当前位置:首页 » 基础知识 » 小学数学六年级会学到哪些知识点
扩展阅读
怎么配歌词英文 2024-11-07 12:26:25
儿童的血管怎么找 2024-11-07 12:14:20

小学数学六年级会学到哪些知识点

发布时间: 2022-08-20 05:56:28

A. 六年级上册数学重点知识点有哪些

六年级数学上册必考知识点:

1、分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。

3、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4、分数乘整数:数形结合、转化化归。

5、倒数:乘积是1的两个数叫做互为倒数。

B. 六年级数学下册重要知识点有哪些

六年级数学下册重要知识点有:

1、数的认识:在复习数的认识相关知识的时候,一定要帮助孩子构建一个完成的知识体系,在构建完成之后还需要帮助孩子理解运用。

2、整数和分数的意义和分类。我们需要了解并记住整数和分数的定义是什么,他们表示的意义是什么,分数整数又有哪些分类,比如整数有奇数偶数合数质数等等,还有自然数、负数等等。再比如分数有真分数、假分数、带分数等等,还有负分数等等。

3、数位和计数单位。这一块的内容考查的不算太多,但是需要掌握数位之间的进率和计数单位的分类。在考试中有时候会涉及到利用数位来解决问题。

4、数的读写和改写。数包括整数分数小数和负数等等,我们必须掌握所有数的读法和写法,读的时候需要注意什么,写的时候需要注意什么。在进行改写的时候,需要注意哪些方面,一定要看清楚后边的单位再利用四舍五入进行改写。

5、分数和小数的基本性质。分数的性质和小数的性质这是经常考查的内容,学生们首先需要知道这两个性质分别是什么,注意的是什么。小数点后末尾的0可以去掉,为何前边的不能去掉呢?同乘或者除以相同的数,分数大小不变,那么同加或者同减会怎么样呢。另外还需要注意小数点的移动导致数的变化规律。

6、因数与倍数。因数与倍数是五年级下册的内容,内容虽然不算很多,但是非常难理解,所以这一块内容一定要多下功夫,毕竟这块内容还是初中学习的基础。利用最大公因数和最小公倍数做题,也是有一定难度和技巧的。

C. 小学六年级数学毕业考必考的知识点是什么

一、整数和小数

1、最小的一位数是1,最小的自然数是0。

2、小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。

3、小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……

4、整数和小数都是按照十进制计数法写出的数。

5、小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。

6、小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……

小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……

二、数的整除

1、倍数、因数:A÷B=C,A、B、C均为整数,我们就说A能被B整除或B能整除A。如果数a能被数b整除,a就叫做b的倍数,b就叫做a的因数。

2、一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。一个数因数的个数是有限的,最小的因数是1,最大的因数是它本身。一个数既是它本身的因数,也是它本身的倍数。

3、按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

4、按一个数因数的个数,非0自然数可分为1、质数、合数三类。

质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数。质数都有2个因数。合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。合数至少有3个因数。最小的质数是2,最小的合数是4

5、1~20以内的质数有:2、3、5、7、11、13、17、19

1~20以内的合数有“4、6、8、9、10、12、14、15、16、18

“1”既不是质数,也不是合数。

6、2的倍数的数的特征:个位上的数是0、2、4、6、8。

5的倍数的数的特征:个位上的数是0或者5。

3的倍数的数的特征:各个数位上的数的和是3的倍数。

既是3的倍数又是5的倍数的数的特征:个位上的数是“5”。

7、公因数、公倍数:几个数公有的因数,叫做这几个数的公因数;其中最大的一个,叫做这几个数的最大公因数。几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

8、一般关系的两个数的最大公因数、最小公倍数用短除法来求;互质关系的两个数最大公约数是1,最小公倍数是两数之积;倍数关系的两个数的最大公因数是小数,最小公倍数是大数。

11、互质数:公因数只有1的两个数叫做互质数。

12、两数之积等于最小公倍数和最大公约数的积。

三、四则运算

1、一个加数=和—另一个加数被减数=差+减数减数=被减数-差

一个因数=积÷另一个因数被除数=商×除数除数=被除数÷商

2、在四则运算中,加、减法叫做第一级运算,乘、除法叫做第二级运算。

3、运算定律:

(1)加法交换律:a+b=b+a乘法交换律:a×b=b×a

两个数相加,交换加数的位置,它们的和不变。

两个数相加,交换因数的位置,它们的积不变。

(2)加法结合律:(a+b)+c=a+(b+c)乘法结合律:(a×b)×c=a×(b×c)

三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。

三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变。

(3)乘法分配律:(a+b)×c=a×c+b×c

两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

(4)减法的性质:a-b-c=a-(b+c)除法的性质:a÷b÷c=a÷(b×c)

从一个数里连续减去两个数,等于从这个数里减去两个减数的和。

一个数连续除以两个数,等于这个数除以两个除数的积。

四 、两个规律

1、除法的商不变规律:被除数和除数同时乘或除以相同的数(0除外),商不变。

2、乘法的积不变规律:如果一个因数乘几,另一个因数则除以几,那么它们的积不变。

3、一个因数乘以比1大的数,积比这个数大,乘以比1小的数,积比这个数小

一个因数除以比1大的数,商比这个数小,除以比1小的数,商比这个数大

五、关系式

速度×时间=路程

路程÷时间=速度

路程÷速度=时间

工作效率×工作时间=工作总量

工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

单价×数量=总价

总价÷数量=单价

总价÷单价=数量

D. 小学六年级的数学学习内容有什么(人教版)

上册:位置、分数乘法、分数除法、圆、百分数、统计、数学广角。

下册:负数、圆柱与圆锥、比例、统计、数学广角。

学生在一年级下册已经学会了在具体的情境中,根据行、列确定物体的位置,并通过四年级下册位置与方向的学习进一步认识了在平面内可以通过两个条件确定物体的位置。本单元在此基础上,让学生学习在具体情境中用数对表示物体的位置或在方格纸上用数对确定位置,进一步提升学生的已有经验,培养学生的空间观念,为第三学段学习“图形与坐标”的内容打下基础。

结构

许多诸如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。

E. 六年级数学上册必考知识点是什么

【常用的数量关系】

1、每份数×份数=总数; 总数÷每份数=份数 ; 总数÷份数=每份数。

2、1倍数×倍数=几倍数; 几倍数÷1倍数=倍数; 几倍数÷倍数=1倍数。

3、速度×时间=路程 ; 路程÷速度=时间 ; 路程÷时间=速度。

4、单价×数量=总价; 总价÷单价=数量 ; 总价÷数量=单价。

5、工作效率×工作时间=工作总量; 工作总量÷工作效率=工作时间。

工作总量÷工作时间=工作效率。

6、加数+加数=和; 和-一个加数=另一个加数。

7、被减数-减数=差; 被减数-差=减数; 差+减数=被减数。

8、因数×因数=积; 积÷一个因数=另一个因数。

9、被除数÷除数=商 ; 被除数÷商=除数; 商×除数=被除数。

【小学数学图形计算公式】

1、正方形(C:周长, S:面积, a:边长)。

周长=边长×4; C=4a。

面积=边长×边长; S=a×a。

2、正方体(V:体积, a:棱长)。

表面积=棱长×棱长×6; S表=a×a×6。

体积=棱长×棱长×棱长; V= a×a×a。

3、长方形(C:周长, S:面积, a:边长, b:宽 )。

周长=(长+宽)×2; C=2(a+b)。

面积=长×宽 ; S=a×b。

4、长方体(V:体积, S:面积, a:长, b:宽, h:高)。

(1)表面积=(长×宽+长×高+宽×高)×2; S=2(ab+ah+bh)。

(2)体积=长×宽×高; V=abh。

5、三角形(S:面积, a:底, h:高)。

面积=底×高÷2 ; S=ah÷2。

三角形的高=面积×2÷底 三角形的底=面积×2÷高。

6、平行四边形(S:面积, a:底, h:高)。

面积=底×高; S=ah。

7、梯形(S:面积, a:上底, b:下底, h:高)。

面积=(上底+下底)×高÷2; S=(a+b)×h÷2。

8、圆形(S:面积, C:周长,π:圆周率, d:直径, r:半径 )。

(1)周长=π×直径π=2×π×半径; C=πd=2πr。

(2)面积=π×半径×半径; S= πr2。

9、圆柱体(V:体积, S:底面积, C:底面周长, h:高, r:底面半径 )。

(1)侧面积=底面周长×高=Ch=πdh=2πrh。

(2)表面积=侧面积+底面积×2。

(3)体积=底面积×高。

10、圆锥体(V:体积, S:底面积, h:高, r:底面半径 )。

体积=底面积×高÷3。

11、总数÷总份数=平均数。

12、和差问题的公式:已知两数的和及它们的差,求这两个数各是多少的应用题,叫做和差应用题,简称和差问题。

(和+差)÷2=大数; (和-差)÷2=小数。

F. 六年级下册数学知识点总结

六年级下册数学知识点总结

基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。下面我整理了一些关于六年级下册数学知识点总结,欢迎大家参考!

第一单元分数乘法

一、分数乘法

(一)分数乘法的意义:

1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。

例如:65×5表示求5个65的和是多少? 1/3×5表示求5个1/3的和是多少?

2、一个数乘分数的意义是求一个数的几分之几是多少。

例如:1/3×4/7表示求1/3的4/7是多少。

4×3/8表示求4的3/8是多少.

(二)、分数乘法的计算法则:

1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)

2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3、为了计算简便,能约分的要先约分,再计算。(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)

4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

(三)、 乘法中比较大小的规律

一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(四)、分数混合运算的运算顺序和整数的运算顺序相同。整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a × b = b × a

乘法结合律: ( a × b )×c = a × ( b × c )

乘法分配律: ( a + b )×c = a c + b c

二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)

1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。(2)部分和整体的关系:画一条线段图。

2、找单位“1”: 单位“1” 在分率句中分率的前面;

或在“占”、“是”、“比”“相当于”的后面。

3、写数量关系式的技巧:

(1)“的” 相当于 “×” ,“占”、“相当于”“是”、“比”是 “ = ”

(2)分率前是“的”字:用单位“1”的量×分率=具体量

例如:甲数是20,甲数的1/3是多少?列式是:20×1/3

4、看分率前有没有多或少的问题;分率前是“多或少”的关系式:

(比少):单位“1”的量×(1-分率)=具体量;

例如:甲数是50,乙数比甲数少1/2,乙数是多少?

列式是:50×(1-1/2)

(比多):单位“1”的量×(1+分率)=具体量

例如:小红有30元钱,小明比小红多3/5,小红有多少钱?

列式是:50×(1+3/5)

3、求一个数的几倍是多少:用 一个数×几倍;

4、求一个数的几分之几是多少: 用一个数×几分之几。

5、求几个几分之几是多少:用几分之几×个数

6、求已知一个部分量是总量的几分之几,求另一个部分量的方法:

(1)、单位“1”的量×(1-分率)=另一个部分量(建议用)

(2)、单位“1”的量-已知占单位“1”的几分之几的部分量=要求的部分量

例如:教材15页做一做和16页练习第七题(题目中有时候会有这种题的'关键字“其中”)

第二单元位置与方向(二)

一、确定物体位置的方法:1、先找观测点;2、再定方向(看方向夹角的度数);3、最后确定距离(看比例尺)

二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。

三、位置关系的相对性:1、两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。

四、相对位置:东--西;南--北;南偏东--北偏西。

第三单元分数除法

三、倒数

1、倒数的意义: 乘积是1的两个数互为倒数。

强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数)。

2、求倒数的方法:

(1)、求分数的倒数:交换分子分母的位置。

(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

(3)、求带分数的倒数:把带分数化为假分数,再求倒数。

(4)、求小数的倒数: 把小数化为分数,再求倒数。

3、 1的倒数是1; 因为1×1=1;0没有倒数,因为0乘任何数都得0,(分母不能为0)

4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

5、运用,a×2/3=b×1/4求a和b是多少。把a×2/3=b×1/4看成等于1,也就是求2/3的倒数和求1/4的倒数。

1、分数除法的意义:

乘法: 因数 × 因数 = 积

除法: 积 ÷ 一个因数 = 另一个因数

分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

例如:1/2÷3/5意义是:已知两个因数的积是1/2与其中一个因数3/5,求另一个因数的运算。

2、分数除法的计算法则:

除以一个不为0的数,等于乘这个数的倒数。

3、分数除法比较大小时的规律:

(1)当除数大于1,商小于被除数;

(2)当除数小于1(不等于0),商大于被除数;

(3)当除数等于1,商等于被除数。

“[ ]”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。

二、分数除法解决问题

1,解法:(1)方程: 根据数量关系式设未知量为X,用方程解答。

解:设未知量为X (一定要解设),再列方程 用 X×分率=具体量

例如:公鸡有20只,是母鸡只数的1/3,母鸡有多少只。(单位一是母鸡只数,单位一未知.)解:设母鸡有X只。列方程为:X×1/3=20

(2)算术(用除法):单位“1”的量未知用除法:

即已知单位“1”的几分之几是多少,求单位“1”的量。

分率对应量÷对应分率 = 单位“1”的量

例如:公鸡有20只,是母鸡只数的1/3,母鸡有多少只。(单位一是母鸡只数,单位一未知,)用除法,列式是:20÷1/3

2、看分率前有没有比多或比少的问题;

分率前是“多或少”的关系式:

(比少):具体量÷ (1-分率)= 单位“1”的量;

例如:桃树有50棵,比苹果树少1/6,苹果树有多少棵。

列式是:50÷(1-1/6)

(比多):具体量÷ (1+分率)= 单位“1”的量

例如:一种商品现在是80元,比原价增加了1/7,原价多少?

列式是:80÷(1+1/7)

3、求一个数是另一个数的几分之几是多少: 用一个数除以另一个数,结果写为分数形式。

例如:男生有20人,女生有15人,女生人数占男生人数的几分之几。

列式是:15÷20=15/20=3/4

4、求一个数比另一个数多几分之几的方法:

用两个数的相差量÷单位“1”的量 =分数

即①求一个数比另一个数多几分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为分数形式。

例如:5比3多几分之几?(5-3)÷3=2/3

②求一个数比另一个数少几分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为分数形式。

例如:3比5少几分之几?(5-3)÷5=2/5

说明:多几分之几不等于少几分之几,因为单位一不同。

5、工程问题:把工作总量看作单位“1”,合做多长时间完成一项工程用1÷效率和,即1÷(1/时间+1/时间),(工作效率=1/时间)

例如:一项工程甲单独做要5天完成,乙单独做要10天完成,甲单独做要3天完成,三人合做几天可以完成?列式:1÷(1/5+1/10+1/3)

第四单元比

(一)、比的意义

1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

例如 15 :10 = 15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)

15 ∶ 10 = 3/2

前项 比号 后项 比值

3、比可以表示两个相同量的关系,即倍数关系。例:长是宽的几倍。

也可以表示两个不同量的比,得到一个新量。例: 路程÷速度=时间。

4、区分比和比值

比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

6、比和除法、分数的联系:

比 前 项 比号“:” 后 项 比值

除 法 被除数 除号“÷” 除 数 商

分 数 分 子 分数线“—” 分 母 分数值

7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。

9、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

10、求比值:用前项除以后项,结果最好是写为分数(不会约分的就不约分)

例如:15∶ 10=15÷10=15/10=3/2

(二)、比的基本性质

1、根据比、除法、分数的关系:

商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4.化简比:

(2)用求比值的方法。注意: 最后结果要写成比的形式。

例如: 15∶10 = 15÷10 =15/10= 3/2 = 3∶2

还可以15∶10 = 15÷10 = 3/2最简整数比是3∶2

5、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。

6.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法

1,用分率解:按比例分配通常把总量看作单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。

例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?

1+4=5 糖占1/5 用 25×1/5得到糖的数量,水占4/5 用 25×4/5得到水的数量。

2,用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。

例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?

糖和水的份数一共有1+4=5 一份就是25÷5=5糖有1份就是5×1水有4分就是5×4

第五单元圆的认识

一、认识圆形

1、圆的定义:圆是由曲线围成的一种平面图形。

2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O表示。它到圆上任意一点的距离都相等.

3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。

5、圆心确定圆的位置,半径确定圆的大小。

6、在同一个圆内或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。

7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的1/2。用字母表示为:d=2r或r=d/2

8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线叫做对称轴。

9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。

10、只有1条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。只有2条对称轴的图形是: 长方形;只有3条对称轴的图形是: 等边三角形;只有4条对称轴的图形是: 正方形;有无数条对称轴的图形是: 圆、圆环。

11、画对称轴要用铅笔画,同时要用尺子(三角板)画出虚线,这条虚线两端要超出图形一点。

二、圆的周长

1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。

2、圆周率实验:(滚动法)在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,得到圆的周长。或者用线围绕圆形纸片一周量出线的长度就是圆的周长(测绳法)。

发现,圆周长与它直径的比值(圆周长除以直径)是一个固定数即3倍多一点,我们把它叫做圆周率用字母π表示。

3、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。用字母π(pai) 表示。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。圆周率π是一个无限不循环小数。在计算时,一般取π ≈ 3.14。

(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。

4、圆的周长公式: 圆的周长等于圆周率乘直径用字母表示C= πd

(1)、已知圆的周长求直径用圆的周长除以圆周率,用字母表示

d = C ÷π或圆的周长等于2乘圆周率乘半径,用字母表示C=2πr

(2)、已知圆的周长求半径用圆的周长除以圆周率的2倍,

用字母表示 r = C ÷ 2π(r = C / 2π)

5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

6、区分周长的一半和半圆的周长:

(1)、周长的一半:等于圆的周长÷2

计算方法:2π r ÷ 2 即C半= π r

(2)半圆的周长:等于圆的周长的一半加直径。 计算方法:半圆的周长=5.14 r (推导过程C半=2π r ÷ 2+d=πr+d=πr+2r =5.14 r)

三、圆的面积

1、圆的面积:圆所占平面的大小叫做圆的面积。 用字母S表示。

2、圆面积公式的推导:(1)把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。长方形的长相当于圆的周长的一半,长方形的宽相当于圆的半径。

(2)拼出的图形与圆的周长和半径的关系。

圆的半径 = 长方形的宽

圆的周长的一半 = 长方形的长

3、圆面积的计算方法:因为:长方形面积 = 长 ×宽

所以:圆的面积 = 圆周长的一半 × 圆的半径

即S圆 = C÷2× r=πr × r=πr

圆的面积公式:S圆 =πr → r = S 圆÷ π

4、环形的面积:一个环形,外圆的半径用字母R表示,内圆的半径用字母r表示。(R=r+环的宽度.)

S环 = πR -πr 或环形的面积公式:S环 = π(R -r )(建议用这个公式)。

5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小的倍数是这倍数的平方倍。

例如:在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大3的平方倍得到9倍。

6、两个圆: 半径比 = 直径比 = 周长比;而面积比等于这比的平方。

例如:两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9

7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π

8、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆的周长最短。

9、常用各π值结果:π = 3.14;2π = 6.28 ;5π=15.7

10、外方内圆(内切圆)公式S=0.86r 推导过程:S=S正-S圆=d -πr =2r×2r-πr =4r -πr =r ×(4-π)=0.86r

11、外圆内方(外切圆)公式S=1.14r 推导过程:S=S圆-S正=πr -dr/2×2=2r×r/2×r=πr -2r =r ×(π-2)=1.14r (把正方形看成两个面积相等的三角形,三角形的底就是直径,高是半径)

12、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。扇形的面积与圆心角大小和半径长短有关。

13、S扇=S圆×n/360;S扇环=S环×n/360

14、扇形也是轴对称图形,有一条对称轴。

15、常见半径与直径的周长和面积的结果。

半径 半径的平方 直径 周长 面积

1 1 2 6.28 3.14

2 4 4 12.56 12.56

3 9 6 18.84 28.26

4 16 8 25.12 50.24

5 25 10 31.4 78.5

6 36 12 37.68 113.04

7 49 14 43.96 153.86

8 64 16 50.24 200.96

9 81 18 56.52 254.34

10 100 20 62.8 314

1.5 2.25 3 9.42 7.065

2.5 6.25 5 15.7 19.625

3.5 12.25 7 21.98 38.465

4.5 20.35 9 28.26 63.585

5.5 30.25 11 34.54 94.985

7.5 56.25 15 47.1 176.625

;

G. 六年级数学必考知识点有哪些

六年级数学必考知识点总结如下:

一、倍数与约数

最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。

最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。

二、利润

利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)。

利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。

三、小数

自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414。

四、分数的倒数

找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。 则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。

五、圆周率:圆的周长与直径的比值叫做圆周率。

圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。


H. 小学六年级数学都学有哪些知识详细一点

小学六年级数学学的知识有:
上册:长方体和正方体、分数乘法、分数除法、解决问题的策略(假设法)、分数四则混合运算、百分数
下册:圆柱和圆锥、扇形统计图、正反比例

I. 六年级数学上册必考知识点有哪些

六年级数学上册必考知识点:

1、分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2、分数乘法的计算法则

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零.。

3、分数乘法意义

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4、分数乘整数:数形结合、转化化归。

5、倒数:乘积是1的两个数叫做互为倒数。

6、分数的倒数

找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7、整数的倒数

找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。

8、小数的倒数的普通算法:找一个小数的倒数,例如0.25,把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1。

9、用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。

10、分数除法:分数除法是分数乘法的逆运算。

11、分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13、分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14、比和比例比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种;比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同。

所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个。

15、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的性质用于化简比。比表示两个数相除;只有两个项:比的前项和后项。比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。

J. 小学六年级上册数学必考知识点有哪些

小学六年级上册数学必考知识点如下:

1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

2、分数乘整数的运算法则是:分子与整数相乘,分母不变。

3、在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

4、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。

5、假分数的倒数小于或等于1。