当前位置:首页 » 基础知识 » 关于数学百科知识的演讲
扩展阅读
殡葬改革基础知识讲座 2025-01-08 01:44:31
终末女神动漫在哪里看 2025-01-08 01:44:23

关于数学百科知识的演讲

发布时间: 2022-08-21 01:36:01

A. 小学生的数学演讲稿

我热爱的数学

曾经看到这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网。所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。正是因为我想用网去捉鱼,我才选择了数学.

数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去。所以,站在数学的高峰上的人,都是从内心喜欢数学的。 记住,站在峰脚的人是望不到峰顶的。虽然我现在还没有站在高峰,但是我还是希望在山峰上看到山下的美丽风景。

下面我简单从几个方面来谈谈我所喜欢的数学。

第一:数学来源于生活应用于生活。

应用数学思考将抽象的数学工具运用在解答科学、工商业及其他领域上之现实问题。数学是生活中的一分子,它是在生活这个集体中生存的,离开了生活这个集体,数学将是一片死海,没有生活的数学将是没有魅力的数学。简单的举个例子:首先假设一年有365天,那么在一个有366人参加的聚会中一定有两个人生日相同。

第二:数学之趣。

数学是非常的有趣的,这也是我喜欢数学的很重要的一方面。并且这还表现在生活的各个方面,比如说,数学婚礼对联。现在我来给展示两句:

实数虚数两数搭配已成对,
内心外心双心结合正同心。

正数负数指数对数数数都成对,
实线虚线直线曲线线线均结偶。

第三:数学之美。

在我们生活的领域里,我们会随处可见一些带有数学特色的东西,而且都是非常的美。那么在生活中我们能看到这么多美丽的东西,岂不是能给我们的生活添加更多的色彩。

第四:数学问题。

有些时候虽然简单的问题,证明是相当的困难的。比如说,1+1=2以及四色猜想等。正是因为这样,才引起我非常大的兴趣。

数学科学不仅是一切自然科学、工程技术的基础,而且随着信息化社会的到来,它已渗透到经济学、教育学、人口学、心理学、语言学、文学、史学等众多人文社会科学的研究领域,成为当代物质文明的基石。同时,接受数学上严密的逻辑推理训练而培养出的以理性的思维模式和归纳、类比、分析、演绎的思维方法等为特征的数学素质,可以使你有很强的适应能力、再生能力和移植能力。有了数学知识和数学素质做基础,就有了享受不尽的财富。

基于这么多的方面,使我对数学产生了极大的兴趣,也使我喜欢上了数学。我相信以后站在高峰上会看到我们前所未有的奇观。 答案补充 我的写作水平就这么高了,
如果不满意,可以再改一改
谢谢采纳!

B. 数学演讲稿3分钟

大家好,我是XXX,相信数学是令许多人头疼的一门学科。但是,学习数学并不是无计可施,只要掌握了对的方法,数学就一定能学好的。接下来我讲一讲我的心得,希望对大家有所帮助。
一、课内重视听讲,课后及时复习。
要想学好数学,上课时要紧跟老师的思路,下课后认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。
二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。
三、调整心态,正确对待考试。
要想学好数学,要调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,并且鼓励自己能克服困难。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去!
412个字。,,希望有帮助~~

C. 初二的一篇数学演讲稿(奖100分)

1.学习数学的方法一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。 2.曾经历有关数学的事数学家的故事——苏步青

苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。
那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。
杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。
17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”
这就是老一辈数学家那颗爱国的赤子之心 3.对数学的了解一、数学史的研究对象
数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。
从研究材料上说,考古资料、历史档案材料、历史上的数学原始文献、各种历史文献、民族学资料、文化史资料,以及对数学家的访问记录,等等,都是重要的研究对象,其中数学原始文献是最常用且最重要的第一手研究资料。从研究目标来说,可以研究数学思想、方法、理论、概念的演变史;可以研究数学科学与人类社会的互动关系;可以研究数学思想的传播与交流史;可以研究数学家的生平等等。
数学史研究的任务在于,弄清数学发展过程中的基本史实,再现其本来面貌,同时透过这些历史现象对数学成就、理论体系与发展模式作出科学、合理的解释、说明与评价,进而探究数学科学发展的规律与文化本质。作为数学史研究的基本方法与手段,常有历史考证、数理分析、比较研究等方法。
史学家的职责就是根据史料来叙述历史,求实是史学的基本准则。从17世纪始,西方历史学便形成了考据学,在中国出现更早,尤鼎盛于清代乾嘉时期,时至今日仍为历史研究之主要方法,只不过随着时代的进步,考据方法在不断改进,应用范围在不断拓宽而已。当然,应该认识到,史料存在真伪,考证过程中涉及到考证者的心理状态,这就必然影响到考证材料的取舍与考证的结果。就是说,历史考证结论的真实性是相对的。同时又应该认识到,考据也非史学研究的最终目的,数学史研究又不能为考证而考证。
不会比较就不会思考, 而且所有的科学思考与调查都不可缺少比较,或者说,比较是认识的开始。今日世界的发展是多极的,不同国家和地区、不同民族之间在文化交流中共同发展,因而随着多元化世界文明史研究的展开与西方中心论观念的淡化,异质的区域文明日益受到重视,从而不同地域的数学文化的比较以及数学交流史研究也日趋活跃。数学史的比较研究往往围绕数学成果、数学科学范式、数学发展的社会背景等三方面而展开。
数学史既属史学领域,又属数学科学领域,因此,数学史研究既要遵循史学规律,又要遵循数理科学的规律。根据这一特点,可以将数理分析作为数学史研究的特殊的辅助手段,在缺乏史料或史料真伪莫辨的情况下,站在现代数学的高度,对古代数学内容与方法进行数学原理分析,以达到正本清源、理论概括以及提出历史假说的目的。数理分析实际上是"古"与"今"间的一种联系。
二、数学史的分期
数学发展具有阶段性,因此研究者根据一定的原则把数学史分成若干时期。目前学术界通常将数学发展划分为以下五个时期:
1.数学萌芽期(公元前600年以前);
2.初等数学时期(公元前600年至17世纪中叶);
3.变量数学时期(17世纪中叶至19世纪20年代);
4.近代数学时期(19世纪20年代至第二次世界大战);
5.现代数学时期(20世纪40年代以来)。
三、数学史的意义
(1)数学史的科学意义
每一门科学都有其发展的历史,作为历史上的科学,既有其历史性又有其现实性。其现实性首先表现在科学概念与方法的延续性方面,今日的科学研究在某种程度上是对历史上科学传统的深化与发展,或者是对历史上科学难题的解决,因此我们无法割裂科学现实与科学史之间的联系。数学科学具有悠久的历史,与自然科学相比,数学更是积累性科学,其概念和方法更具有延续性,比如古代文明中形成的十进位值制记数法和四则运算法则,我们今天仍在使用,诸如费尔马猜想、哥德巴赫猜想等历史上的难题,长期以来一直是现代数论领域中的研究热点,数学传统与数学史材料可以在现实的数学研究中获得发展。国内外许多着名的数学大师都具有深厚的数学史修养或者兼及数学史研究,并善于从历史素材中汲取养分,做到古为今用,推陈出新。我国着名数学家吴文俊先生早年在拓扑学研究领域取得杰出成就,七十年代开始研究中国数学史,在中国数学史研究的理论和方法方面开创了新的局面,特别是在中国传统数学机械化思想的启发下,建立了被誉为"吴方法"的关于几何定理机器证明的数学机械化方法,他的工作不愧为古为今用,振兴民族文化的典范。
科学史的现实性还表现在为我们今日的科学研究提供经验教训和历史借鉴,以使我们明确科学研究的方向以少走弯路或错路,为当今科技发展决策的制定提供依据,也是我们预见科学未来的依据。多了解一些数学史知识,也不会致使我们出现诸如解决三等分角作图、证明四色定理等荒唐事,也避免我们在费尔马大定理等问题上白废时间和精力。同时,总结我国数学发展史上的经验教训,对我国当今数学发展不无益处。
(2)数学史的文化意义
美国数学史家m.克莱因曾经说过:"一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显"。"数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说"。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。因而数学史是从一个侧面反映的人类文化史,又是人类文明史的最重要的组成部分。许多历史学家通过数学这面镜子,了解古代其他主要文化的特征与价值取向。古希腊(公元前600年-公元前300年)数学家强调严密的推理和由此得出的结论,因此他们不关心这些成果的实用性,而是教育人们去进行抽象的推理,和激发人们对理想与美的追求。通过希腊数学史的考察,就十分容易理解,为什么古希腊具有很难为后世超越的优美文学、极端理性化的哲学,以及理想化的建筑与雕塑。而罗马数学史则告诉我们,罗马文化是外来的,罗马人缺乏独创精神而注重实用。
(3)数学史的教育意义
当我们学习过数学史后,自然会有这样的感觉:数学的发展并不合逻辑,或者说,数学发展的实际情况与我们今日所学的数学教科书很不一致。我们今日中学所学的数学内容基本上属于17世纪微积分学以前的初等数学知识,而大学数学系学习的大部分内容则是17、18世纪的高等数学。这些数学教材业已经过千锤百炼,是在科学性与教育要求相结合的原则指导下经过反复编写的,是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素,因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是通过数学史的学习。
在一般人看来,数学是一门枯燥无味的学科,因而很多人视其为畏途,从某种程度上说,这是由于我们的数学教科书教授的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样便可以激发学生的学习兴趣,也有助于学生对数学概念、方法和原理的理解与认识的深化。
科学史是一门文理交叉学科,从今天的教育现状来看,文科与理科的鸿沟导致我们的教育所培养的人才已经越来越不能适应当今自然科学与社会科学高度渗透的现代化社会,正是由于科学史的学科交叉性才可显示其在沟通文理科方面的作用。通过数学史学习,可以使数学系的学生在接受数学专业训练的同时,获得人文科学方面的修养,文科或其它专业的学生通过数学史的学习可以了解数学概貌,获得数理方面的修养。而历史上数学家的业绩与品德也会在青少年的人格培养上发挥十分重要的作用。
中国数学有着悠久的历史,14世纪以前一直是世界上数学最为发达的国家,出现过许多杰出数学家,取得了很多辉煌成就,其渊源流长的以计算为中心、具有程序性和机械性的算法化数学模式与古希腊的以几何定理的演绎推理为特征的公理化数学模式相辉映,交替影响世界数学的发展。由于各种复杂的原因,16世纪以后中国变为数学入超国,经历了漫长而艰难的发展历程才渐渐汇入现代数学的潮流。由于教育上的失误,致使接受现代数学文明熏陶的我们,往往数典忘祖,对祖国的传统科学一无所知。数学史可以使学生了解中国古代数学的辉煌成就,了解中国近代数学落后的原因,中国现代数学研究的现状以及与发达国家数学的差距,以激发学生的爱国热情,振兴民族科学。 4.教同学怎样学好数学
初中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。
有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这些内容一旦没学好,整个高中数学就很难再学好,因此一开始就得抓紧,那怕在潜意识里稍有松懈的念头,都会削弱学习的毅力,影响学习效果。
至于学习方法的讲究,每位同学可根据自己的基础、学习习惯、智力特点选择适合自己的学习方法,我这里主要根据教材的特点提出几点供大家学习时参考。
l、要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-l)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而 y=f(x-l)与 y=f(1-x)的图象却关于直线 x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。
2‘学习立体几何要有较好的空间想象能力,而培养空间想象能力的办法有二:一是勤画图;二是自制模型协助想象,如利用四直角三棱锥的模型对照习题多看,多想。但最终要达到不依赖模型也能想象的境界。
3、学习解析几何切忌把它学成代数、只计算不画图,正确的办法是边画图边计算,要能在画图中寻求计算途径。
4、在个人钻研的基础上,邀几个程度相当的同学一起讨论,这也是一种好的学习方法,这样做常可以把问题解决得更加透彻,对大家都有益。
希望能给您一些启发。谢谢采纳。

D. 关于数学学习的演讲稿

没有分耶~
不过还是帮你写几句:
数学是其他理科学科的基础,要想学好其他理科科目,先要学好数学。
数学学习,主要要把握以下几个方面:
一、全面复习,把书读薄
从以前做过的试卷的内容分布上可以看出,凡是考试大纲中提及的内容,都可能考到,甚至某些不太重要的内容,所以猜题或者背题的复习方法是靠不住的,而应当参照考试大纲,全面复习,不留遗漏。
全面复习不是生记硬背所有的知识,相反是要抓住问题的实质和各内容,各方法的本质联系,把要记的东西缩小到最小程度,(要努力使自已理解所学知识,多抓住问题的联系,少记一些死知识),而且,不记则已,记住了就要牢靠。事实证明,有些记忆是终生不忘的,而其它的知识又可以在记住基本知识的基础上,运用它们之间的联系而得到,这就是全面复习的含义。

二、突出重点,精益求精

在考试大纲要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌握,会(或者能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点。在以前做过的考卷中,有些方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多。“猜题”的人,往往要在这方面下功夫。一般说来,也确能猜出几分来。但遇到综合题,这些题在主要内容中含有次要内容。这时,“猜题”便行不通了。

所以我讲的突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带次,用重点内容担挈整个内容。主要内容理解透了,其它的内容和方法迎刃而解,要抓住主要内容,不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容。比较不同定理公式间的关系,把学过的知识串成线,在考试大纲中,把要求理解和运用的知识点当重点复习,将这些知识点精益求精。

三、基本训练反复进行
学习数学,要做一定数量的题,把基本功练熟练透,但我不主张“题海”战术,而是提倡精练,即反复做一些典型的题,做到一题多解,一题多变。对些基本定理的证明,基本公式的推导,以及一些基本练习题, 要作到不用书写,就象棋手下“盲棋”一样,只需用脑子默想,即能得到下确答案。平时,可以练习一下在20分钟内完成10道客观题.有些客观题是不用动笔,一眼就能乍出答案的题,这样才叫训练有素,“熟能生巧”,基本功扎实的人,遇到难题办法也多,不易被难倒。相反,作练习时,眼高手低,总找难题作,结果上了考场,遇到与自己曾经作过的类似的题目都有可能不会。不少人考试的时候把会作的题算错了,归为粗心大意,确实人会有粗心的,但基本功扎实的人,出了错立即会发现,很少会“粗心”地出错。卷面一般以简单题和中难题为主,难题占的分值并不多,所以打牢基础,把自己会做的确保做对,不会做的尽量多写几步,这样才能出好成绩。

E. 如何学好数学演讲稿

大家好,我是XXX,相信数学是令许多人头疼的一门学科。但是,学习数学并不是无计可施,只要掌握了对的方法,数学就一定能学好的。接下来我讲一讲我的心得,希望对大家有所帮助。

一、课内重视听讲,课后及时复习。

要想学好数学,上课时要紧跟老师的思路,下课后认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。

二、适当多做题,养成良好的解题习惯。

要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。

三、调整心态,正确对待考试。

要想学好数学,要调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,并且鼓励自己能克服困难。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去!

412个字。,,希望有帮助~~

F. 关于数学家的故事的演讲稿,急需!!!

华罗庚(1910~1985),数学家,中国科学院院士。1910年11月12日生于江苏金坛,1985年6月12日卒于日本东京。 华罗庚原来也是个调皮、贪玩的孩子,但他很有数学才能。有一次,数学老师出了一个中国古代有名的算题——有一样东西,不知是多少。3个3个地数,还余2;5个5个地数,还余3;7个7个的数,还余2。问这样东西是多少?——题目出来后,同学们议论开了,谁也说不出得数。老师刚要张口,华罗庚举手说:“我算出来了,是23。”他不但正确地说出了得数,而且算法也很特别。这使老师大为惊诧。可是,这位聪明的孩子,在读完中学后,因为家里贫穷,从此失学了。他回到家里,在自家的小杂货店做生意,卖点香烟、针线之类的东西,替父亲挑起了养活全家的担子。然而,华罗庚仍然酷爱数学。不能上学,就自己想办法学。一次,他向一位老师借来了几本数学书,一看,便着了魔。从此,他一边做生意、算帐,一边学数学。有时看书入了神,人家买东西他也忘了招呼。傍晚,店铺关门以后,他更是一心一意地在数学王国里尽情漫游。一年到头,差不多每天都要花十几个小时,钻研那些借来的数学书。有时睡到半夜,想起一道数学难题的解法,他准会翻身起床,点亮小油灯,把解法记下来。正在这时,他却得了伤寒病,躺在床上半年,总算捡回了一条命,但左脚却落下了终身残疾。在贫病交加中,华罗庚仍然把全部心血用在数学研究上,接连发表了好几篇重要论文,引起清华大学熊庆来教授的注意.华罗庚小时候刻苦学习,然而,华罗庚却被叫去看店(卖棉花的铺子)。有一次,有个妇女去买棉花,华罗庚正在算一个数学题,那个妇女说要包棉花多少钱?然而勤学的华罗庚却没有听见,就把算的答案答了一遍,那个妇女尖叫起来:“怎么这么贵?”,这时的华罗庚才知道有人来买棉花,就说了价格,那妇女便买了一包棉花走了。华罗庚正想坐下来继续算时,才发现:刚才算题目的草纸被妇女带走了。 这下可急坏了华罗庚,于是不顾一切地去追,一个黄包师傅便让他坐车追,终于追上了,华罗庚不好意思地说:“阿姨,请……请把草纸还给我”,那妇女生气地说:“这可是我花钱买的,可不是你送的”。华罗庚急坏了,于是他说:“要不这样吧!我花钱把它买下来”。正在华罗庚伸手掏钱之时,那妇女好像是被这孩子感动了吧!不仅没要钱还把草纸还给了华罗庚。 这时的华罗庚才微微舒了口气,回家后,又计算起来……高斯是19世纪德国杰出的数学家和物理、天文学家。有人说高斯是绝顶聪明的天才,高斯却说:“我的知识和成功,全是靠勤奋学习取得的。我小时候很喜欢数学,甚至在学会说话之前,就学会计数了!有一天,高斯的父亲正在结算几个工人的工资,算了半天,累得满头是汗。“唉,终于算出来了!”父亲站起身子伸了伸懒腰说。“爸爸,您算得不对!”站在一边的小高斯低声地说,“总数应该是……”“你怎么知道的?”父亲不以为然地问了一句。“我是心里算出来的呀!”高斯天真地说,“不信您再算一遍。”父亲又仔细核算了一遍,发现果真算错了,而儿子说的总数是对的。他又惊又喜,兴奋地说:“聪明的孩子,过几天爸爸就送你上学。”高斯八岁时进入乡村小学读书。教数学的教师是一个从城里来的人,觉得在一个穷乡僻壤教几个小孩子读书,真是大材小用。而他又有些偏见:认为穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书用不着太认真,如果有机会,还应该处罚他们,给自己在这枯燥的生活里添一些乐趣。这一天正是数学教师很不高兴的一天。同学们看到老师那阴沉的脸色,心里畏惧起来,知道老师又会在今天处罚学生了。“你们今天算一道题,从1加2加3一直到100,谁算不出来就罚他不能回家吃饭。老师只说了这么一句话后,就一言不发地拿起一本小说坐在椅子上看去了。于是,教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸儿涨红了,有些孩子的手心、额上渗出了汗来。还不到半个小时,小高斯就拿起了他的石板走上前去:“老师,答案是不是这样?”老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想,小孩子们不可能这么快就算出答案了。可是高斯却站着不动,把石板伸到老师面前:“老师!我想这个答案是对的。”数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050。他惊奇起来,因为他自己曾经算过,得到的数就是5050,这个8岁的小孩子怎么这样快就算出了得数呢?高斯就向老师解释说:“如果把从1到100这100个数首尾相加,1+100=101,2+99=101,3+98=101……这样,每两个数的和都是101.100个数两两相加,就会有50个结果,而每个结果都是101,那么50个101加起来就等于5050。”高斯的发现使老师觉得十分羞愧,他开始认识到自己以前目空一切并且轻视穷人家的孩子是不对的。从此,老师改变了对农村学生的看法,他尤其喜欢高斯,经常买一些新书送给高斯读。在老师的热心帮助和指导下,高斯对数学越来越感兴趣,终身与数学结下了不解之缘。

G. 以《对数学的理解》为题目写一篇像初中生写的三分钟演讲稿

数学是由概念及命题等内容组成的知识体系,是一门抽象思维为主的学科,因此,数学概念具有抽象性的特点,这也是学生学习数学概念的一大障碍,理解并掌握数学概念是学好数学的第一关。长期以来,由于受应试教育的影响,很多教师重解题轻概念,造成数学概念与解题的脱节,学生对概念含糊不清,一知半解,不能很好的理解和运用概念,严重影响了学生的学习质量,那么,教师应如何进行数学概念的教学呢?下面我们大家一起来进行探讨。
一:要让学生充分认识学好数学概念的重要意义
我国着名数学家华罗庚曾说过:“数学的学习过程,就是不断的建立各种数学概念的过程”。由此可见,学习好数学概念是何等重要。学生进入初中以后,各科各样的概念比小学增加很多,这对刚近初中的学生是一大挑战,仅函数,有一次函数,反比例函数,二次函数等。对数函数等等基本概念,这些概念都是我们后面进行深入学习的基础,概念学不好,后面的学习就无法进行。因此,学好概念是学好数学的最基本要求,我们务必要改变只重视公式法则,轻概念学习的不良学习方法。
二:教学过程应重视人类认识规律和学生发展规律
从具体到抽象,是人类认识的基本规律,中学生的抽象思维能力还处在发展过程中,其思维能力仍以直观感性为主。因此,我们在引入数学概念时,应从直观入手,巧妙地引导学生理解并掌握抽象的概念。从具体到抽象,符合学生的认知发展规律,有利于学生对概念的理解和掌握,不失为我们进行概念教学时的一种很好的方法。
三:要准却把握不同概念的区别和联系。
数学知识的系统性很强,数学概念也不是孤立的,教师应从有关概念的逻辑联系和区别中,引导学生理解相关的数学概念,从而在学生头脑中形成一个比较完整准确的概念体系。此外,有些本来不同的数学概念,由于形成概念的过程或者表达概念的过程或者表达概念的词语符号的某种相似性,学生容易混淆。要让学生正确区别这些不同的概念,必须对这些概念进行比较,从中找出它们共有的本质要素,确定他们之间的不同点和关系。只有通过比较,才能弄清造成混淆的具体原因,达到真正识别概念的目的。
因此,注重概念间的内在联系,是提高学生思维的变通性的一个很重要的方法。要通过概念间互相渗透,弄清概念间的内在联系和区别,通过概念间的灵活变通,培养学生灵活解决问题的能力。“磨刀不误坎材工”,重视概念教学,挖掘不同概念之间的联系与区别,有利于学生理解和掌握不同的概念。
四:要注重概念的深化
我们知道“授人以鱼,不如授人以渔”,教师在教学中不是让学生去机械的背概念,套公式,而是要教会学生分析问题、解决问题的能力,全面提高学生的数学素养。这就要求教师在平时教学中,要在挖掘新概念的内涵与外延的基础上,让学生理解并掌握概念。新概念的引入是对已有概念的继承、发展和完善。有些概念由于其内涵丰富、外延广泛等原因,很难一步到位,需要分成若干个层次,逐步加深提高。
五:要注重概念的巩固与应用
心里学告诉我们,概念一旦获得,如不及时巩固,就会被遗忘。在概念教学过程中,经常会出现这洋的情况:学生课堂上听懂了,却不会用概念去解决问题,而且对知识遗忘的程度比较高,这些除了由于没有及时地复习概念之外,另外一个很重要地原因,就是没有对概念进行及时地巩固与应用,因此,概念地巩固与应用尤其重要。教师要在学生形成概念地基础上,创造性地使用教材,对教材中干扰概念教学地例题要更换,对脱离学生实际的概念应用题要大胆删去,通过精心设计适量典型性的例题和习题,让学生尝试应用概念解决问题。设计题目时,根据概念的内涵与外延,可编拟各种题型,也可有意设计错误解法和易错习题,学生通过阅读、辨析、讨论,找出错误并纠正。

H. 一篇关于数学知识的演讲稿

中学时代是人生的春天,是青少年长身体、长知识、形成人生观的一个十分重要的阶段。但在此学习阶段,却有一部分学生对数学感觉到很吃力。因此,明确为什么学数学,怎样学数学,是每一个中学生必须认识和学会的问题。
数学知识像海洋那样辽阔,像大山那样宏伟。一个人无论天资多么高,精力多么充沛,毅力多么顽强,学习条件多么优越,也不可能把所有数学知识学到手。有的同学总想学到一切,他们希望一串串熟了的葡萄旁边又开放着朵朵鲜花,可是,事实告诉我们:这是不可能的呀!我们必须从第一步起,一步一个脚印,脚塌实地的走下去,才有可能度过那个辽阔的大海、攀上那座宏伟的大山。
数学知识的学习,单靠认真听讲、死记硬背是不行的。相传有一个人巧遇一位仙翁,仙翁点石成金送给他,但他不要金子,而要仙翁点石成金的指头。这个人为什么要指头呢?因为他懂得,不管送自己多少金子,金子总是有限的,但如果有了点石成金的指头,那就可以随心所欲了。我常常给学生讲这个故事,但我却启发学生:仙翁的指头固然好,但那毕竟是别人的。如果我们拿来使用是否灵呢?可见,我们更应该学到仙翁的点金之术。古人说:“受之以鱼,只供一饭之需,教人已渔,则终身受用无穷”,也就是这个道理。
数学学习方法是数学学习时采用的手段、方式和途径。学法是在学习过程中产生和运用的。掌握良好的方法是很重要的事,但又不是一件容易的事情,这需要付出艰苦的努力,需要持之以恒的精神。只有每天坚持不懈,日久天长,数学学习才可能成为自觉的行为,从而掌握数学学习的主动权。所以,数学学习方法并没有什么捷径,它只是踏踏实实、刻苦学习的程序以及在这个学习过程中的各项具体措施。
古人说:“凡事预则立,不预则废。”智力相同的两个学生有无学习计划,直接影响到学习效果。科学的利用时间,在有限的时间内有计划的学习,这是科学学习方法的一条重要原则。所以数学学习缺乏计划性是一些学生天长日久感到吃力的重要原因之一。
要提高数学学习效率,变被动学习为主动学习,做学习的主任,应把握几个步骤:
第一步:抓好课前预习。
在预习过程中,边看,边想,边写,在书上适当勾画和写点批注。特别是,要运用数学学习阅读法,即不能像语文阅读一样,从头看到尾。对于有些例题,则是仔细审题,然后合起书来,试着在练习本上做一做。之后再翻开书对一对,修改和完善自己的所做,及时检查预习的效果,强化记忆。同时,可以初步理解教材的基本内容和思路,找出重点和不理解的问题,尝试做笔记,把预习笔记作为课堂笔记的基础。
我国古代军事家孙子有一句名言:“知己知彼,百战不殆。”这是指对自己和自己的对手有了充分的了解之后,才可能有充分的准备,也才可能克敌制胜。预习就是“知己知彼”的准备工作,就好像赛跑的枪声。虽然赛跑的规则中不允许抢跑,但是在学习中却没有这一规定,不但允许抢跑,而且鼓励抢跑。作好数学预习,就是要抢在时间的前面,使数学学习由被动变为主动。
简言之,数学预习就是上课前的自习,也就是在老师讲课前,自己先独立的学习新课内容,使自己对新课有初步的理解和掌握的过程。预习抓的扎实,可以大大提高效率。
第二步:掌握听讲的正确方法。
处理好听讲与做笔记的关系,重视课堂思考及回答问题,不断提高课堂学习效果。
学生必须上好课、听好课,首先作好课前准备、知识上的准备、物质上的准备、身体上的准备等;其次要专心听讲,尽快进入学习状态,参与课堂内的全部学习活动,始终集中注意力;第三要学会科学的思考问题,注重理解,不要只背结论,要及时弄清教材思路和教师讲解的条理性,要大胆设疑,敢于发表自己的见解,善于多角度验证答案;第四,学生要及时做好各种标记、批语,有选择的记好笔记。第五,数学课堂练习是一个非常重要的环节,课堂练习本要随时准备,并要保存完好,以便复习使用。每节课都要针对所学内容,认真练习,并巩固所学知识。
上课是学生在学校学习数学的基本形式,学生在校的大部分时间是在课堂上度过的。根据数学教学大纲的规定一个学生在中学上数学课的总数大约有五千多节。把每节课四十五分钟积累起来,这将是多么惊人的数字啊!学习成绩的优劣,固然取决于多种因素,但如何对待每一堂课则是关键。要取得较好的成绩,首先必须利用课堂上的四十五分钟,提高听课效率。
听课时应做到以下四点:1、带着问题听课;2、把握住老师讲课的思路;3、养成边听讲、边思考、边记忆的习惯,力争当堂消化、巩固知识;4、踊跃回答老师提问。这样就基本上掌握了听课的要求。
第三步:课后复习应及时。
针对数学学科的特点,采取多种方式进行复习,真正达到排疑解难、巩固提高的目的。
课后要复习教科书,抓住复习的基本内容;尝试回忆,独立的把教师上课内容回想一遍,养成勤思考的好习惯;同时整理笔记,进行知识的加工和补充;另外,针对每天所学内容,多练题,勤巩固。课后还要看参考书,使知识的掌握向深度和广度发展,形成学习上的良性循环。
复习是预习和上课的继续,它将完成预习和上课所没有完成任务,这就是在复习过程中达到对知识的深刻理解和掌握,在理解和掌握的过程中提高运用知识的技能技巧,进而在运用知识的过程中,使知识融会贯通,举一反三,并且通过归纳、整理达到系统化,把知识真正消化吸收,成为自己的知识链条中的一个有机组成部分。在复习过程中既调动了大脑的活动,又提高了分析问题和解决问题的能力,知识也在理解问题的基础上得到巩固记忆。从某种意义上讲,知识掌握的如何,由复习效果决定。
第四步:正确对待作业。
独立思考、认真完成、理解提高是学生对待作业的正确态度。
首先要做好作业的准备工作,把预习、上课、课后复习衔接起来;其次要审好作业题、善于分析和理解题目;第三要理清解题的思路,准确表达,独立完成作业;第四要学会检查,掌握对数学作业进行自我订正的方法。
托尔斯泰说过:“知识只有当它靠积极思维得来时候,才是真正的知识。”无论学那一节功课,课堂上老师讲的,笔记本上记的,课外阅读的… …等等,都是书本上的知识,要把他们转化成自己的知识,使自己能够自如的运用,就必须通过作业实践来转化。
究竟为什么要做作业呢?作业的作用主要有:1、检查学习效果;2、加深对知识的理解和记忆;3、提高思维能力;4、为复习积累资料。
在做作业时,审题是非常重要的。怎样审题呢?1、要看得(理解)准确。失之毫厘,差之千里;2、要善于解刨,深刻领会其中含义;3、要把握联系,运用相关知识解之。
第五:课外涉猎要广博。
要逐步掌握科学的学习规律,包括打好基础,循序渐进,温故知新;搞好课外学习,包括主动进行课外阅读,参加课外实践活动;要掌握正确的课外学习方法,如泛读法、精读法、深思法;要掌握读书要求,如博专结合、读思结合、学用结合、逐渐积累、持之以恒等等。
课外学习能有效地使课内所学知识与社会生产实践、生活实践密切地联系起来,帮助同学们加深对课内所学知识的理解,扩大数学知识的眼界,拓宽思路,激发求知欲望和学习兴趣,培养自学能力与习惯,增长数学才干。这也就是常说的:“课内打基础,课外出人才”。
总之,课前要抓好预习,课中听讲要领悟学法,课后完成作业要巩固学法,课外学习要运用学法,要不断总结优化学法,努力探索适合自己个性的数学学习方法。把数学学习看作是一种乐趣,而不是单纯的为学好数学而学习。这样你就会学得轻松,“吃力”自然就会离你远去。