⑴ 圆周运动的重点是.....
1.向心力公式(包括周期,角速度,线速度三个公式,且这些公式只适用于匀速圆周运动和竖直平面圆周运动的最高点和最低点)
2.周期,角速度,线速度之间的转化(适用于一切圆周运动)
3.生活中圆周运动的几个模型:火车拐弯模型,汽车过拱桥模型,水流星模型,杆顶球模型,球型内壁模型,环形管模型等
⑵ 匀速圆周运动的相关公式及向心力的相关知识点
线速度=经过的弧长【除以】所用时间
角速度=转过的角度【除以】所用时间
线速度=半径【乘以】角速度
周期=2π【除以】角速度=2π【乘以】半径再除以线速度
转速=线速度【除以】2π【乘以】半径=角速度【除以】2π=1【除以】周期
向心力:当一个质点做圆周运动时,质点所受到的合外力或者合外力的某一个分力一定会指向一个固定的圆心。就是这个不断改变质点运动方向并始终指向圆心的力,就是向心力。
⑶ 高中物理圆周运动模型有哪些
网页链接
请参看以上网络文库,谢谢。
⑷ 圆周运动有关笔记
匀速圆周运动的特点:轨迹是圆,角速度,周期,线速度的大小(注:因为线速度是矢量,"线速度"大小是不变的,而方向时时在变化)和向心加速度的大小不变,且向心加速度方向总是指向圆心。
线速度定义:质点沿圆周运动通过的弧长ΔL与所用的时间Δt的比值叫做线速度,或者角速度与半径的乘积。
线速度的物理意义:描述质点沿圆周运动的快慢,是矢量。
角速度的定义:半径转过的弧度(弧度制:360°=2π)与所用时间t的比值。
周期的定义:作匀速圆周运动的物体,转过一周所用的时间。
转速的定义:作匀速圆周运动的物体,单位时间所转过的圈数。线速度
线速度 ,角速度
由以上可推导出线速度v=ωr,
求线速度,除了可以用 ,也可推导出v=2πr/T(注:T为周期)=ωr=2πrn(注:n代表转速,n与T可以互相转换,公式为T=1/n),π代表圆周率
同样的,求角速度可以用ω=弧度/t =2π/T=v/r=2πn
其中S为弧长,r指半径,V为线速度,a为加速度,T为周期,ω为角速度(单位:rad/s)。
任何物体在作圆周运动时需要一个向心力,因为它在不断改变速度。对象的速度的速率大小不变,但方向一直在改变。只有合适大小的向心力才能维持物体在圆轨道上运动。这个加速度(速度是一个矢量,改变方向的同时可以不改变大小)是由向心力提供的,如果不具备这一条件,物体将脱离圆轨道。注意,向心加速度是反映线速度方向改变的快慢。
物体在作圆周运动时速度的方向相切于圆周路径。匀速圆周运动物体所受合 力的方向一直指向圆心,即此来改变速度的方向。
向心力可以使物体不脱离轨道。一个很好的例子是重 力。 地面重力给人造卫星必要的力使其在沿轨道运动。
物理学上,向心力与物体速度的平方及它的质量和半径倒数成正比:
F = mv^2/r,F=mω^2r(v是线速度,ω是角速度)
所以如果我们知道了力大小,质量,半径,我们可以算出对象旋转速度。 如果我们知道了速度,质量,半径,我们可以算出力大小。符号记为如下:
F = ma
是的,合外 力=质量乘以加速度,所以:
a = v^2/r =(2π)^2r/T^2
质量符号去除—用 F和 ma 取代. 因此求加速度可以不用知道物体的质量。
当一质点在一平 面做圆周运动时在另一正交平面的射影是做简 谐 运 动,与弹簧振子的运动形式一样,加速度在不断变化中。
如果物体沿半径是R的圆周作匀速圆周运动,运动一周的时间为T,则线速度的大小等于角速度大小和半径R的乘积.
v=ωR,使用这一公式时应注意,角度的单位一定要用弧度,只有角速度的单位是弧度/秒时,上述公式才成立.1、v(线 速 度)=l/t=2πr/T=ωr=2πrf=2πnr(l代表弧长,t代表时间,r代表半径,n为频率,ω为角速度)
2、ω(角 速 度)=θ/t=2π/T=2πf(θ表示角度或者弧度)
3、T(周 期)=2πr/v=2π/ω
4、f(频 率)=1/T
6、Fn(向心力)=mrω^2=mv^2/r=mr4π^2/T^2=mr4π^2f^2
7、an(向 心 加 速 度)=rω^2=v^2/r=r4π^2/T^2=r4π^2n^2
8、绳子拉球过顶点时重力充当向心力,即mg=mv^2/r,因此最小速度为v=(gr)^(1/2)
9、Jmax(功最大值)=Fn×π r
杆拉球时,v过顶点的最小速度为0匀速圆周运动向心力公式的推导
设一质点在A处的运动速度为Va,在运动很短时间⊿t后,到达B点,设此是的速度为Vb
由于受向心力的作用而获得了一个指向圆心
速度⊿v,在⊿v与Va的共同作用下而运动到B点,达到Vb的速度
则矢量Va+矢量⊿v=矢量Vb,矢量⊿v=矢量Vb-矢量Va
用几何的方法可以得到Va与Vb的夹 角等于OA与OB的夹角,当⊿t非常小时
⊿v/v=s/r(说明:由于质点做匀速圆周运动,所以Va=Vb=v,s表示弧长,r表示半径)
所以⊿v=sv/r
⊿v/⊿t=s/⊿t * v/r,其中⊿v/⊿t表示向心加速度a,s/⊿t 表示线速度
所以a=v^2/r=rω^2=r4π^2/T^2=r4π^2n^2
F(向心力)=ma=mv^2/r=mrω^2=m4π^2/T^2r
将平面里的 二 维 匀速圆周运动一维化
建立一个模型:质量为m的小球与一劲度系 数为k的弹簧(原长无限短)相连,在平 面 直 角 坐 标 系x-y里做角速度为ω,半径为A的匀速圆 周 动。
此时F(向心力)=kA=m(4π^2/T^2)r可知T=2π√k/m
在x轴上有 Vx=Vcos(ωt+φ)Fx=kx=kAsin(ωt+φ)即x=kAsin(ωt+φ)
同理,y轴上有Vy=Vsin(ωt+φ)Fy=ky=kAsin(ωt+φ) 即y=kAcos(ωt+φ)
⑸ 物理有关圆周运动都有什么知识点,和公式及解题方法(高一必修二的)详细点,不介意直接
我多的是,给你2份:
(1)讲几个模型吧 模型是物理学中重要的部分哦
一.平抛运动
S水平位移 h竖直位移 Vo水平初速度 Vt落地速度(和速度)t运动时间
g竖直加速度
重要公式:t=更号(2h\g) S=Vo*t
Vt与水平面的夹角的正切值(tan)=gh\Vo
注意一种考点 开摩托车过坑
二.竖直平面内的匀速圆周运动
几个连接状态的 分类 临界条件
http://..com/question/94625405.html
看吧 我回答的 不算抄袭
三.匀速圆周运动实例分析
书上有 火车转弯 拱形桥面
主要了解 向心力由什么力提供 还有临界条件
四.牛顿3定理 不用说了吧 这个都不复习 你可以不用考了
五.万有引力定律公式的变形 主要考给你几个不同的情况中万有引力的比值 一般不会给你几个数叫你算啦 如果这样就太简单了
六.双星模型
七.动能定理
八.机械能守恒定理
差不多老
(2)高一物理公式总结
一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=S/t (定义式) 2.有用推论Vt^2 –Vo^2=2as
3.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t
7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0
8.实验用推论ΔS=aT^2 ΔS为相邻连续相等时间(T)内位移之差
9.主要物理量及单位:初速(Vo):m/s
加速度(a):m/s^2 末速度(Vt):m/s
时间(t):秒(s) 位移(S):米(m) 路程:米 速度单位换算:1m/s=3.6Km/h
注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/
2) 自由落体
1.初速度Vo=0
2.末速度Vt=gt
3.下落高度h=gt^2/2(从Vo位置向下计算) 4.推论Vt^2=2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。
(2)a=g=9.8 m/s^2≈10m/s^2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。
3) 竖直上抛
1.位移S=Vot- gt^2/2 2.末速度Vt= Vo- gt (g=9.8≈10m/s2 )
3.有用推论Vt^2 –Vo^2=-2gS 4.上升最大高度Hm=Vo^2/2g (抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动 万有引力
1)平抛运动
1.水平方向速度Vx= Vo 2.竖直方向速度Vy=gt
3.水平方向位移Sx= Vot 4.竖直方向位移(Sy)=gt^2/2
5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2
合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo
7.合位移S=(Sx^2+ Sy^2)1/2 ,
位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πR/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V^2/R=ω^2R=(2π/T)^2R 4.向心力F心=Mv^2/R=mω^2*R=m(2π/T)^2*R
5.周期与频率T=1/f 6.角速度与线速度的关系V=ωR
7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)
8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz)
周期(T):秒(s) 转速(n):r/s 半径(R):米(m) 线速度(V):m/s
角速度(ω):rad/s 向心加速度:m/s2
注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
3)万有引力
1.开普勒第三定律T2/R3=K(=4π^2/GM) R:轨道半径 T :周期 K:常量(与行星质量无关)
2.万有引力定律F=Gm1m2/r^2 G=6.67×10^-11N·m^2/kg^2方向在它们的连线上
3.天体上的重力和重力加速度GMm/R^2=mg g=GM/R^2 R:天体半径(m)
4.卫星绕行速度、角速度、周期 V=(GM/R)1/2 ω=(GM/R^3)1/2 T=2π(R^3/GM)1/2
5.第一(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/s V2=11.2Km/s V3=16.7Km/s
6.地球同步卫星GMm/(R+h)^2=m*4π^2(R+h)/T^2 h≈3.6 km h:距地球表面的高度
注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。
机械能
1.功
(1)做功的两个条件: 作用在物体上的力.
物体在里的方向上通过的距离.
(2)功的大小: W=Fscosa 功是标量 功的单位:焦耳(J)
1J=1N*m
当 0<= a <派/2 w>0 F做正功 F是动力
当 a=派/2 w=0 (cos派/2=0) F不作功
当 派/2<= a <派 W<0 F做负功 F是阻力
(3)总功的求法:
W总=W1+W2+W3……Wn
W总=F合Scosa
2.功率
(1) 定义:功跟完成这些功所用时间的比值.
P=W/t 功率是标量 功率单位:瓦特(w)
此公式求的是平均功率
1w=1J/s 1000w=1kw
(2) 功率的另一个表达式: P=Fvcosa
当F与v方向相同时, P=Fv. (此时cos0度=1)
此公式即可求平均功率,也可求瞬时功率
1)平均功率: 当v为平均速度时
2)瞬时功率: 当v为t时刻的瞬时速度
(3) 额定功率: 指机器正常工作时最大输出功率
实际功率: 指机器在实际工作中的输出功率
正常工作时: 实际功率≤额定功率
(4) 机车运动问题(前提:阻力f恒定)
P=Fv F=ma+f (由牛顿第二定律得)
汽车启动有两种模式
1) 汽车以恒定功率启动 (a在减小,一直到0)
P恒定 v在增加 F在减小 尤F=ma+f
当F减小=f时 v此时有最大值
2) 汽车以恒定加速度前进(a开始恒定,在逐渐减小到0)
a恒定 F不变(F=ma+f) V在增加 P实逐渐增加最大
此时的P为额定功率 即P一定
P恒定 v在增加 F在减小 尤F=ma+f
当F减小=f时 v此时有最大值
3.功和能
(1) 功和能的关系: 做功的过程就是能量转化的过程
功是能量转化的量度
(2) 功和能的区别: 能是物体运动状态决定的物理量,即过程量
功是物体状态变化过程有关的物理量,即状态量
这是功和能的根本区别.
4.动能.动能定理
(1) 动能定义:物体由于运动而具有的能量. 用Ek表示
表达式 Ek=1/2mv^2 能是标量 也是过程量
单位:焦耳(J) 1kg*m^2/s^2 = 1J
(2) 动能定理内容:合外力做的功等于物体动能的变化
表达式 W合=ΔEk=1/2mv^2-1/2mv0^2
适用范围:恒力做功,变力做功,分段做功,全程做功
5.重力势能
(1) 定义:物体由于被举高而具有的能量. 用Ep表示
表达式 Ep=mgh 是标量 单位:焦耳(J)
(2) 重力做功和重力势能的关系
W重=-ΔEp
重力势能的变化由重力做功来量度
(3) 重力做功的特点:只和初末位置有关,跟物体运动路径无关
重力势能是相对性的,和参考平面有关,一般以地面为参考平面
重力势能的变化是绝对的,和参考平面无关
(4) 弹性势能:物体由于形变而具有的能量
弹性势能存在于发生弹性形变的物体中,跟形变的大小有关
弹性势能的变化由弹力做功来量度
6.机械能守恒定律
(1) 机械能:动能,重力势能,弹性势能的总称
总机械能:E=Ek+Ep 是标量 也具有相对性
机械能的变化,等于非重力做功 (比如阻力做的功)
ΔE=W非重
机械能之间可以相互转化
(2) 机械能守恒定律: 只有重力做功的情况下,物体的动能和重力势能
发生相互转化,但机械能保持不变
表达式: Ek1+Ep1=Ek2+Ep2 成立条件:只有重力做功
回答者: 煮酒弹剑爱老庄 - 高级经理 六级 1-28 20:51
高中物理公式,规律汇编表
一,力学
胡克定律: F = kx (x为伸长量或压缩量;k为劲度系数,只与弹簧的原长,粗细和材料有关)
重力: G = mg (g随离地面高度,纬度,地质结构而变化;重力约等于地面上物体受到的地球引力)
3 ,求F,的合力:利用平行四边形定则.
注意:(1) 力的合成和分解都均遵从平行四边行法则.
(2) 两个力的合力范围: F1-F2 F F1 + F2
(3) 合力大小可以大于分力,也可以小于分力,也可以等于分力.
4,两个平衡条件:
共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力为零.
F合=0 或 : Fx合=0 Fy合=0
推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点.
[2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值反向
(2 )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解)
力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离)
5,摩擦力的公式:
(1) 滑动摩擦力: f= FN
说明 : ① FN为接触面间的弹力,可以大于G;也可以等于G;也可以小于G
② 为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小,接触面相对运动快慢以及正压力N无关.
(2) 静摩擦力:其大小与其他力有关, 由物体的平衡条件或牛顿第二定律求解,不与正压力成正比.
大小范围: O f静 fm (fm为最大静摩擦力,与正压力有关)
说明:
a ,摩擦力可以与运动方向相同,也可以与运动方向相反.
b,摩擦力可以做正功,也可以做负功,还可以不做功.
c,摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反.
d,静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用.
6, 浮力: F= gV (注意单位)
7, 万有引力: F=G
适用条件:两质点间的引力(或可以看作质点,如两个均匀球体).
G为万有引力恒量,由卡文迪许用扭秤装置首先测量出.
在天体上的应用:(M--天体质量 ,m—卫星质量, R--天体半径 ,g--天体表面重力加速度,h—卫星到天体表面的高度)
a ,万有引力=向心力
G
b,在地球表面附近,重力=万有引力
mg = G g = G
第一宇宙速度
mg = m V=
8, 库仑力:F=K (适用条件:真空中,两点电荷之间的作用力)
电场力:F=Eq (F 与电场强度的方向可以相同,也可以相反)
10,磁场力:
洛仑兹力:磁场对运动电荷的作用力.
公式:f=qVB (BV) 方向--左手定则
安培力 : 磁场对电流的作用力.
公式:F= BIL (BI) 方向--左手定则
11,牛顿第二定律: F合 = ma 或者 Fx = m ax Fy = m ay
适用范围:宏观,低速物体
理解:(1)矢量性 (2)瞬时性 (3)独立性
(4) 同体性 (5)同系性 (6)同单位制
12,匀变速直线运动:
基本规律: Vt = V0 + a t S = vo t +a t2
几个重要推论:
(1) Vt2 - V02 = 2as (匀加速直线运动:a为正值 匀减速直线运动:a为正值)
(2) A B段中间时刻的瞬时速度:
Vt/ 2 == (3) AB段位移中点的即时速度:
Vs/2 =
匀速:Vt/2 =Vs/2 ; 匀加速或匀减速直线运动:Vt/2 初速为零的匀加速直线运动,在1s ,2s,3s……ns内的位移之比为12:22:32……n2; 在第1s 内,第 2s内,第3s内……第ns内的位移之比为1:3:5…… (2n-1); 在第1米内,第2米内,第3米内……第n米内的时间之比为1:: ……(
初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:s = aT2 (a--匀变速直线运动的加速度 T--每个时间间隔的时间)
竖直上抛运动: 上升过程是匀减速直线运动,下落过程是匀加速直线运动.全过程是初速度为VO,加速度为g的匀减速直线运动.
上升最大高度: H =
(2) 上升的时间: t=
(3) 上升,下落经过同一位置时的加速度相同,而速度等值反向
(4) 上升,下落经过同一段位移的时间相等. 从抛出到落回原位置的时间:t =
(5)适用全过程的公式: S = Vo t --g t2 Vt = Vo-g t
Vt2 -Vo2 = - 2 gS ( S,Vt的正,负号的理解)
14,匀速圆周运动公式
线速度: V= R =2f R=
角速度:=
向心加速度:a =2 f2 R
向心力: F= ma = m2 R= mm4n2 R
注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心.
(2)卫星绕地球,行星绕太阳作匀速圆周运动的向心力由万有引力提供.
氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供.
15,平抛运动公式:匀速直线运动和初速度为零的匀加速直线运动的合运动
水平分运动: 水平位移: x= vo t 水平分速度:vx = vo
竖直分运动: 竖直位移: y =g t2 竖直分速度:vy= g t
tg = Vy = Votg Vo =Vyctg
V = Vo = Vcos Vy = Vsin
在Vo,Vy,V,X,y,t,七个物理量中,如果 已知其中任意两个,可根据以上公式求出其它五个物理量.
16, 动量和冲量: 动量: P = mV 冲量:I = F t
(要注意矢量性)
17 ,动量定理: 物体所受合外力的冲量等于它的动量的变化.
公式: F合t = mv' - mv (解题时受力分析和正方向的规定是关键)
18,动量守恒定律:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变. (研究对象:相互作用的两个物体或多个物体)
公式:m1v1 + m2v2 = m1 v1'+ m2v2'或p1 =- p2 或p1 +p2=O
适用条件:
(1)系统不受外力作用. (2)系统受外力作用,但合外力为零.
(3)系统受外力作用,合外力也不为零,但合外力远小于物体间的相互作用力.
(4)系统在某一个方向的合外力为零,在这个方向的动量守恒.
19, 功 : W = Fs cos (适用于恒力的功的计算)
理解正功,零功,负功
(2) 功是能量转化的量度
重力的功------量度------重力势能的变化
电场力的功-----量度------电势能的变化
分子力的功-----量度------分子势能的变化
合外力的功------量度-------动能的变化
20, 动能和势能: 动能: Ek =
重力势能:Ep = mgh (与零势能面的选择有关)
21,动能定理:外力所做的总功等于物体动能的变化(增量).
公式: W合= Ek = Ek2 - Ek1 = 22,机械能守恒定律:机械能 = 动能+重力势能+弹性势能
条件:系统只有内部的重力或弹力做功.
公式: mgh1 + 或者 Ep减 = Ek增
23,能量守恒(做功与能量转化的关系):有相互摩擦力的系统,减少的机械能等于摩擦力所做的功.
E = Q = f S相
24,功率: P = (在t时间内力对物体做功的平均功率)
P = FV (F为牵引力,不是合外力;V为即时速度时,P为即时功率;V为平均速度时,P为平均功率; P一定时,F与V成正比)
25, 简谐振动: 回复力: F = -KX 加速度:a = -
单摆周期公式: T= 2 (与摆球质量,振幅无关)
(了解)弹簧振子周期公式:T= 2 (与振子质量,弹簧劲度系数有关,与振幅无关)
26, 波长,波速,频率的关系: V == f (适用于一切波)
二,热学
1,热力学第一定律:U = Q + W
符号法则:外界对物体做功,W为"+".物体对外做功,W为"-";
物体从外界吸热,Q为"+";物体对外界放热,Q为"-".
物体内能增量U是取"+";物体内能减少,U取"-".
2 ,热力学第二定律:
表述一:不可能使热量由低温物体传递到高温物体,而不引起其他变化.
表述二:不可能从单一的热源吸收热量并把它全部用来对外做功,而不引起其他变化.
表述三:第二类永动机是不可能制成的.
3,理想气体状态方程:
(1)适用条件:一定质量的理想气体,三个状态参量同时发生变化.
(2) 公式: 恒量
4,热力学温度:T = t + 273 单位:开(K)
(绝对零度是低温的极限,不可能达到)
三,电磁学
(一)直流电路
1,电流的定义: I = (微观表示: I=nesv,n为单位体积内的电荷数)
2,电阻定律: R=ρ (电阻率ρ只与导体材料性质和温度有关,与导体横截面积和长度无关)
3,电阻串联,并联:
串联:R=R1+R2+R3 +……+Rn
并联: 两个电阻并联: R=
4,欧姆定律:(1)部分电路欧姆定律: U=IR
(2)闭合电路欧姆定律:I =
路端电压: U = -I r= IR
电源输出功率: = Iε-Ir =
电源热功率:
电源效率: = =
(3)电功和电功率:
电功:W=IUt 电热:Q= 电功率 :P=IU
对于纯电阻电路: W=IUt= P=IU =
对于非纯电阻电路: W=Iut P=IU
(4)电池组的串联:每节电池电动势为`内阻为,n节电池串联时:
电动势:ε=n 内阻:r=n
(二)电场
1,电场的力的性质:
电场强度:(定义式) E = (q 为试探电荷,场强的大小与q无关)
点电荷电场的场强: E = (注意场强的矢量性)
2,电场的能的性质:
电势差: U = (或 W = U q )
UAB = φA - φB
电场力做功与电势能变化的关系:U = - W
3,匀强电场中场强跟电势差的关系: E = (d 为沿场强方向的距离)
4,带电粒子在电场中的运动:
铀? Uq =mv2
②偏转:运动分解: x= vo t ; vx = vo ; y =a t2 ; vy= a t
a =
(三)磁场
几种典型的磁场:通电直导线,通电螺线管,环形电流,地磁场的磁场分布.
磁场对通电导线的作用(安培力):F = BIL (要求 B⊥I, 力的方向由左手定则判定;若B‖I,则力的大小为零)
磁场对运动电荷的作用(洛仑兹力): F = qvB (要求v⊥B, 力的方向也是由左手定则判定,但四指必须指向正电荷的运动方向;若B‖v,则力的大小为零)
带电粒子在磁场中运动:当带电粒子垂直射入匀强磁场时,洛仑兹力提供向心力,带电粒子做匀速圆周运动.即: qvB =
可得: r = , T = (确定圆心和半径是关键)
(四)电磁感应
1,感应电流的方向判定:①导体切割磁感应线:右手定则;②磁通量发生变化:楞次定律.
2,感应电动势的大小:① E = BLV (要求L垂直于B,V,否则要分解到垂直的方向上 ) ② E = (①式常用于计算瞬时值,②式常用于计算平均值)
(五)交变电流
1,交变电流的产生:线圈在磁场中匀速转动,若线圈从中性面(线圈平面与磁场方向垂直)开始转动,其感应电动势瞬时值为:e = Em sinωt ,其中 感应电动势最大值:Em = nBSω .
2 ,正弦式交流的有效值:E = ;U = ; I =
(有效值用于计算电流做功,导体产生的热量等;而计算通过导体的电荷量要用交流的平均值)
3 ,电感和电容对交流的影响:
电感:通直流,阻交流;通低频,阻高频
电容:通交流,隔直流;通高频,阻低频
电阻:交,直流都能通过,且都有阻碍
4,变压器原理(理想变压器):
①电压: ② 功率:P1 = P2
③ 电流:如果只有一个副线圈 : ;
若有多个副线圈:n1I1= n2I2 + n3I3
电磁振荡(LC回路)的周期:T = 2π
四,光学
1,光的折射定律:n =
介质的折射率:n =
2,全反射的条件:①光由光密介质射入光疏介质;②入射角大于或等于临界角. 临界角C: sin C =
3,双缝干涉的规律:
①路程差ΔS = (n=0,1,2,3--) 明条纹
(2n+1) (n=0,1,2,3--) 暗条纹
相邻的两条明条纹(或暗条纹)间的距离:ΔX =
4,光子的能量: E = hυ = h ( 其中h 为普朗克常量,等于6.63×10-34Js, υ为光的频率) (光子的能量也可写成: E = m c2 )
(爱因斯坦)光电效应方程: Ek = hυ - W (其中Ek为光电子的最大初动能,W为金属的逸出功,与金属的种类有关)
5,物质波的波长: = (其中h 为普朗克常量,p 为物体的动量)
五,原子和原子核
氢原子的能级结构.
原子在两个能级间跃迁时发射(或吸收光子):
hυ = E m - E n
核能:核反应过程中放出的能量.
质能方程: E = m C2 核反应释放核能:ΔE = Δm C2
复习建议:
1,高中物理的主干知识为力学和电磁学,两部分内容各占高考的38℅,这些内容主要出现在计算题和实验题中.
力学的重点是:①力与物体运动的关系;②万有引力定律在天文学上的应用;③动量守恒和能量守恒定律的应用;④振动和波等等.⑤⑥
解决力学问题首要任务是明确研究的对象和过程,分析物理情景,建立正确的模型.解题常有三种途径:①如果是匀变速过程,通常可以利用运动学公式和牛顿定律来求解;②如果涉及力与时间问题,通常可以用动量的观点来求解,代表规律是动量定理和动量守恒定律;③如果涉及力与位移问题,通常可以用能量的观点来求解,代表规律是动能定理和机械能守恒定律(或能量守恒定律).后两种方法由于只要考虑初,末状态,尤其适用过程复杂的变加速运动,但要注意两大守恒定律都是有条件的.
电磁学的重点是:①电场的性质;②电路的分析,设计与计算;③带电粒子在电场,磁场中的运动;④电磁感应现象中的力的问题,能量问题等等.
2,热学,光学,原子和原子核,这三部分内容在高考中各占约8℅,由于高考要求知识覆盖面广,而这些内容的分数相对较少,所以多以选择,实验的形式出现.但绝对不能认为这部分内容分数少而不重视,正因为内容少,规律少,这部分的得分率应该是很高的.
祝你成功,(给我追分算了..)
⑹ 关于圆周运动的所有公式有哪些
线速度度V=s/t=2πR/T
角速度ω=Φ/t=2π/T=2πf
向心加速度a=V2/R=ω2R=(2π/T)2R
向心力F心=mV2/R=mω2R=m(2π/T)2R
周期与频率T=1/f
角速度与线速度的关系V=ωR
角速度与转速的关系ω=2πn
(6)圆周运动相关知识点模型大全扩展阅读:
匀速圆周运动向心力公式的推导
设一质点在A处的运动速度为Va,在运动很短时间⊿t后,到达B点,设此是的速度为Vb
由于受向心力的作用而获得了一个指向圆心
速度⊿v,在⊿v与Va的共同作用下而运动到B点,达到Vb的速度
则矢量Va+矢量⊿v=矢量Vb,矢量⊿v=矢量Vb-矢量Va
用几何的方法可以得到Va与Vb的夹 角等于OA与OB的夹角,当⊿t非常小时
⊿v/v=s/r(说明:由于质点做匀速圆周运动,所以Va=Vb=v,s表示弧长,r表示半径)
所以⊿v=sv/r
⊿v/⊿t=s/⊿t * v/r,其中⊿v/⊿t表示向心加速度a,s/⊿t 表示线速度
所以a=v²/r=rω²=r4π²/T²=r4π²n²
F(向心力)=ma=mv²/r=mrω²=m4π²/T²r
将平面里的 二 维 匀速圆周运动一维化
建立一个模型:质量为m的小球与一劲度系 数为k的弹簧(原长无限短)相连,在平 面 直 角 坐 标 系x-y里做角速度为ω,半径为A的匀速圆 周 动。
此时F(向心力)=kA=m(4π^2/T^2)r可知T=2π√k/m
在x轴上有 Vx=Vcos(ωt+φ)Fx=kx=kAsin(ωt+φ)即x=kAsin(ωt+φ)
同理,y轴上有Vy=Vsin(ωt+φ)Fy=ky=kAsin(ωt+φ) 即y=kAcos(ωt+φ)
将此推广可知小球在过原点的任何一条直线上的投影均做简谐运动。
⑺ 物理有关圆周运动都有什么知识点,和公式及解题方法
1、掌握匀速圆周运动的向心力公式及与圆周运动有关的几个公式
2、能用上述公式解决有关圆周运动的实例
教学难点:
理解做匀速圆周运动的物体受到的向心力是由某几个力的合力提供的,而不是一种特殊的力。
教学方法:
讲授法、分析归纳法、推理法
教学用具:
投影仪、投影片、录像机、录像带
教学步骤:
一、引入新课
1、复习提问:
(1)向心力的求解公式有哪几个?
(2)如何求解向心加速度?
2、引入:本节课我们应用上述公式来对几个实际问题进行分析。
二、新课教学
(一)用投影片出示本节课的学习目标:
1、知道向心力是物体沿半径方向所受的合外力提供的。
2、知道向心力、向心加速度的公式也适用于变速圆周运动。
3、会在具体问题中分析向心力的来源,并进行有关计算。
(二)学习目标完成过程:
1:关于向心力的来源。
(1)介绍:分析和解决匀速圆周运动的问题,首先是要把向心力的来源搞清楚。
2:说明:
a:向心力是按效果命名的力;
b:任何一个力或几个力的合力只要它的作用效果是使物体产生向心加速度,它就是物体所受的向心力;
c:不能认为做匀速圆周运动的物体除了受到另外物体的作用外,还要另外受到向心力。
3.简介运用向心力公式的解题步骤:
(1)明确研究对象,确定它在哪个平面内做圆周运动,找到圆心和半径。
(2)确定研究对象在某个位置所处的状态,进行具体的受力分析,分析哪些力提供了向心力。
(3)建立以向心方向为正方向的坐标,据向心力共式列方程。
(4)解方程,对结果进行必要的讨论。
4、实例1:火车转弯
(1)介绍:火车在平直轨道上匀速行驶时,所受的合力等于0,那么当火车转弯时,我们说它做圆周运动,那么是什么力提供火车的向心力呢?
(2)放录像、火车转弯的情景
(3)用CAI课件分析内外轨等高时向心力的来源。
a:此时火车车轮受三个力:重力、支持力、外轨对轮缘的弹力。
b:外轨对轮缘的弹力提供向心力。
c:由于该弹力是由轮缘和外轨的挤压产生的,且由于火车质量很大,故轮缘和外轨间的相互作用力很大,易损害铁轨。
(4)介绍实际的弯道处的情况。
a:用录像资料展示实际的转弯处 外轨略高于内轨。
b:用CAI课件展示此时火车的受力情况,并说明此时火车的支持力FN的方向不再是竖直的,而是斜向弯道的内侧。
c:进一步用CAI课件展示此时火车的受力示意图,并分析得到:此时支持里与重力的合力提供火车转弯所需的向心力。
d:强调说明:转弯处要选择内外轨适当的高度差,使转弯时所需的向心力完全由重力G和支持里FN来提供 这样外轨就不受轮缘的挤压了。
5、实例2:汽车过拱桥的问题
(1)放录像 展示汽车过拱桥的物理情景
(2)用CAI课件模拟:并出示文字说明,汽车在拱桥上以速度v前进,桥面的圆弧半径为R,求汽车过桥的最高点时对桥面的压力?
(3)a:选汽车为研究对象
b:对汽车进行受力分析:受到重力和桥对车的支持力
c:上述两个力的合力提供向心力、且向心力方向向下
d:建立关系式:
e:又因支持力与压力是一对作用力与反作用力,所以 且
(4)说明:上述过程中汽车做的不是匀速圆周运动,我们仍使用了匀速圆周运动的公式,原因是向心力和向心加速度的公式对于变速圆周运动同样适用。
⑻ 高一物理(圆周运动)
概述
在物理学中,圆周运动(circular motion)是在圆圈上转圈:一个圆形路径或轨迹。当考虑一件物体的圆周运动时,物体的体积大小会被忽略,并看成一质点(在空气动力学上除外)。 圆周运动的例子有:一个人造卫星跟随其轨迹转动、用绳子连接着一块石头并打圈挥动、一架赛车在赛道上转弯、一粒电子垂直地进入一个平均磁场、一个齿轮在机器中的转动、皮带传动装置、火车的车轮及拐弯处轨道。 圆周运动以向心力(centripetal force)提供运动物体所须的加速度。这向心力把运动物体拉向圆形轨迹的中心点。若果没有向心力,物体会跟随牛顿第一定律惯性地进行直线运动。即使物体速率不变,圆周运动是变加速运动,物体的速度方向在不停地改变。[1]
编辑本段生活中的圆周运动
火车过弯:实际做圆周运动,具有向心加速度。 汽车过拱形桥:也可看作圆周运动,桥对车的支持力为F=G-(m*v^2)/R,又因为汽车对桥的压力和桥对汽车的支持力是一对作用力和反作用力,大小相等,所以压力大小也为 F=G-(m*v^2)/R。 汽车过凹形桥:也可看作圆周运动,桥对车的支持力为F=G+(m*v^2)/R,又因为汽车对桥的压力和桥对汽车的支持力是一对作用力和反作用力,大小相等,所以压力大小也为 F=G+(m*v^2)/R。
编辑本段特点
匀速圆周运动的特点:轨迹是圆,角速度,周期 ,线速度的大小(注:"线速度"是改变的,因为线速度是矢量,方向时时在变化)和向心加速度的大小不变。 线速度定义:质点沿圆周运动通过的弧长ΔL与所用的时间Δt的比值叫做线速度。 线速度的物理意义:描述质点沿圆周运动的快慢,是矢量。 角速度的定义:半径转过的弧度(弧度制:360°=2π)与所用时间t的比值. 周期的定义:作匀速圆周运动的物体,转过一周所用的时间. 转速的定义:作匀速圆周运动的物体,每秒转过的弧度. 注意:圆周运动不是匀速运动,而是变速曲线运动!
编辑本段主要公式
线速度v=S/t ,角速度ω=角度/t , 由以上可推导出线速度v=ωr, 求线速度,除了可以用v=S/t,也可推导出v=2πr/T(注:T为周期)=ωr=2πrn(注:n代表转速,n与可以T可以互相转换,公式为T=1/n),π代表圆周率 同样的,求角速度可以用ω=角度/t =2π/T=v/r=2πn 其中S为弧长,r指半径,V为线速度,a为加速度,T为周期,ω为角速度(单位:rad/s)。
编辑本段着名理论
任何物体在作圆周运动时需要一个向心力,因为它在不断改变速度。对象的速度的速率大小不变,但方向一直在改变。只有合适大小的向心力才能维持物体在圆轨道上运动。这个加速度(速度是一个矢量,改变方向的同时可以不改变大小)是由向心力提供的,如果不具备这一条件,物体将脱离圆轨道。注意,向心加速度是反映线速度方向改变的快慢。 物体在作圆周运动时速度的方向相切于圆周路径。匀速圆周运动物体所受合力的方向一直指向圆心,即此来改变速度的方向。 现在,向心力可以使物体不脱离轨道。一个很好的例子是重力。 地面重力给人造卫星必要的力使其在沿轨道运动。 现在回到物理学上来。向心力与物体速度的平方及它的质量和半径倒数成正比: F = mv²/r,F=mω²r(v是线速度,ω是角速度) 所以如果我们知道了力大小,质量,半径,我们可以算出对象旋转速度。 如果我们知道了速度,质量,半径,我们可以算出力大小。符号记为如下: F = ma 是的,合外力=质量乘以加速度,所以: a = v²/r =(2π)²r/T² 质量符号去除—用 F和 ma 取代. 因此求加速度可以不用知道物体的质量。 当一质点在一平面做圆周运动时在另一正交平面的射影是做简谐运动,与弹簧振子的运动形式一样,加速度在不断变化中。 如果物体沿半径是R的圆周作匀速圆周运动,运动一周的时间为T,则线速度的大小等于角速度大小和半径R的乘积. v=ωR,使用这一公式时应注意,角度的单位一定要用弧度,只有角速度的单位是弧度/秒时,上述公式才成立.
编辑本段匀速圆周运动
物理术语
1定义:质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度都相等,这种运动就叫做“匀速圆周运动”,亦称“匀速率圆周运动”因为物体作圆周运动时速率不变,但速度方向随时发生变化。 2物体作圆周运动的条件:①具有初速度;②受到一个大小不变、方向与物体运动速度方向始终垂直因而是指向圆心的力(向心力)。物体作匀速圆周运动时,速度的大小虽然不变,但速度的方向时刻改变,所以匀速圆周运动是变速运动。又由于作匀速圆周运动时,它的向心加速度的大小不变,但方向时刻改变,故匀速圆周运动是变加速运动。“匀速圆周运动”一词中的“匀速”仅是速率不变的意思。 做匀速圆周运动的物体仍然具有加速度,而且加速度不断改变,因为其加速度方向在不断改变,因为其运动轨迹是圆,所以匀速圆周运动是变加速曲线运动。匀速圆周运动加速度方向始终指向圆心。做变速圆周运动的物体总能分解出一个指向圆心的加速度,我们将方向时刻指向圆心的加速度称为向心加速度
匀速圆周运动相关公式
1、v(线速度)=l/t=2πr/T(l代表弧长,t代表时间,r代表半径) 2、ω(角速度)=θ/t=2π/T(θ表示角度或者弧度) 3、T(周期)=2πr/v=2π/ω 4、f(频率)=1/T 5、ω=2πn 6、v=rω 7、Fn(向心力)=mrω^2=mv^2/r=mr4π^2/T^2=mr4π^2f^2 8、an(向心加速度)=rω^2=v^2/r=r4π^2/T^2=r4π^2n^2 9、绳子拉球时,过顶点时的最小速度为v=(gr)^(1/2) 杆拉球时,v过顶点的最小速度为0 匀速圆周运动向心力公式的推导 设一质点在A处的运动速度为Va,在运动很短时间⊿t后,到达B点,设此是的速度为Vb 由于受向心力的作用而获得了一个指向圆心 速度⊿v,在⊿v与Va的共同作用下而运动到B点,达到Vb的速度 则矢量Va+矢量⊿v=矢量Vb,矢量⊿v=矢量Vb-矢量Va 用几何的方法可以得到Va与Vb的夹角等于OA与OB的夹角,当⊿t非常小时 ⊿v/v=s/r(说明:由于质点做匀速圆周运动,所以Va=Vb=v,s表示弧长,r表示半径) 所以⊿v=sv/r ⊿v/⊿t=s/⊿t * v/r,其中⊿v/⊿t表示向心加速度a,s/⊿t 表示线速度 所以a=v^2/r=rω^2=r4π^2/T^2=r4π^2n^2 F(向心力)=ma=mv^2/r=mrω^2=m4π^2/T^2r 将平面里的二维匀速圆周运动一维化 建立一个模型:质量为m的小球与一劲度系数为k的弹簧(原长无限短)相连,在平面直角坐标系x-y里做角速度为ω,半径为A的匀速圆周运动。 此时F(向心力)=kA=m(4π^2/T^2)r可知T=2π√k/m 在x轴上有 Vx=Vcos(ωt+φ)Fx=kx=kAsin(ωt+φ)即x=kAsin(ωt+φ) 同理,y轴上有Vy=Vsin(ωt+φ)Fy=ky=kAsin(ωt+φ) 即y=kAcos(ωt+φ) 将此推广可知小球在过原点的任何一条直线上的投影均做简谐运动。 匀速圆周运动与简谐运动的关系
编辑本段变速圆周运动
一般地,将作圆周运动的物体所受的合力分解为径向分力(使物体保持圆轨道运动)和切向分力(使物体速度发生变化)。 向心力的大小由运动物体的瞬时速度决定。 绳子末端的物体在这种情况下,受到的力量可以分为径向分力和切线分力。径向分力可以指向中心也可以向外。
⑼ 高中物理圆周运动知识点
1. 匀速圆周运动:质点沿圆周运动,如果在___________________________________,这种运动就叫做匀速周圆运动。
2.描述匀速圆周运动的物理量
①线速度 ,物体在一段时间内通过的__________________的比值,叫做物体的线速度,即V=S/t。线速度是____量,其方向就在圆周该点的___________。线速度方向是时刻在______,所以匀速圆周运动是_______运动。
②角速度 ,连接运动物体和圆心的半径在一段时间内转过的___________________的比值叫做匀速圆周运动的角速度。即 =θ/t。对某一确定的匀速圆周运动来说,角速度是__________的,角速度的单位是rad/s。
③周期T和频率 ,关系:________
3.描述匀速圆周运动的各物理量间的关系:________________________
4、向心力:是按作用效果命名的力,其动力学效果在于产生___________,即只改变线速度______,不会改变线速度的。对于匀速圆周运动物体其向心力应由其所受_____________________________提供。.
5. 向心力与向心加速度、线速度、角速度、周期、频率的关系是____________________________
6. 变速圆周运动: 合力不与速度方向_______,v、a、F的大小和方向均________
7. 离心运动:合力突然消失或不足以提供圆周运动所需________时,物体逐渐远离______的运动