两边都除以c2+1可得
C、在等式两边都除以a,可得b=c
D、在等式2x=2a一b两边都除以2,可得x=a一b
剖析:A中a代表任意数,当a≠0时结论成立;但当a=0时,不能运用等式的性质(2)结论不一定成立,如0•3=0•(-1)但3≠-1,所以,等式两边同时除以一个数,要保证除数不为0才能行。B中c2+1≠0所以成立C用的性质错误,应在等式两边都乘以a,D中一b这一项没除以2,应为x=a-选B
2、去分母去括号时出现漏乘现象或出现符号错误;移项不变号,错把解方程的过程写成“连等”的形式。
例2解方程.
错解:=3x-2+10=x+6=2x=-2=x=-1
剖析:错解的原因是对方程的变形理解不深,受到代数式运算时使用连等式的习惯影响。
正解:去分母得3x-2+10=x+6
移项合并同类项得2x=-2,所以x=-1
3、列方程解应用题时常出现的错误
(1)审题不清,没有弄请各个量所表示的意义;
(2)列方程出现错误
(3)应用公式错误
(3)单住不统一
(4)计算方法出现错误。
第四章图形认识初步
一、 知识梳理
二、重点、难点:
立体图形与平面图形的互相转化,及一些重要的概念、性质等是本章的重点。
建立和发展空间观念是空间与图形学习的核心目标之一,能由实物形状想象出几何图形,由几何图形想象出实物形状,进行几何体与其三视图、展开图之间的相互转化是培养空间观念的重要方面。另外,对图形的表示方法,对几何语言的认识与运用,都要有一个熟悉的过程。等等这些,对于今后的学习都很重要,同时也是本章的难点。
三、知识要点:
本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形。通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系。在此基础上,认识一些简单的平面图形——直线、射线、线段和角。
1.多姿多彩的图形:通过多姿多彩的图形引入几何图形,使我们认识立体图形、平面图形,通过三视图我们可以把立体图形转化为平面图形来研究和处理,也可以把立体图形展开为平面图形;几何体也简称为体,包围体的是面,面面相交为线,线线相交为点;点动成线,线动成面,面动成体,几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。如广场礼花在夜空中留下的图形,你是否看到了点动成线?在电视中看到收割机在麦田中收割小麦,你是否看到了线动成面?
2.直线、射线、线段的区别与联系:从图形上看,直线、射线可以看做是线段向两边或一边无限延伸得到的,或者也可以看做射线、线段是直线的一部分;线段有两个端点,射线有一个端点,直线没有端点;线段可以度量,直线、射线不能度量。
3.直线、线段性质:
经过两点有一条直线,并且只有一条直线;或者说两点确定一条直线;
两点的所有连线中,线段最短;简单说:两点之间,线段最短。
4.线段中点:把一条线段分成两条相等的线段的点叫线段中点,如图:
若点C是线段AB的中点,则有(1)AC=BC=AB或(2)AB=2AC=2BC,反之,若有(1)式或(2)式成立,亦能说明点C是线段AB的中点。
5.关于线段的计算:两条线段长度相等,这两条线段称为相等的线段,记作AB=CD,平面几何中线段的计算结果仍为一条线段。即使不知线段具体的长度也可以作计算。
例:如图:AB+BC=AC,或说:AC-AB=BC
6.角的意义:有公共端点的两条射线组成的图形叫做角,公共端点是角的顶点,这两条射线是角的两条边,角也可以看做由一条射线绕着它的端点旋转而形成的图形。
7.角的度量:1°=60′1′=60″1周角=360°1平角=180°1直角=90°
8.角的大小的比较:(1)叠合法,使两个角的顶点及一边重合,另一边在重合边的同旁进行比较;(2)度量法。
9.角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。如图:OC平分∠AOB,则(1)∠AOC=∠BOC=∠AOB或(2)2∠AOC=2∠BOC=∠AOB。
10.有关角的运算:
举例说明:如图,∠AOC+∠BOC=∠AOB,∠AOB-∠AOC=∠BOC
特殊情况,如果两个角的和等于直角,就说这两个角互为余角,即其中一个是另一个的余角;如果两个角的和等于平角,就说这两个角互为补角,即其中一个是另一个的补角;等角的余角相等,等角的补角相等。
㈣ 初一下数学知识点有哪些
1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。
2、在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。
3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。邻补角的性质:邻补角互补。
4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。
5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,其中一条叫做另一条的垂线。
6、平行公理:经过直线外一点有且只有一条直线与已知直线平行。平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
㈤ 初一上学期数学知识点归纳
初中数学宝典,你知道学习数学最重要的是什么吗?
在初中学习数学这们课程的时候很多的学生都是比较烦恼的,因为这们课程是非常难的,并且难点非常多,很多的学生在刚开始学习的时候还可以更得上,但是过一段时间之后就会变得非常的吃力,那么你知道初中数学宝典是什么吗?我们来了解一下吧!
复习知识点
以上就是初中数学宝典的内容,当学习吃力的时候可以先复习一下之前的内容,当然这个时候之前记得笔记就可以用来复习了,这样可以更好的帮助我们学习后期的内容,并且可以改善学习吃力的问题.
㈥ 初一的数学知识点
一元一次方程
1.方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫做方程。
2.一元一次方程
一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。
(3)等式的性质
①等式两边同时加上(或减去)同一个整式,等式仍然成立。
若a=b
那么a+c=b+c
②等式两边同时乘或除以同一个不为0的整式,等式仍然成立。
若a=b
那么有a·c=b·c或a÷c=b÷c(c≠0)
③等式具有传递性。
若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an
3.解方程式的步骤
解一元一次方程的步骤:去分母、去括号、移项、合并同类项、未知数系数化为1。
①去分母:把系数化成整数。
②去括号
③移项:把等式一边的某项变号后移到另一边。
④合并同类项
⑤系数化为1。
2有理数知识点
1.大于0的数叫做正数。
2.在正数前面加上负号“-”的数叫做负数。
3.整数和分数统称为有理数。
4.人们通常用一条直线上的点表示数,这条直线叫做数轴。
5.在直线上任取一个点表示数0,这个点叫做原点。
6.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。
7.由绝对值的定义可知:
一个正数的绝对值是它本身;
一个负数的绝对值是它的相反数;
0的绝对值是0。
8.正数大于0,0大于负数,正数大于负数。
9.两个负数,绝对值大的反而小。
10.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11.有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12.有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13.有理数减法法则:减去一个数,等于加上这个数的相反数。
14.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。
15.有理数中仍然有:乘积是1的两个数互为倒数。
16.一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18.一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19.有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
20.两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
3不等式与不等式组
1.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
2.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
3.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
4.一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
5.不等式的性质:
不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
4整式的重要知识点
1.整式:整式为单项式和多项式的统称。
2.整式加减
整式的加减运算时,如果遇到括号先去掉括号,再合并同类项。
(1)去括号:几个整式相加减,如果有括号就先去括号,然后再合并同类项。
如果括号外的因数是正数,去括号后原括号内的符号与原来相同。
如果括号外的因数是负数,去括号后原括号内的符号与原来相反。
(2)合并同类项:
合并同类项后,所得项的系数是合并前各项系数的和,且字母部分不变。
3.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
4.多项式:由若干个单项式相加组成的代数式叫做多项式。
5.同底数幂是指底数相同的幂。
6.同底数幂的乘法:同底数幂相乘,底数不变,指数相加
7.幂的乘方法则:幂的乘方,底数不变,指数相乘。
8.积的乘方:积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。
9.单项式与单项式相乘
单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
10.单项式与多项式相乘
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
11.多项式与多项式相乘
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
12.同底数幂的除法:同底数幂相除,底数不变,指数相减。
13.单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式中含有的字母,则连同它的指数一起作为商的一个因式。
14.多项式除以单项式:多项式除以单项式,先把多项式的每一项分别除以这个单项式,再把所得的商相加。
㈦ 初一数学的第二章的重要的知识点
单项式的概念,多项式的概念,整式的概念,整式的加减同类项,合并同类项,去括号与填括号
㈧ 七年级上册数学第二章有哪些个知识点,分成5章,每章100字
1.理解整式、单项式、多项式的概念.
2.会判断给出的项是不是同类项,掌握合并同类项的法则.
3.会按法则去括号,或按一定的要求添括号.4.会熟练地进行整式的加减运算.
1、了解等式的概念,掌握等式的基本性质.
2. 了解方程、方程的解、解方程等概念.
3.掌握一元一次方程的基本解法.
4.会分析应用题中的等量关系,并能列出方程解应用题.
1.认识简单几何体的基本特征,能识别这些几何体;认识点、线、面、体,理解它们之间的关系,
2.了解直线、射线、线段的基本概念,并且掌握它们的表示方法和性质.
3. 会比较角的大小;认识度、分、秒,并会进行简单的换算.
4.了解角平分线的概念,掌握余角和补角的概念和性质.
㈨ 请具体总结初一上学期数学第二章有理数的所有知识点,一定要详细详细,准确准确。
《有理数》知识点复习
知识网络:
知识点 知识链 课标要求及自我体会 处理方式
与小学 与初中 与高中
正数 小学学过整数、分数(小数)的知识,即正有理数及0的知识,还学过用字母表示数。 将小学中的“算术数”扩充到有理数 ①理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.
②借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).
③理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).
④理解有理数的运算律,并能运用运算律简化运算.
⑤能运用有理数的运算解决简单的问题.
⑥能对含有较大数字的信息作出合理的解释和推断.
⑦了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示).
负数 利用具有相反意义的量引入负数
有理数
数轴 为学习平面直角坐标系做准备;数形结合的初步认识及应用 通过描述位置的问题引出,并让学生通过温度计加深对数轴的认识,进而具体讲述
绝对值 借助数轴
相反数 借助数轴。分别利用几何意义和代数意义让学生理解
倒数 乘积为1的两个数 把倒数的范围扩充到有理数范围内 小学知识迁移
有理数加法法则 将两个数合并为一个数的运算 初中阶段运算的基础 首先通过实例明确有理数加法的意义;引入有理数加法的法则,接着举例说明小学阶段学过的加法运算律对有理数加法同样适用。在此基础上,从有理数减法的意义得出有理数减法法则。进一步根据减法法则,可以把加减法运算统一成加法。
有理数减法法则
有理数乘法法则 借助数轴研究有理数的乘法,引入有理数乘法的法则并通过例子说明,如何利用法则进行计算。然后从具体运算的例子出发,指出乘法的运算律对有理数同样适用。在乘法之后,从有理数除法的意义出发,结合具体例子引入有理数除法的法则,并通过例子说明如何利用法则进行计算。
有理数除法法则
乘方 在小学阶段接触过平方、立方 幂的运算的基础 幂函数的基础 结合计算正方形面积、正方体体积的实例引出乘方的概念
有理数混合运算 小学四则混合运算的顺序是基础 有理数的运算是数学中其他运算的基础,初中有理数运算在前两个学段的基础上增加了乘方的运算。也是后面有关整式运算的基础。 在复习小学阶段数的四则运算顺序的基础上,结合新学习的乘方,按照先乘方,再乘除,最后加减的运算顺序进行。
科学计数法 为较大数字和较小的数据的表示提供了一种更科学的方法