A. 初中一年级数学知识点是什么
初中一年级上期数学知识点:
第一章有理数。
一、知识框架。
二、知识概念。
1.有理数:
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数。
(2)有理数的分类:①②。
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0。
(2)相反数的和为0 ? a+b=0 ? a、b互为相反数。
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离。
(2)绝对值可表示为:或;绝对值的问题经常分类讨论。
5.有理数比大小:
(1)正数的绝对值越大,这个数越大。
(2)正数永远比0大,负数永远比0小。
(3)正数大于一切负数。
(4)两个负数比大小,绝对值大的反而小。
(5)数轴上的两个数,右边的数总比左边的数大。
(6)大数-小数>0,小数-大数<0。
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数。
7.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
(3)一个数与0相加,仍得这个数。
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c)。
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。
10有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘。
(2)任何数同零相乘都得零。
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
11.有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc)。
(3)乘法的分配律:a(b+c)=ab+ac 。
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数。
13.有理数乘方的法则:
(1)正数的任何次幂都是正数。
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a -b)n=-(b-a)n ,当n为正偶数时:(-a)n =an或(a-b)n=(b-a)n 。
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方。
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂。
15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。
16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。
17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。
18.混合运算法则:先乘方,后乘除,最后加减。
本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题。
体验数学发展的一个重要原因是生活实际的需要。激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。
第二章整式的加减。
一、知识框架。
二、知识概念。
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。
3.多项式:几个单项式的和叫多项式。
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数项的次数叫多项式的次数。
通过本章学习,应使学生达到以下学习目标:
1.理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2.理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3.理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
第三章一元一次方程。
一、知识框架。
二、知识概念。
1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
3.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解)。
4.列一元一次方程解应用题:
(1)读题分析法:…………多用于“和,差,倍,分问题”。
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。
(2)画图分析法:…………多用于“行程问题”。
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。
11.列方程解应用题的常用公式:
(1)行程问题:距离=速度·时间。
(2)工程问题:工作量=工效·工时。
(3)比率问题:部分=全体·比率。
(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度。
(5)商品价格问题:售价=定价·折·,利润=售价-成本。
(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a。
S正方形=a2,S环形=π(R2-r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=πR2h。
B. 一年级上学期数学复习要点
第一单元
1、 数一数
数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。
2、 比多少
同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。
比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。
比较两种物体的多或少时,可以用一一对应的方法。
第二单元
位置
1、 认识上、下
体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。
2、 认识前、后
体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。
同一物体,相对于不同的参照物,前后位置关系也会发生变化。
从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。
3、 认识左、右
以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。
要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。
第三单元
1-5的认识和加减法
一、 1--5的认识
1、1—5各数的含义:每个数都可以表示不同物体的数量。有几个物体就用几来表示。
2、1—5各数的数序
从前往后数:1、2、3、4、5.
从后往前数:5、4、3、2、1.
3、1—5各数的写法:根据每个数字的形状,按数字在田字格中的位置,认真、工整地进行书写。
二、比大小
1、前面的数等于后面的数,用“=”表示,即3=3,读作3等于3。前面的数大于后面的数,用“>”表示,即3>2,读作3大于2。前面的数小于后面的数,用“<”表示,即3<4,读作3小于4。
2、填“>”或“<”时,开口对大数,尖角对小数。
三、第几
1、确定物体的排列顺序时,先确定数数的方向,然后从1开始点数,数到几,它的顺序就是“第几”。第几指的是其中的某一个。
2、区分“几个”和“第几”
“几个”表示物体的多少,而 “第几”只表示其中的一个物体。
四、分与合
数的组成:一个数(1除外)分成几和几,先把这个数分成1和几,依次分到几和1为止。例如:5的组成有1和4,2和3,3和2,4和1.
把一个数分成几和几时,要有序地进行分解,防止重复或遗漏。
五、加法
1、加法的含义:把两部分合在一起,求一共有多少,用加法计算。
2、加法的计算方法:计算5以内数的加法,可以采用点数、接着数、数的组成等方法。其中用数的组成计算是最常用的方法。
六、减法
1、减法的含义:从总数里去掉(减掉)一部分,求还剩多少用减法计算。
2、减法的计算方法:计算减法时,可以用倒着数、数的分成、想加算减的方法来计算。
七、0
1、0的意义:0表示一个物体也没有,也表示起点。
2、0的读法:0读作:零
3、0的写法:写0时,要从上到下,从左到右,起笔处和收笔处要相连,并且要写圆滑,不能有棱角。
4、0的加、减法:任何数与0相加都得这个数,任何数与0相减都得这个数,相同的两个数相减等于0.
如:0+8=8 9-0=9 4-4=0
第四单元
认识图形
1、长方体的特征:长长方方的,有6个平平的面,面有大有小。
一年级数学上册知识点要点
2、正方体的特征:四四方方的,有6个平平的面,面的大小一样。
一年级数学上册知识点要点
3、圆柱的特征:直直的,上下一样粗,上下两个圆面大小一样。放在桌子上能滚动。立在桌子上不能滚动。
4、球的特征:圆圆的,很光滑,它的表面是曲面。放在桌子上能向任意方向滚动。
5、立体图形的拼摆:用长方体或正方体能拼组出不同形状的立体图形,在拼好的立体图形中,有一些部位从一个角度是看不到的,要从多个角度去观察。用小圆柱可以拼成更大的圆柱。
第五单元
6-10的认识和加减法
一、6—10的认识:
1、数数:根据物体的个数,可以用6—10各数来表示。数数时,从前往后数也就是从小往大数。
2、10以内数的顺序:
(1)从前往后数:0、1、2、3、4、5、6、7、8、9、10。
(2)从后往前数:10、9、8、7、6、5、4、3、2、1、0。
3、比较大小:按照数的顺序,后面的数总是比前面的数大。
4、序数含义:用来表示物体的次序,即第几个。
5、数的组成:一个数(0、1除外)可以由两个比它小的数组成。如:10由9和1组成。
记忆数的组成时,可由一组数想到调换位置的另一组。
二、6—10的加减法
1、10以内加减法的计算方法:根据数的组成来计算。
2、一图四式:根据一副图的思考角度不同,可写出两道加法算式和两道减法算式。
3、“大括号”下面有问号是求把两部分合在一起,用加法计算。“大括号 ”上面的一侧有问号是求从总数中去掉一部分,还剩多少,用减法计算。
三、连加连减
1、连加的计算方法:计算连加时,按从左到右的顺序进行,先算前两个数的和,再与第三个数相加。
2、连减的计算方法:计算连减时,按从左到右的顺序进行,先算前两个数的差,再用所得的数减去第三个数。
四、加减混合
pan > 加减混合的计算方法:计算时,按从左到右的顺序进行,先把前两个数相加(或相减),再用得数与第三个数相减(或相加)。
第六单元
11-20各数的认识
1、数数:根据物体的个数,可以用11—20各数来表示。
2、数的顺序:11—20各数的顺序是:11、12、13、14、15、16、17、18、19、20、
3、比较大小:可以根据数的顺序比较,后面的数总比前面的数大,或者利用数的组成进行比较。
4、11—20各数的组成:都是由1个十和几个一组成的,20由2个十组成的。如:1个十和5个一组成15。
5、数位:从右边起第一位是个位,第二位是十位。
6、11—20各数的读法:从高位读起,十位上是几就读几十,个位上是几就读几。20的读法,20读作:二十。
7、写数:写数时,对照数位写,有1个十就在十位上写1,有2个十就在十位上写2.有几个一,就在个位上写几,个位上一个单位也没有,就写0占位。
8、十加几、十几加几与相应的减法
(1)、10加几和相应的减法的计算方法:10加几得十几,十几减几得十,十几减十得几。
如:10+5=15 17-7=10 18-10=8
(2)、十几加几和相应的减法的计算方法:计算十几加几和相应的减法时,可以利用数的组成来计算,也可以把个位上的数相加或相减,再加整十数。
(3)、加减法的各部分名称:
在加法算式中,加号前面和后面的数叫加数,等号后面的数叫和。
在减法算式中,减号前面的数叫被减数,减号后面的数叫减数,等号后面的数叫差。
9、解决问题
求两个数之间有几个数,可以用数数法,也可以用画图法。还可以用计算法(用大数减小数再减1的方法来计算)。
第七单元
认识钟表
1、认识钟面
钟面:钟面上有12个数,有时针和分针。
分针:钟面上又细又长的指针叫分针。
时针:钟面上又粗又短的指针叫时针。
2、钟表的种类:日常生活中的钟表一般分两种,一种:挂钟,钟面上有12个数,分针和时针。另一种:电子表,表面上有两个点“:”,“:”的左边和右边都有数。
3、认识整时:分针指向12,时针指向几就是几时;电子表上,“:”的右边是“00”时表示整时,“:”的左边是几就是几时。
4、整时的写法:整时的写法有两种:写成几时或电子表数字的形式。如:8时或8:00
第八单元
20以内的进位加法
1、9加几计算方法:计算9加几的进位加法,可以采用“点数”“接着数”“凑十法”等方法进行计算,其中“凑十法”比较简便。
利用“凑十法”计算9加几时,把9凑成10需要1,就把较小数拆成1和几,10加几就得十几。
2、8、7、6加几的计算方法:(1)点数;(2)接着数;(3)凑十法。可以“拆大数、凑小数”,也可以“拆小数、凑大数”。
3、5、4、3、2加几的计算方法:(1)“拆大数、凑小数”。(2)“拆小数、凑大数”。
4、解决问题
(1)解决问题时,可以从不同的角度观察、分析、从而找到不同的解题方法。
(2)求总数的实际问题,用加法计算。
C. 小学一年级数学上册学什么内容
小学一年级数学一般都学什么?
不同版本的教材,所学内容不同。但大致学100以内的数的加减法、认识位置、认识基本图形、认识人民币、认识钟表等等。以下以人教版数学教材为例。
一、一年级上册所学内容
1.认数:认识1-20以内的数;
2.算数:20以内的进位加法;
3.认识位置:前、后、左、右、中间
4.认识钟表
5.认识图形:长方体、正方体、圆柱
二、一年级下册所学内容
1.算数:20以内的退位减法、100以内的加法和减法
2.认识人民币
3.分类与整理
4.找规律
拓展资料
一年级数学电子课本网址,涵盖了人教版、苏教版、北师大版、冀教版、浙教版、青岛版、西师大版等7个版本。
一年级数学电子课本
D. 小学数学一年级上册学什么知识
(一)数与代数
1、第一单元《生活中的数》。基于儿童数数的经验,结合具体的情景认识10以内的数的意义,会认、会读、会写0--10的数,会用它们表示物体的个数或事物的顺序,初步体会基数与序数的含义,初步感受“数”与生活的密切联系,初步体验学习数学的乐趣,初步形成良好的学习习惯。
2、第二单元《比较》。通过比较具体数量多少的数学活动,获得对“>、<、=”等符号的意义的理解,并会用这些符号表示10以内的数的大小;经历比高矮、比轻重、比长短等实践操作或数学思考活动,体验“比”的方法的多样性与合理性;并在描述或倾听各自思考过程的交流中,体会学会有条理的表示自己思想和学会倾听的重要性。
3、第三单元《加减法〈一〉》。经历从实际问题抽象10以内的加减算式,并加以解释和应用的过程,体会加减法的含义,初步感受加减法与生活的密切联系;能正确口算10以内的加减法,掌握10以内数的分解与合成的技能;通过整理加、减法算式,并探索其间规律性的活动,培养与发展数感。
4、第七单元《加减法〈二〉》。经历表示11--20的数的具体操作及其概括过程,初步体会用十进制记数的位值原理,会数、读、写20日内数,掌握它们的顺序,会比较它们的大小,结合解决问题的活动,进行简单的、有条理的思考;经历与同伴交流各自算法的过程,体会算法的多样性,学会20以内的进位和退位,逐步的熟练口算20以内的加减法,并能解决简单的问题,感受加减法与日常生活的密切联系,感受数学思考过程的合理性。
5、第八单元
(二)空间与图形
1、第五单元《位置与顺序》。结合生动有趣的情境或活动,体会前、后、上、下、左、右的位置与顺序,回用前、后、上、下、左、右描述物体的相对位置,建立初步的空间观念。
2、第六单元《认识物体》。通过对实物和模型的观察、操作、分类等活动,获得对简单几何体的直观经验,能直观辨认它们的形状是长方形、正方形、圆柱或球,能直观辨认长方形、正方形、圆柱或球等立体图形。
(三)统计与概率
1、第四单元《分类》。结合日常生活中必须进行的分类活动,感受分类的必要性,能按照给定的标准或选择某个标准对物体进行比较、排列和分类,并在这些活动中体验活动结果在同一标准下的一致性、不同标准下的多样性。
2、第九单元《统计》。根据简单的、现实的问题进行统计活动,经历数据的收集、整理、描述和分析的全过程,感受统计的必要性;结合实例,认识统计表和形象统计图,会填补相应当图标;能根据统计图表中的数据提出并回答简单的问题,并同伴交流自己的想法。
(四)实践活动
本册教材的正文和习题中提供了许多适合一年级小学生的实践活动或小调查。例如:
1、找一找,说一说。“我找3个比我高的人”“我找2个和我同岁的人”“我找......”
2、说一说生活中那些地方用到0。
3、说一说你在生活中发现的加法问题。
4、整理一下自己住的房间,向同伴说一说你是怎样整理的。
5、到图书馆或书店看一看,图书是怎么分类的,并与同伴说一说。
6、调查太阳刚升起,大约是几时?太阳刚落下,大约是几时?调查你们班每个小组男生、女生人数,并试着提出一些数学问题。
7、调查你们班10名同学的上学情况。(1)乘车上学,还是步行上学?(2)结伴走还是单独走?等等
学生经历上述观察、调查等实践活动,在合作与交流的过程中,获得良好的情感体验,获得一些初步的数学实践活动经验,能够运用所学的知识和方法解决简单的问题,感受数学在日常中的作用。
教学计划
(一)数学教学要符合学生的认知水平
数学教学必须遵循学生学习数学的心理规律,符合学生的发展水平和数学接受能力。符合学生的发展水平的教学应有实际背景,利用学生的经验,使用学生可以接受的语言,让学生有足够的时间通过探索和考察数学概念得出含义,使学生有机会讨论他们的想法。
(二)要逐步培养学生的合作学习的意识和能力
为了避免小组学习流于形式,就必须用心培养学生交流技能。交流既有信息输出,也有信息输入,所以加谈、倾听、阅读、书写是基本的交流技能;此外对数学而言,交流还应具有描述的技能。
(三)紧扣数学活动的目的设计安排活动
数学教学活动是数学的教学,每一个教学活动都应该有明确的目的,而活动本身有是实现目的的手段和过程。
(四)做练习、写作业是数学课堂教学中巩固知识、习得技能的必要环节
(五)重视对学生数学学习的评价
要结合学习数学的过程评价学生对数学概念知识的理解。学生只有理解了数学概念和它们的意义或解释,他们才能理解数学、有意义的“做数学”。
(六)重视对学生初步的发现问题和解决问题能力的评价
对解决问题的评价,首先应注意评价学生对问题的描述,即怎样把情境图呈现的问题,用口头语言完整地描述出来。
(七)重视对学生学习数学的情感与态度的评价
对一年级学生学习数学的情感与态度的评价,主要通过课堂观察来收集有关的信息,象他们参与班级讨论中,试图解决问题中,独立或小组学习中,无时不在显示他们对数学学习的情感与态度,能看出是否有信心,是否有兴趣,是否乐于探究,是否有毅力,是否有好奇心,谁敢于质疑。
E. 初一数学知识点梳理
第一章有理数总复习
一、知识归纳:
1、数轴是一条规定了原点、方向、长度单位的直线。有了数轴,任何一个有理数都可以用它上面的一个确定的点来表示。在数的研究上它起着重要的作用。它使数和最简单的图形——直线上的点建立了对应关系,它揭示了数和形之间的内在关系,因此它是数形结合的基础。但要注意数轴上的所有点并不是都有有理数和它对应。借助于数轴上点的位置关系可以比较有理数的大小,法则是:在数轴上表示的两个有理数,右边的数总比左边的数大。
2、相反数是指只有符号不同的两个数。零的相反数是零。互为相反的两个数位于数轴上原点的两边,离开原点的距离相等。有了相反数的概念后,有理数的减法运算就可以转化为加法运算。
3、绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。显然有:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。对于任何有理数a,都有≥0。
4、倒数可以这样理解:如果a与b是非零的有理数,并且有a×b=1,我们就说a与b互为倒数。有了倒数的概念后,有理数的除法运算就可以转化为乘法运算。
5、有理数的大小比较:
(1)正数都大于零,负数都小于零,即负数<零<正数;(2)两个正数,绝对值大的数较大;
(3)两个负数,绝对值大的数反而小;(4)在数轴上表示的有理数,右边的数总比左边的大;
6、科学记数法:是指任何数记成a×10n的形式,其中用式子表示|a|的范围是0<|a|<10。
7、近似数与有效数字:
近似数:一个与实际数很接近的数,称为近似数;
有效数字:从左边第一个不为0的数字起,到精确到的数位止,这些数字都是这个数的有效数字。
(1)有效数字越多,近似数就越精确;(2)由四舍五入得到的近似数0.003206,左边第一个不是零的数是3,最后一位四舍五入所得到的数是6,从3到6中间的所有的数字是3、2、0、6,左边的三个不算,但2和6之间的0要算,这个近似数有4个有效数字。
二、有理数的运算法则
1、有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。由此可得,互为相反数的两数相加的0;三个数相加先把前两个数相加,或先把后两个数相加,和不变。
2、有理数的减法法则:减去一个数等于加上这个数的相反数。注意:一切加法和减法运算都可以统一成加法运算。
3、有理数的乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。任何数同零相乘都得零。
4、有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除。零除以任何一个不为零的数都得零。
5、有理数混合运算的顺序:有理数混合运算中,先算乘方,再算乘除,最后算加减。运算中,如果有括号,就先算括号里面的。、
6、有理数的运算律:
交换律:a+b=b+a,ab=ba.
结合律:(a+b)+c=a+(b+c),(ab)c=a(bc).
乘法对加法的分配律:a(b+c)=ab+ac.
三、值得注意的几个问题
1、数的范围扩大到有理数后,一定要注意考虑负数。如不能认为“最小的整数是零”。
2、有理数都可以用数轴上的点表示;但数轴上的点不都表示有理数。
3、单独的一个数或字母,省略的指数是“1”,而不是零。
4、对负数或分数进行乘方运算要注意加括号。如当时,;而不是。
5、有理数的运算要特别注意符号。
第二章整式的加减
一、 知识梳理
1、______和______统称整式。
①单项式:由与的乘积式子称为单项式。单独一个数或一个字母也是单项式,如a,5。
•单项式的系数:单式项里的叫做单项式的系数。
•单项式的次数:单项式中叫做单项式的次数。
②多项式:几个的和叫做多项式。其中,每个单项式叫做多项式的,不含字母的项叫做。
•多项式的次数:多项式里的次数,叫做多项式的次数。
•多项式的命:一个多项式含有几项,就叫几项式。所以我们就根据多项式的项数和次数来命名一个多项式。如:3n4-2n2+1是一个四次三项式。
2、同类项——必须同时具备的两个条件(缺一不可):
①所含的相同;
②相同也相同。
•合并同类项,就是把多项式中的同类项合并成一项。
方法:把各项的相加,而不变。
3、去括号法则
法则1.括号前面是“+”号,把括号和它前面的“+”号去掉,
括号里各项都符号;
法则2.括号前面是“-”号,把括号和它前面的“-”号去掉,
括号里各项都符号。
▲去括号法则的依据实际是。
〖注意1〗要注意括号前面的符号,它是去括号后括号内各项是否变号的依据.
〖注意2〗去括号时应将括号前的符号连同括号一起去掉.
〖注意3〗括号前面是“-”时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.若括号前是数字因数时,可运用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.
〖注意4〗遇到多层括号一般由里到外,逐层去括号,也可由外到里.数“-”的个数.
4、整式的加减
整式的加减的过程就是。如遇到括号,则先,再,合并到为止。
5、本单元需要注意的几个问题
①整式(既单项式和多项式)中,分母一律不能含有字母。
②π不是字母,而是一个数字,
③多项式相加(减)时,必须用括号把多项式括起来,才能进行计算。
④去括号时,要特别注意括号前面的因数。
第三章一元一次方程
一、 知识梳理
1.方程
(1)方程的定义:含有未知数的等式叫做方程.
(2)方程的解:能够使方程左、右两边的值相等的未知数的值叫做方程的解.
(3)解方程:求方程解的过程叫做解方程.
2.一元一次方程:
只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程.
3.解一元一次方程的步骤:
①去分母,在方程的两边都乘以各分母的最小公倍数,注意不要漏乘不含分母的项,分子为多项式的要加上括号;
②去括号,一般先去小括号,再去中括号,最后去大括号,注意不要漏乘括号里的项,当括号前是“-”时,去掉括号时注意括号内的项都要变号;
③移项,将含有未知数的项移到方程的一边,不含未知数的项移到方程的另一边,注意移项要变号,移项和交换位置不同;
④合并同类项,将同类项合并成一项,把方程化为ax=b(a≠0)的形式,注意只合并同类项的系数;
⑤系数化为1,在方程ax=b的两边都除以a,求出方程的解x=,注意符号,不要把方程ax=b的解写成x=。
4.列方程解应用题的步骤:
(1)读题找相等关系:认真读题,理解题意,分清已知与未知,找出相等关系.
(2)设出适当的未知数:根据问题的实际情况,设未知数可以直接设未知数,也可以间接设未知数.
(3)列方程:根据问题中的一个相等关系列出方程.
(4)解方程:解所列的方程,求出未知数的值.
(5)写出所求解的答案:求到方程的解,要检验它是否符合实际意义,如果符合实际意义,要写出完整的答案.
5.实际问题的常见类型
(1)利息问题:①相关公式:本金×利率×期数=利息(未扣税);②相等关系:本息=本金+利息.
(2)利润问题:①相关公式:利润率=利润÷进价;②相等关系:利润=售价-进价.
(3)等积变形问题:①相关公式:长方体的体积=长×宽×高;圆柱的体积=底面积×高.
②相等关系:变形前的体积=变形后的体积.
(4)工程问题
①数量关系:工作量=工作时间×工作效率.②相等关系:总工作量=各部分工作量的和.
(5)行程问题:①相关数量关系:路程=时间×速度;②相等关系:(相遇问题)两者路程和=总路程;(追及问题)两者路程差=相距路程.
二、思想方法总结
1.方程的思想:方程的思想就是把末知数看成已知数,让代替未知数的字母和已知数一样参与运算,这是一种很重要的数学思想,很多问题都能归结为方程来处理。
2、数形结合的思想:数形结合的思想是指在研究问题的过程中,由数思形,由形思数,把数和形结合起来分析问题的思想方法。本章在列方程解应用题时常采用画图,列表格的方法展示数量关系。使问题更形象、直观。
3、“化归思想”:所谓化归思想,是指在如解数学问题时,如果对当前的问题感到困惑,可把它先进行交换,使之筒化,并得到解决的思维方法。如本章解方程的过程,就是把形式比较复杂的方程,逐步化简为最简方程ax=b(a=0),从而求出方程的解,通过对解一元一次方程的学习要体会并掌据化归这一数学思想方法。
三、易错点突破
1、应用等式的基本性质时出现错误
例1下列说法正确的是()
A、在等式ab=ac中,两边都除以a,可得b=c
B、在等式a=b两边都除以c2+1可得
C、在等式两边都除以a,可得b=c
D、在等式2x=2a一b两边都除以2,可得x=a一b
剖析:A中a代表任意数,当a≠0时结论成立;但当a=0时,不能运用等式的性质(2)结论不一定成立,如0•3=0•(-1)但3≠-1,所以,等式两边同时除以一个数,要保证除数不为0才能行。B中c2+1≠0所以成立C用的性质错误,应在等式两边都乘以a,D中一b这一项没除以2,应为x=a-选B
2、去分母去括号时出现漏乘现象或出现符号错误;移项不变号,错把解方程的过程写成“连等”的形式。
例2解方程.
错解:=3x-2+10=x+6=2x=-2=x=-1
剖析:错解的原因是对方程的变形理解不深,受到代数式运算时使用连等式的习惯影响。
正解:去分母得3x-2+10=x+6
移项合并同类项得2x=-2,所以x=-1
3、列方程解应用题时常出现的错误
(1)审题不清,没有弄请各个量所表示的意义;
(2)列方程出现错误
(3)应用公式错误
(3)单住不统一
(4)计算方法出现错误。
第四章图形认识初步
一、 知识梳理
二、重点、难点:
立体图形与平面图形的互相转化,及一些重要的概念、性质等是本章的重点。
建立和发展空间观念是空间与图形学习的核心目标之一,能由实物形状想象出几何图形,由几何图形想象出实物形状,进行几何体与其三视图、展开图之间的相互转化是培养空间观念的重要方面。另外,对图形的表示方法,对几何语言的认识与运用,都要有一个熟悉的过程。等等这些,对于今后的学习都很重要,同时也是本章的难点。
三、知识要点:
本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形。通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系。在此基础上,认识一些简单的平面图形——直线、射线、线段和角。
1.多姿多彩的图形:通过多姿多彩的图形引入几何图形,使我们认识立体图形、平面图形,通过三视图我们可以把立体图形转化为平面图形来研究和处理,也可以把立体图形展开为平面图形;几何体也简称为体,包围体的是面,面面相交为线,线线相交为点;点动成线,线动成面,面动成体,几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。如广场礼花在夜空中留下的图形,你是否看到了点动成线?在电视中看到收割机在麦田中收割小麦,你是否看到了线动成面?
2.直线、射线、线段的区别与联系:从图形上看,直线、射线可以看做是线段向两边或一边无限延伸得到的,或者也可以看做射线、线段是直线的一部分;线段有两个端点,射线有一个端点,直线没有端点;线段可以度量,直线、射线不能度量。
3.直线、线段性质:
经过两点有一条直线,并且只有一条直线;或者说两点确定一条直线;
两点的所有连线中,线段最短;简单说:两点之间,线段最短。
4.线段中点:把一条线段分成两条相等的线段的点叫线段中点,如图:
若点C是线段AB的中点,则有(1)AC=BC=AB或(2)AB=2AC=2BC,反之,若有(1)式或(2)式成立,亦能说明点C是线段AB的中点。
5.关于线段的计算:两条线段长度相等,这两条线段称为相等的线段,记作AB=CD,平面几何中线段的计算结果仍为一条线段。即使不知线段具体的长度也可以作计算。
例:如图:AB+BC=AC,或说:AC-AB=BC
6.角的意义:有公共端点的两条射线组成的图形叫做角,公共端点是角的顶点,这两条射线是角的两条边,角也可以看做由一条射线绕着它的端点旋转而形成的图形。
7.角的度量:1°=60′1′=60″1周角=360°1平角=180°1直角=90°
8.角的大小的比较:(1)叠合法,使两个角的顶点及一边重合,另一边在重合边的同旁进行比较;(2)度量法。
9.角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。如图:OC平分∠AOB,则(1)∠AOC=∠BOC=∠AOB或(2)2∠AOC=2∠BOC=∠AOB。
10.有关角的运算:
举例说明:如图,∠AOC+∠BOC=∠AOB,∠AOB-∠AOC=∠BOC
特殊情况,如果两个角的和等于直角,就说这两个角互为余角,即其中一个是另一个的余角;如果两个角的和等于平角,就说这两个角互为补角,即其中一个是另一个的补角;等角的余角相等,等角的补角相等。
F. 初中一年级数学上册知识点有哪些
你确定你要?
好吧,给你
初一数学概念
实数:
—有理数与无理数统称为实数。
有理数:
整数和分数统称为有理数。
无理数:
无理数是指无限不循环小数。
自然数:
表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。
数轴:
规定了圆点、正方向和单位长度的直线叫做数轴。
相反数:
符号不同的两个数互为相反数。
倒数:
乘积是1的两个数互为倒数。
绝对值:
数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。
数学定理公式
有理数的运算法则
⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
⑵减法法则:减去一个数,等于加上这个数的相反数。
⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线。
数学第一章相交线
一、邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角。邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角。
二、对顶角:是两条直线相交形成的。两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”。
对顶角的性质:对顶角相等。
三、垂直
1、垂直:两条直线所成的四个角中,有一个是直角时,就说这两条直线互相垂直。其中一条叫做另一条的垂线,它们的交点叫做垂足。记做a⊥b
垂直是相交的一种特殊情形。
2、垂线的性质:
①过一点有且只有一条直线与已知直线垂直;
②连接直线外一点与直线上各点的所有线段中,垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
3、画法:①一靠(已知直线)②二过(定点)③三画(垂线)
4、空间的垂直关系
四、平行线
1、 平行线:在同一平面内,不相交的两条直线叫做平行线。记做a‖b
2、 “三线八角”:两条直线被第三条直线所截形成的
① 同位角:“同方同位”即在两条直线的上方或下方,在第三条直线的同一侧。
② 内错角:“之间两侧”即在两条直线之间,在第三条直线的两侧。
③ 同旁内角“之间同旁”即在两条直线之间,在第三条直线的同旁。
3、 平行公理:经过直线外一点,有且只有一条直线与这条直线平行
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
4、 平行线的判定方法
① 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;
② 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;
③ 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;
④ 平行于同一条直线的两条直线平行;
⑤ 垂直于同一条直线的两条直线平行。
5、 平行线的性质:
①两条平行线被第三条直线所截,同位角相等;
②两条平行线被第三条直线所截,内错角相等;
③两条平行线被第三条直线所截,同旁内角互补。
6、 两条平行线的距离:同时垂直于两条平行线并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离。
7、 命题:判断一件事情的语句,叫做命题,由题设和结论两部分组成。
五平移
1、平移:在平面内将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
说明:①、平移不改变图形的形状和大小,改变图形的位置;②“将一个图形沿某个方向移动一定的距离”意味着“图形上的每一点都沿着同一方向移动了相同的距离 ”这也是判断一种运动是否为平移的关键。③图形平移的方向,不一定是水平的
2、平移的性质:经过平移,对应线段、对应角分别相等,对应点所连的线段平行且相等。
其实这些网上都有的,不过还是祝你学有所成吧。
G. 初一数学上册第一单元知识点总结(北师大版)
Nice to help you!
重点知识
1.一个n棱柱,有n条侧棱,2n个顶点,3n条棱,(n+2)个面.
2.棱柱有n个面,最多就可以截出n边形.
3.正方体可以截出三角形、正方形、长方形、梯形、五边形、六边形.
4.n边形从某个顶点出发可分为(n-2)个三角形,从某个边上出发可分为(n-1)个三角形,从内部出发可分为n个三角形.
以上为我平时的课上小计,供你参考.
H. 小学数学知识点
一、教学目标
1、知识目标与技能:
①通过学习,学生能应用百分数解决实际问题。理解税率、利率、折扣的含义。
②学生在经历观察、操作等活动的过程中认识圆柱和圆锥的特征,能正确地判断圆柱和圆锥,理解、掌握圆柱的表面积、圆柱和圆锥体积的计算方法,会正确地进行计算。
③学生结合实例认识扇形统计图,理解众数和平均数。
④初步掌握用方向和距离确定物体位置的方法。
⑤学生在解决实际问题的的过程中,学会用转化的策略寻求解决问题的思路,并能根据具体的问题确定合理的解题方法,从而有效地觯决问题。
⑥学生理解比例的意义和基本性质,会解比例;认识比例尺,会看比例尺,会进行比例尺的有关计算;理解正比例和反比例的意义,能够判断两种量是否成正比例或反比例,理解用比例关系解应用题的方法,学会用比例知识解答比较容易的应用题。
⑦学生通过系统的复习,巩固和加深理解小学阶段所学的数学知识,更好地培养比较合理的、灵活的计算能力,发展思维能力和空间观念,并提高综合运用所学数学知识解决简单的实际问题的能力。
2、过程与方法:
本学期教学内容要紧密联系学生生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流,使学生通过观察、操作、归纳、交流、反思活动,获得基本的数学知识、技能,进一步发展思维能力,让学生在情境体验中,理解数学,增强空间观念,发展形象思维,重视学生应用数学的意识和能力。能应用“转换”的策略解决一些简单的实际问题,进一步增强解决问题的策略意识和反思意识,体会解决问题策略的多样性,培养根据实际问题的特点选择相应策略的能力。
3、情感态度与价值观:
①能积极参与各项数学活动,感受自己在数学知识和方法等方面的收获与进步,增强对数学的好奇心与求知欲,进一步树立学好数学的信心。
②在探索和理解百分数的计算方法,比例的基本性质,圆柱和圆锥的体积公式等活动中,进一步感受数学思考的严谨和数学结论的确定性,获得一些成功的体验,锻炼克服困难的意志。
③通过阅读“你知道吗”以及参与“实践与综合应用”等活动,进一步了解有关数学知识的背景,体会数学对人类历史发展的作用,培养民族自豪感,增强创新意识,锻炼实践能力。
4、质量目标:
各单元测试平均分达83以上,期末质量验收平均分达85以上,优秀率、及格率分别达40%及95%以上。
二、教材分析
1、本学期教材的知识结构体系分析和技能训练要求:
这册教材包括下面地些内容:百分数的应用、圆柱和圆锥、比例、确定位置、正反比例、解决问题的策略、统计以及小学六年来所学数学内容的总复习。 本册教材的这些内容是在前几册的基础上按照完成小学数学的全部教学任务安排的,着重使学生认识一些常见的立体图形,掌握它们的体积等计算方法,进一步发展空间观念;进一步形成统计的观念,掌握用扇形统计图表示数据整理结果的方法,提高依据统计数据的分析、预测、判断能力;理解比例、正比例、反比例的概念,加深认识一些常见的数量关系,会用比例知识解答比较容易的应用题。然后把小学数学的主要内容加以系统的整理和复习,巩固所学的数学知识,使学生能够综合运用所学的数学知识解决比较简单的实际问题;结合新的教学内容与系统的整理和复习,进一步发展思维能力,培养思维品质,进行思想品德教育。
2、教学重点:
本册教材中的圆柱和圆锥、比例都是小学数学的重要内容。首先,认识圆柱和圆锥的特征,掌握圆柱和圆锥的一些计算,既可以为进一步学习其他形体的表面积和体积及其计算打好基础,进一步发展空间观念,也可以增强解决问题的策略和方法,逐步增强学生收集、处理信息的意识和能力。最后学习好比例的知识,不仅可以增强学生用数学方法处理数学问题的能力,而且也使学生获得初步的函数观念,为进一步学习相关知识作初步的准备。因此,让学生认识这些内容的概念,学会应用这些概念、方法和计算解决一些实际问题,是教学的重点。
I. 小学一年级数学上册有哪些知识点
主要就是一个加减法要分清,不能算错,还有一个是数数,没有什么难的。