Ⅰ 初一数学上册知识点
第一章
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。
1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。
第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。
第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。
3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。
Ⅱ 初一数学线段部分的具体概念
线段:定义是两点之间的距离,有大小,无方向的标量
Ⅲ 初一数学 线段
(1)当点C在线段AB上任意移动时,MN的长度不改变,MN始终等于1/2AB=5cm
(2)还是不需要改变!你自己可以把图画出来!结果都是不变的MN始终等于5cm!!!
楼上的,你们别误人子弟了行不!!
Ⅳ 初一数学线段
1.点在直线上;点不在直线上
2.公理:两点之间线段(直)最短
3.同上:为了使水渠最短节省工程量
Ⅳ 七年级数学上册知识点
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。
1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。
第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。
第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。
3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等
第一章
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。
1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。
第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。
第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。
3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。
由几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组
不等式组中所有不等式的解集的公共部分叫做这个不等式组的解集。求不等式组的解集的过程叫做解不等式组。
解不解不等式的诀窍
大于大于取大的(大大大);
例如:X>-1
X>2
不等式组的解集是X>2
小于小于取小的(小小小);
例如:X<-4
X<-6
不等式组的解集是X<-6
大于小于交叉取中间;
无公共部分分开无解了;
解方程型:
1.某商店到苹果产地去收购苹果,收购价为每千克1.2元,从产地到商店的距离是400km,运费为每吨货物每运1km收1.5元,如果在运输及销售过程中的损耗为10%,商店要想获得其成本的25%的利润,零售价应是每千克多少元?
解:
运输成本:400*1。5=600元
收购成本:1。2*1000=1200元
设销价是X
1000*90%*X-[600+1200]=[600+1200]*25%
X=2.5
即销价是2.5元/千克
①某球迷协会组织36名球拟租乘汽车赴比赛场地,为主队加油助威。可租用的汽车有两种:一种每辆可乘8人,另一种每辆可乘4人,要求租用的车子不留空位,也不超载。若8个座位的车子的租金是300元/天,4个座位的车子的租金是200元/天,请你设计出费用最少的租车方案,并说明理由。
问题补充:
甲步行,乙骑自行车,两人同时从相距45km的A、B两地出发相向而行,2.5h后两人相遇,已知乙骑自行车的速度是甲步行速度的2倍,求甲步行的速度。(列方程解)
1.某商店到苹果产地去收购苹果,收购价为每千克1.2元,从产地到商店的距离是400km,运费为每吨货物每运1km收1.5元,如果在运输及销售过程中的损耗为10%,商店要想获得其成本的25%的利润,零售价应是每千克多少元?
解:
运输成本:400*1。5=600元
收购成本:1。2*1000=1200元
设销价是X
1000*90%*X-[600+1200]=[600+1200]*25%
X=2.5
即销价是2.5元/千克
2.甲、乙两人各坐一游艇在湖中划行,甲每摇桨10次时,乙只能摇桨8次;而乙摇桨70次所走的路程等于甲摇桨90次所走的路程。开始时,甲先摇桨4次,乙接着摇桨。问乙摇几次桨才能追上甲?
解:
设甲每次前进的路程是1,乙要x次才能追上.乙x次的时候,甲划了(10/8)x=(5/4)x次,甲90次就是90,这需要乙70次,则乙每次前进90/70=9/7,甲先4次,就是4.
4+1*(5/4)x=(9/7)*x
[(9/7)-(5/4)]x=4
(1/28)x=4
x=112(次)
Ⅵ 七年级上册数学直线射线线段如何数
(1)设n个不重合的点共直线,
所成射线共2n条,所成线段共n*(n-1)/2段
(2)n条不重合的射线共端点,(所说的角都指不超过平角大小的角),
所组成的角共n*(n-1)/2个
Ⅶ 求七年级上册数学段考复习资料
《初中数学华师大版七年级上册》网络网盘免费资源下载
链接: https://pan..com/s/1bqeovtCC8e9k6ShcnIq9oA
Ⅷ 初一数学,线段,直线,射线
3 (1) 、6 条射线,AB、BA、BC、CA,(AB和AC表示的都是以A为端点的射线,射线CA和CB都是以C为端点的射线)
(2) 、5条线段,AB、AC、AD、AE、AF。(线段是有两个端点的)
4、AB=AC+CB,BC=AB-AC。
5、6 (三个点,以每个点为端点,最多向两边延长,3x2=6)
6、20 ;10。(徐州到连云港,中间有三个站,设为ABC,则火车票有徐州至A、B、C和连云港,A至徐州、B、C、连云港;如此,每站都要准备到其他4个车站的火车票,共有5个车站,所以种类为5x4=20;票价则只有20÷2=10种,因为A至B和B至A的价钱是一样的。)
7、C (射线AB,A为端点,射线可向B方向无限延长,而直线可以向两边无限延长,你可以试着延长这些线。)
希望对你有帮助。
Ⅸ 初一上册数学数线段、射线、直线的公式
线段的定义:
直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。
线段的特点:
(1)有有限长度,可以测量
(2)有两个端点
(3)具有对称性
(4)两点之间线段的长度,是两点之间的距离
线段的性质:
在连接两点的所有线中,线段最短。简称两点之间线段最短。
射线定义:
直线上的一点和它一旁的部分所组成的图形称为射线。
射线的特点:
(1)只有一个端点和一个方向;
(2)不可度量。
射线的性质:
射线是轴对称图形,它的对称轴是它所在直线。
直线的定义:
是点在空间内沿相同或相反方向运动的轨迹。
直线的特点:
没有端点,可以向两端无限延长,长度无法度量。
直线的性质:
直线是轴对称图形。它有无数条对称轴,其中一条是它本身,还有任意一条与它垂直的直线。因为在直线的任意一点作它的垂线,直线可以看作被分成两条方向相反的射线,将一条射线沿这条垂线折叠,这两条射线就重合了。所以说,直线有无数条对称轴。