当前位置:首页 » 基础知识 » 高中数学数列知识框架
扩展阅读
儿童术后吃什么排便 2024-11-05 20:58:37

高中数学数列知识框架

发布时间: 2022-08-18 20:12:08

❶ 高中数学(人教B版)必修三知识框架

1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它
的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应
线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
109定理 不在同一直线上的三点确定一个圆。
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
121①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积
相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:L=n兀R/180
145扇形面积公式:S扇形=n兀R^2/360=LR/2
146内公切线长= d-(R-r) 外公切线长= d-(R+r)

❷ 高中数学的数列怎样学好

高中数学的数列知识点相比其他专题来说还是比较孤立的,和其他专题衔接的相比较少,所以还是比较容易学的。

哪如何有效学习数列专题呢?

就以下面这知识点框架为例说一下

在学之前就要有一个整体的认识,首先知道在这个专题我们要学习的大的知识点有那些,这些知识点所包含的题型又有那些,对应的解题方法又是如何,这样学起来才能有效果。

就说数列,我们首先得从定义上知道什么是数列,在数列当中有包括等比等差常数列。

高中要接触的就是等差数列和等比数列,主要学习的就是他的性质等。

在学习等差数列要从定义上知道,通过数学语言表达出来,为啥要强调这个定义的证明呢?就是因为数列大题中有一类证明题,就是让你证明某一个数列是等差或者等比,用到的知识点就是定义加逆推法快速有效证明。

在往下就是中项应用这个用的更多的还是与等比结合,比如说某某等比数列,某某某三个之间成等差数列,在这个时候就会用到等差中项了。

这个之后就是一些特定题型用到的一些性质,通项的证明及公式推理,还有就是前n相和的证明(用倒序想加证明)以及公式扩展这个可能会在小考中作为大题第一问让你证明公式。

这个之后就是最值问题,这个往往要和函数结合,用的最多的还是对称轴,但是注意数列只能取正整数。

等比类比等差也是这样。

再往后就是通项的得解和前n相和的应用问题,这个就不详细说了,这个只要会固定的技巧,是非常容易学会的。

所以最重要的还是前面基础知识的铺垫,只要这些会了,基本上就没问题了。

希望对你有所帮助。

❸ 高中数学知识结构框架图

原发布者:吕明龙88
高中数学知识结构框图必修一:第一章集合第三章基本初等函数(Ⅰ)必修二:第一章立体几何初步第二章平面解析几何初步必修三:第一章算法初步第二章统计第三章概率必修四:第一章基本初等函数(II)第二章平面向量第三章三角恒等变换必修五:第一章解三角形第二章数列第三章不等式选修2-1:第一章常用逻辑用语第二章圆锥曲线与方程第三章空间向量与立体几何选修2-2:第一章导数及其应用第二章推理与证明第三章数系的扩充与复数选修2-3:第一章计数原理第二章概率第三章统计案例

❹ 求高中数学所有的知识点框架,(越详细越好),包括理科专用。

高三数学备考公式篇

1. 元素与集合的关系,.
2.德摩根公式 .
3.包含关系

4.容斥原理

.
5.集合的子集个数共有 个;真子集有–1个;非空子集有 –1个;非空的真子集有–2个.
6.二次函数的解析式的三种形式
(1)一般式;(2)顶点式;
(3)零点式.
7.解连不等式常有以下转化形式
.
8.方程在上有且只有一个实根,与不等价,前者是后者的一个必要而不是充分条件.特别地, 方程有且只有一个实根在内,等价于,或且,或且.
9.闭区间上的二次函数的最值
二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:
(1)当a>0时,若,则;
,,.
(2)当a<0时,若,则,若,则,.
10.一元二次方程的实根分布
依据:若,则方程在区间内至少有一个实根 .
设,则
(1)方程在区间内有根的充要条件为或;
(2)方程在区间内有根的充要条件为或或或;
(3)方程在区间内有根的充要条件为或 .
11.定区间上含参数的二次不等式恒成立的条件依据
(1)在给定区间的子区间(形如,,不同)上含参数的二次不等式(为参数)恒成立的充要条件是.
(2)在给定区间的子区间上含参数的二次不等式(为参数)恒成立的充要条件是.
(3)恒成立的充要条件是或.
12.真值表

p

q

非p

p或q

p且q









































13.充要条件
(1)充分条件:若,则是充分条件.
(2)必要条件:若,则是必要条件.
(3)充要条件:若,且,则是充要条件.
注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.
14.函数的单调性
(1)设那么
上是增函数;
上是减函数.
(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.
15.如果函数和都是减函数,则在公共定义域内,和函数也是减函数; 如果函数和在其对应的定义域上都是减函数,则复合函数是增函数.
16.奇偶函数的图象特征
奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.
17.若函数是偶函数,则;若函数是偶函数,则.
18.对于函数(),恒成立,则函数的对称轴是函数;两个函数与 的图象关于直线对称.
19.若,则函数的图象关于点对称; 若,则函数为周期为的周期函数.
20.多项式函数的奇偶性
多项式函数是奇函数的偶次项(即奇数项)的系数全为零.
多项式函数是偶函数的奇次项(即偶数项)的系数全为零.
21.函数的图象的对称性
(1)函数的图象关于直线对称
.
(2)函数的图象关于直线对称
.
22.两个函数图象的对称性
(1)函数与函数的图象关于直线(即轴)对称.
(2)函数与函数的图象关于直线对称.
(3)函数和的图象关于直线y=x对称.
23.若将函数的图象右移、上移个单位,得到函数的图象;若将曲线的图象右移、上移个单位,得到曲线的图象.
24.互为反函数的两个函数的关系
.
25.几个常见的函数方程
(1)正比例函数,.
(2)指数函数,.
(3)对数函数,.
(4)幂函数,.
(5)余弦函数,正弦函数,,
.
26.几个函数方程的周期(约定a>0)
(1),则的周期T=a;
(2),或,或,或,则的周期T=2a;
(3),则的周期T=3a;
(4)且,则的周期T=4a;
(5)
,则的周期T=5a;
(6),则的周期T=6a.
27.分数指数幂 (1)(,且).(2)(,且).
28.根式的性质(1).(2)当为奇数时,;当为偶数时,.
2932.有理指数幂的运算性质
(1) .(2) .
(3).
注: 若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.
30.指数式与对数式的互化式
.
31.对数的换底公式 (,且,,且, ).
推论 (,且,,且,, ).
32.对数的四则运算法则
若a>0,a≠1,M>0,N>0,则(1);
(2) ;(3).
33.设函数,记.若的定义域为,则,且;若的值域为,则,且.对于的情形,需要单独检验.
34. 对数换底不等式及其推广
若,,,,则函数
(1)当时,在和上为增函数.
, (2)当时,在和上为减函数.
推论:设,,,且,则
(1).(2).
35.数列的同项公式与前n项的和的关系
( 数列的前n项的和为).
36.等差数列的通项公式;
其前n项和公式为.
37.等比数列的通项公式;
其前n项的和公式为或.
38.等比差数列:的通项公式为

其前n项和公式为.
39.常见三角不等式(1)若,则.
(2) 若,则.(3) .
40.同角三角函数的基本关系式 ,=,.
41.正弦、余弦的诱导公式(奇变偶不变)

42.和角与差角公式
;;
.
(平方正弦公式);
.
=(辅助角所在象限由点的象限决定, ).
43.二倍角公式 .
..
44. 三倍角公式
.
..
45.三角函数的周期公式
函数,x∈R及函数,x∈R(A,ω,为常数,且A≠0,ω>0)的周期;函数,(A,ω,为常数,且A≠0,ω>0)的周期.
46.正弦定理 .
47.余弦定理;;.
48.面积定理
(1)(分别表示a、b、c边上的高).
(2).
(3).
49.三角形内角和定理
在△ABC中,有
.
50.实数与向量的积的运算律
设λ、μ为实数,那么(1) 结合律:λ(μa)=(λμ)a;
(2)第一分配律:(λ+μ)a=λa+μa;(3)第二分配律:λ(a+b)=λa+λb.
51.向量的数量积的运算律:(1) a·b= b·a (交换律);
(2)(a)·b= (a·b)=a·b= a·(b);(3)(a+b)·c= a ·c +b·c.
52.平面向量基本定理
如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.
不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.
53.向量平行的坐标表示
设a=,b=,且b0,则ab(b0).
54. a与b的数量积(或内积)a·b=|a||b|cosθ.
55. a·b的几何意义数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
56.平面向量的坐标运算
(1)设a=,b=,则a+b=.
(2)设a=,b=,则a-b=.
(3)设A,B,则.
(4)设a=,则a=.
(5)设a=,b=,则a·b=.
57.两向量的夹角公式(a=,b=).
58.平面两点间的距离公式=
(A,B).
59.向量的平行与垂直
设a=,b=,且b0,则A||bb=λa .
ab(a0)a·b=0.
60.线段的定比分公式
设,,是线段的分点,是实数,且,则
().
61.三角形的重心坐标公式
△ABC三个顶点的坐标分别为、、,则△ABC的重心的坐标是.
62.点的平移公式
.
注:图形F上的任意一点P(x,y)在平移后图形上的对应点为,且的坐标为.
63.“按向量平移”的几个结论
(1)点按向量a=平移后得到点.
(2) 函数的图象按向量a=平移后得到图象,则的函数解析式为.
(3) 图象按向量a=平移后得到图象,若的解析式,则的函数解析式为.
(4)曲线:按向量a=平移后得到图象,则的方程为.
(5) 向量m=按向量a=平移后得到的向量仍然为m=.
64. 三角形五“心”向量形式的充要条件
设为所在平面上一点,角所对边长分别为,则
(1)为的外心.
(2)为的重心.
(3)为的垂心.
(4)为的内心.
(5)为的的旁心.
65.常用不等式:
(1)(当且仅当a=b时取“=”号).
(2)(当且仅当a=b时取“=”号).
(3)
(4)柯西不等式
(5).
66.极值定理
已知都是正数,则有
(1)若积是定值,则当时和有最小值;
(2)若和是定值,则当时积有最大值.
推广 已知,则有
(1)若积是定值,则当最大时,最大;当最小时,最小.
(2)若和是定值,则当最大时, 最小;当最小时, 最大.
67.一元二次不等式,如果与同号,则其解集在两根之外;如果与异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.
.
68.含有绝对值的不等式
当a> 0时,有
.
或.
69.指数不等式与对数不等式
(1)当时,;
.
(2)当时,;

70.斜率公式 (、).
71.直线的五种方程
(1)点斜式 (直线过点,且斜率为).
(2)斜截式 (b为直线在y轴上的截距).
(3)两点式 ()(、 ()).
(4)截距式 (分别为直线的横、纵截距,)
(5)一般式 (其中A、B不同时为0).
72.两条直线的平行和垂直
(1)若,
①;②.
(2)若,,且A1、A2、B1、B2都不为零,
①;②;
73.四种常用直线系方程
(1)定点直线系方程:经过定点的直线系方程为(除直线),其中是待定的系数; 经过定点的直线系方程为,其中是待定的系数.
(2)共点直线系方程:经过两直线,的交点的直线系方程为(除),其中λ是待定的系数.
(3)平行直线系方程:直线中当斜率k一定而b变动时,表示平行直线系方程.与直线平行的直线系方程是(),λ是参变量.
(4)垂直直线系方程:与直线 (A≠0,B≠0)垂直的直线系方程是,λ是参变量.
74.点到直线的距离
(点,直线:).
75. 或所表示的平面区域
设直线,则或所表示的平面区域是:
若,当与同号时,表示直线的上方的区域;当与异号时,表示直线的下方的区域.简言之,同号在上,异号在下.
若,当与同号时,表示直线的右方的区域;当与异号时,表示直线的左方的区域. 简言之,同号在右,异号在左.
76. 或所表示的平面区域
设曲线(),则
或所表示的平面区域是:
所表示的平面区域上下两部分;
所表示的平面区域上下两部分.
77. 圆的四种方程
(1)圆的标准方程 .
(2)圆的一般方程 (>0).
(3)圆的参数方程 .
(4)圆的直径式方程 (圆的直径的端点是、).
78. 圆系方程(1)过点,的圆系方程是

,其中是直线的方程,λ是待定的系数.
(2)过直线:与圆:的交点的圆系方程是,λ是待定的系数.
(3) 过圆:与圆:的交点的圆系方程是,λ是待定的系数.
79.点与圆的位置关系
点与圆的位置关系有三种
若,则
点在圆外;点在圆上;点在圆内.
80.直线与圆的位置关系
直线与圆的位置关系有三种:
;
;
.其中.
81.两圆位置关系的判定方法
设两圆圆心分别为O1,O2,半径分别为r1,r2,
;
;
;
;
.
82.圆的切线方程
(1)已知圆.
①若已知切点在圆上,则切线只有一条,其方程是
.
当圆外时, 表示过两个切点的切点弦方程.
②过圆外一点的切线方程可设为,再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线.
③斜率为k的切线方程可设为,再利用相切条件求b,必有两条切线.
(2)已知圆.
①过圆上的点的切线方程为;
②斜率为的圆的切线方程为.
83.椭圆的参数方程是.
84.椭圆焦半径公式 ,.
85.椭圆的的内外部
(1)点在椭圆的内部.
(2)点在椭圆的外部.
86. 椭圆的切线方程
(1)椭圆上一点处的切线方程是.
(2)过椭圆外一点所引两条切线的切点弦方程是
.
(3)椭圆与直线相切的条件是.
87.双曲线的焦半径公式
,.
88.双曲线的方程与渐近线方程的关系
(1)若双曲线方程为渐近线方程:.
(2)若渐近线方程为双曲线可设为.
(3)若双曲线与有公共渐近线,可设为(,焦点在x轴上,,焦点在y轴上).
89. 双曲线的切线方程
(1)双曲线上一点处的切线方程是.
(2)过双曲线外一点所引两条切线的切点弦方程是
.
(3)双曲线与直线相切的条件是.
90. 抛物线的焦半径公式 抛物线焦半径.
过焦点弦长.
91.抛物线上的动点可设为P或 P,其中 .
92.二次函数的图象是抛物线:(1)顶点坐标为;(2)焦点的坐标为;(3)准线方程是.
93. 抛物线的切线方程
(1)抛物线上一点处的切线方程是.
(2)过抛物线外一点所引两条切线的切点弦方程是.
(3)抛物线与直线相切的条件是.
94.两个常见的曲线系方程
(1)过曲线,的交点的曲线系方程是
(为参数).
(2)共焦点的有心圆锥曲线系方程,其中.当时,表示椭圆; 当时,表示双曲线.
95.直线与圆锥曲线相交的弦长公式 或
(弦端点A,由方程 消去y得到,,为直线的倾斜角,为直线的斜率).
96.圆锥曲线的两类对称问题
(1)曲线关于点成中心对称的曲线是.
(2)曲线关于直线成轴对称的曲线是
.
97.“四线”一方程
对于一般的二次曲线,用代,用代,用代,用代,用代即得方程
,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.
98.证明直线与直线的平行的思考途径
(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行;
(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行.
99.证明直线与平面的平行的思考途径
(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面面平行.
100.证明平面与平面平行的思考途径
(1)转化为判定二平面无公共点;(2)转化为线面平行;(3)转化为线面垂直.
101.证明直线与直线的垂直的思考途径
(1)转化为相交垂直;(2)转化为线面垂直;(3)转化为线与另一线的射影垂直;
(4)转化为线与形成射影的斜线垂直.
102.证明直线与平面垂直的思考途径
(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;
(5)转化为该直线与两个垂直平面的交线垂直.
103.证明平面与平面的垂直的思考途径
(1)转化为判断二面角是直二面角;(2)转化为线面垂直.
104.平面向量加法的平行四边形法则向空间的推广
始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.
105.共线向量定理
对空间任意两个向量a、b(b≠0 ),a∥b存在实数λ使a=λb.
三点共线.
、共线且不共线且不共线.
106.共面向量定理
向量p与两个不共线的向量a、b共面的存在实数对,使.
推论 空间一点P位于平面MAB内的存在有序实数对,使,
或对空间任一定点O,有序实数对,使.
107.对空间任一点和不共线的三点A、B、C,满足(),则当时,对于空间任一点,总有P、A、B、C四点共面;当时,若平面ABC,则P、A、B、C四点共面;若平面ABC,则P、A、B、C四点不共面.
四点共面与、共面
(平面ABC).
108.空间向量基本定理
如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc.
推论 设O、A、B、C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数x,y,z,使.
109.射影公式
已知向量=a和轴,e是上与同方向的单位向量.作A点在上的射影,作B点在上的射影,则
〈a,e〉=a·e
110.向量的直角坐标运算
设a=,b=则(1)a+b=;
(2)a-b=;(3)λa= (λ∈R);
(4)a·b=;
111.设A,B,则= .
112.空间的线线平行或垂直
设,,则;
.
113.夹角公式
设a=,b=,则cos〈a,b〉=.
推论 ,此即三维柯西不等式.
114. 四面体的对棱所成的角
四面体中, 与所成的角为,则.
115.异面直线所成角
=
(其中()为异面直线所成角,分别表示异面直线的方向向量)
116.直线与平面所成角(为平面的法向量).
117.若所在平面若与过若的平面成的角,另两边,与平面成的角分别是、,为的两个内角,则
.
特别地,当时,有.
118.若所在平面若与过若的平面成的角,另两边,与平面成的角分别是、,为的两个内角,则
.
特别地,当时,有.
119.二面角的平面角
或(,为平面,的法向量).
120.三余弦定理
设AC是α内的任一条直线,且BC⊥AC,垂足为C,又设AO与AB所成的角为,AB与AC所成的角为,AO与AC所成的角为.则.
121. 三射线定理
若夹在平面角为的二面角间的线段与二面角的两个半平面所成的角是,,与二面角的棱所成的角是θ,则有 ;
(当且仅当时等号成立).
122.空间两点间的距离公式
若A,B,则
=.
123.点到直线距离
(点在直线上,直线的方向向量a=,向量b=).
124.异面直线间的距离
(是两异面直线,其公垂向量为,分别是上任一点,为间的距离).
125.点到平面的距离
(为平面的法向量,是经过面的一条斜线,).
126.异面直线上两点距离公式
.
.
().
(两条异面直线a、b所成的角为θ,其公垂线段的长度为h.在直线a、b上分别取两点E、F,,,).
127.三个向量和的平方公式

128. 长度为的线段在三条两两互相垂直的直线上的射影长分别为,夹角分别为,则有
.
(立体几何中长方体对角线长的公式是其特例).
129. 面积射影定理 .
(平面多边形及其射影的面积分别是、,它们所在平面所成锐二面角的为).
130. 斜棱柱的直截面
已知斜棱柱的侧棱长是,侧面积和体积分别是和,它的直截面的周长和面积分别是和,则
① .②.
131.作截面的依据
三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行.
132.棱锥的平行截面的性质
如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.
133.欧拉定理(欧拉公式)
(简单多面体的顶点数V、棱数E和面数F).
(1)=各面多边形边数和的一半.特别地,若每个面的边数为的多边形,则面数F与棱数E的关系:;
(2)若每个顶点引出的棱数为,则顶点数V与棱数E的关系:.
134.球的半径是R,则其体积,其表面积.
135.球的组合体
(1)球与长方体的组合体:
长方体的外接球的直径是长方体的体对角线长.
(2)球与正方体的组合体:
正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长.
(3) 球与正四面体的组合体:
棱长为的正四面体的内切球的半径为,外接球的半径为.
136.柱体、锥体的体积
137.分类计数原理(加法原理).
138.分步计数原理(乘法原理).
139.排列数公式 ==.(,∈N*,且).注:规定.
140.排列恒等式 (1);(2);
(3); (4);
(5).(6) .
141.组合数公式
===(∈N*,,且).
142.组合数的两个性质
(1)= ;(2) +=.
注:规定.
143.组合恒等式
(1);(2);(3);
(4)=;(5).
(6).
(7).
(8).
(9).
(10).
144.排列数与组合数的关系 .
145.单条件排列
以下各条的大前提是从个元素中取个元素的排列.
(1)“在位”与“不在位”
①某(特)元必在某位有种;②某(特)元不在某位有(补集思想)(着眼位置)(着眼元素)种.
(2)紧贴与插空(即相邻与不相邻)
①定位紧贴:个元在固定位的排列有种.
②浮动紧贴:个元素的全排列把k个元排在一起的排法有种.注:此类问题常用捆绑法;
③插空:两组元素分别有k、h个(),把它们合在一起来作全排列,k个的一组互不能挨近的所有排列数有种.
(3)两组元素各相同的插空
个大球个小球排成一列,小球必分开,问有多少种排法?
当时,无解;当时,有种排法.
(4)两组相同元素的排列:两组元素有m个和n个,各组元素分别相同的排列数为.
146.分配问题
(1)(平均分组有归属问题)将相异的、个物件等分给个人,各得件,其分配方法数共有.
(2)(平均分组无归属问题)将相异的·个物体等分为无记号或无顺序的堆,其分配方法数共有
.
(3)(非平均分组有归属问题)将相异的个物体分给个人,物件必须被分完,分别得到,,…,件,且,,…,这个数彼此不相等,则其分配方法数共有.
(4)(非完全平均分组有归属问题)将相异的个物体分给个人,物件必须被分完,分别得到,,…,件,且,,…,这个数中分别有a、b、c、…个相等,则其分配方法数有 .
(5)(非平均分组无归属问题)将相异的个物体分为任意的,,…,件无记号的堆,且,,…,这个数彼此不相等,则其分配方法数有.
(6)(非完全平均分组无归属问题)将相异的个物体分为任意的,,…,件无记号的堆,且,,…,这个数中分别有a、b、c、…个相等,则其分配方法数有.
(7)(限定分组有归属问题)将相异的()个物体分给甲、乙、丙,……等个人,物体必须被分完,如果指定甲得件,乙得件,丙得件,…时,则无论,,…,等个数是否全相异或不全相异其分配方法数恒有
.
147.“错位问题”及其推广
贝努利装错笺问题:信封信与个信封全部错位的组合数为
.
推广: 个元素与个位置,其中至少有个元素错位的不同组合总数为

.
148.二项式定理 ;
二项展开式的通项公式.
149.等可能性事件的概率.
150.互斥事件A,B分别发生的概率的和P(A+B)=P(A)+P(B).
151.个互斥事件分别发生的概率的和P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).
152.独立事件A,B同时发生的概率P(A·B)= P(A)·P(B).
153.n个独立事件同时发生的概率 P(A1· A2·…· An)=P(A1)· P(A2)·…· P(An).
154.n次独立重复试验中某事件恰好发生k次的概率
155.离散型随机变量的分布列的两个性质
(1);(2).
156.数学期望
157.数学期望的性质
(1)(2)若~,则.
(3) 若服从几何分布,且,则.
158.方差
159.标准差=.
160.方差的性质(1);(2)若~,则.
(3) 若服从几何分布,且,则.
161.方差与期望的关系.
162.正态分布密度函数,式中的实数μ,(>0)是参数,分别表示个体的平均数与标准差.
163.标准正态分布密度函数.
164.对于,取值小于x的概率.

.
165.回归直线方程 ,其中.
166.相关系数 .
|r|≤1,且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小.
167.在处的导数(或变化率或微商)
.
168.瞬时速度.
169.在的导数.
170. 函数在点处的导数的几何意义
函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是.
171.几种常见函数的导数(1) (C为常数).(2) .
(3) .(4) . (5) ;.
(6) ; .
172.导数的运算法则
(1).(2).(3).
173.复合函数的求导法则
设函数在点处有导数,函数在点处的对应点U处有导数,则复合函数在点处有导数,且,或写作.
174.判别是极大(小)值的方法
当函数在点处连续时,
(1)如果在附近的左侧,右侧,则是极大值;
(2)如果在附近的左侧,右侧,则是极小值.
175.复数的相等.()
176.复数的模(或绝对值)==.
177.复数的四则运算法则
(1);(2);
(3);
(4).

❺ 高中数学数列的相关内容

数列
本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.
②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;
③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整
体思想求解.
(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.
一、基本概念:
1、 数列的定义及表示方法:
2、 数列的项与项数:
3、 有穷数列与无穷数列:
4、 递增(减)、摆动、循环数列:
5、 数列{an}的通项公式an:
6、 数列的前n项和公式Sn:
7、 等差数列、公差d、等差数列的结构:
8、 等比数列、公比q、等比数列的结构:
二、基本公式:
9、一般数列的通项an与前n项和Sn的关系:an= Sn-Sn-1
10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
11、等差数列的前n项和公式:Sn=na1+[n(n-1)/2]d
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

12、等比数列的通项公式: an= a1 q^(n-1),an= ak q^(n-k)
(其中a1为首项、ak为已知的第k项,an≠0)
13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);
当q≠1时,Sn=a1(q^n-1)/(q-1)
三、有关等差、等比数列的结论
14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。
15、等差数列{an}中,若m+n=p+q,则
16、等比数列{an}中,若m+n=p+q,则
17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。
18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
19、两个等比数列{an}与{bn}的积、商、倒数组成的数列
{an bn}、 、 仍为等比数列。
20、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
21、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
23、三个数成等比的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)
24、{an}为等差数列,则 (c>0)是等比数列。
25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列。
四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。
26、分组法求数列的和:如an=2n+3n
27、错位相减法求和:如an=(2n-1)2n
28、裂项法求和:如an=1/n(n+1)
29、倒序相加法求和:如an=
30、求数列{an}的最大、最小项的方法:
① an+1-an=…… 如an= -2n2+29n-3
② (an>0) 如an=
③ an=f(n) 研究函数f(n)的增减性
31、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解:
(1)当 >0,d<0时,满足 的项数m使得 取最大值.
(2)当 <0,d>0时,满足 的项数m使得 取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。

❻ 求高中数学指数函数和数列的知识总结

指数函数的定义:形如“f(x)=a∧x”的就是指数函数,且要求:a>0且a≠1。
当0<a<1时,该指数函数为减函数;当a>1时该指数函数为增函数。
指数函数恒过定点(0,1),值域(0,+∞),定义域R。
数列:
等差数列:an=a1+(n-1)d,Sn=(a1+an)n/2
等比数列:an=a1*[q∧(n-1)],Sn=(a1-an)q/(1-q) 【注:这个公式是在q≠1的时候用】
或a1=a2=...=an,Sn=a1 ∧n
已知Sn求数列an通项公式:a1求出来;n≥2时an=Sn- S n-1;再把a1代入看看是否符合n≥2时的所求通项公式。
a n+1=p*an +q:第一步,两边同时相加q/(p-1);第二步,得到(an+q/(p-1))是等比数列,接下去求a1,公比q/(p-1),得到an+q/(p-1)的通项公式,再两边同时减去q/(p-1)得到an的通项公式。
其他的一些问题就具体问题具体分析吧

❼ 求高中数学基础知识提纲

希望能帮到你、、、、、、、、、、、、
高中数学知识点总结
高中数学立体几何初步知识点总结:
立体几何初步:①柱、锥、台、球及其简单组合体等内容是立体几何的基础,也是研究空间问题的基本载体,是高考考查的重要方面,在学习中应注意这些几何体的概念、性质以及对面积、体积公式的理解和运用。②三视图和直观图是认知几何体的基本内容,在高考中,对这两个知识点的考查集中在两个方面,一是考查三视图与直观图的基本知识和基本的视图能力,二是根据三视图与直观图进行简单的计算,常以选择题、填空题的形式出现。③几何体的表面积和体积,在高考中有所加强,一般以选择题、填空、简答等形式出现,难度不大,但是常与其他问题一起考查④平面的基本性质与推理主要包括平面的有关概念,四个公理,等角定理以及异面直线的有关知识,是整个立体几何的基础,学习时应加强对有关概念、定理的理解。⑤平行关系和垂直关系是立体几何中的两种重要关系,也是解决立体几何的重要关系,要重点掌握。
高中数学平面解析几何初步知识点总结:
平面解析几何初步:①直线与方程是解析几何的基础,是高考重点考查的内容,单独考查多以选择题、填空题出现;间接考查则以直线与圆、椭圆、双曲线、抛物线等知识综合为主,多为中、高难度试题,往往作为把关题出现在高考题目中。直接考查主要考查直线的倾斜角、直线方程,两直
高中数学集合知识点总结:
作为高中数学的一种基本语言及工具,几乎为每年高考的必考内容,多以选择题出现,分值约占总分的3%-5%,多与函数、不等式、数列等知识联系而命制小型综合题,根据新课标考试大纲的要求,集合关系与集合运算为考试重点,因此既要牢固掌握集合基本概念与运算,又要加强集合与其他数学知识的联系,突出集合的工具性,尤其是熟练进行集合的自然语言、图形语言、符号语言的相互转化。
线的位置关系,点到直线的距离,对称问题等,间接考查一定会出现在高考试卷中,主要考查直线与圆锥曲线的综合问题。②圆的问题主要涉及圆的方程、直线与圆的位置关系、圆与圆的位置关系以及圆的集合性质的讨论,难度中等或偏易,多以选择题、填空题的形式出现,其中热点为圆的切线问题。③空间直角坐标系是平面直角坐标系在空间的推广,在解决空间问题中具有重要的作业,空间向量的坐标运算就是在空间直角坐标系下实现的。空间直角坐标系也是解答立体几何问题的重要工具,一般是与空间向量在坐标运算结合起来运用,也不排除出现考查基础知识的选择题和填空题。
高中数学函数概念与基本初等函数ⅰ知识点总结:
函数概念与基本初等函数ⅰ:①函数是高中数学最重要、最基础的内容,函数的思想方法贯穿于各章的知识中,函数问题在每年的高考中,不但以
高中数学算法初步知识点总结:
算法初步:①算法是新课标增加的内容,以选择题或填空题的形式考查,应该注意理解算法的基本概念与特征,注意算法的本质是解决问题的一种程序性方法,学会算法的自然语言。框图程序设计语言等的相互转化。②基本算法语句也是新课标增加的内容,是数学及其应用的重要组成部分,预计高考对本部分的考查可能与代数、几何中的有关知识结合,以选择题、填空题的形式考查对几种基本算法语句的理解和应用。
选择题、填空题的形式出现,而且几乎每年都有一道解答题,考查内容重点涉及函数的概念、图像、性质等各个方面,难度在低、中、高档方面均有体现。②函数和方程为新课标新增添内容,要求结合二次函数的图像,了解函数的零点与方程根的联系,能判断一元二次方程的根的存在性及根的个数;根据具体函数的图像,能够用二分法求相应方程的近似解,本部分知识蕴含着数形结合的思想、函数与方程的思想,在学习时注意体会。③学习数学是为了应用数学,指数函数、对数函数以及幂函数等都是重要的基本初等函数,是函数概念的具体体现于综合应用,和其他函数一样,对于它们的定义、图像以及性质等是高考考查的重点,与其他函数、方程、不等式以及数列相融合的知识也是考查的热点。
高中数学统计知识点总结:
统计:①随机抽样在高考中主要是选择题或填空题,考查学生对各种抽样方法的理解,一次学习时应加强对这三种抽样飞的理解,搞清三种抽样法的区别和联系。②样本估计法也是以小题为主,考查排列分布直方图、平均数、标准差等的概念的理解和应用,学习时应结合实例理解样本估计总体的思想,加深对;频率分布直方图的理解与应用,能从数据中抽取基本的数字特征,并记准相应的公式。③变量的相关性的重点是变量间的线性相关及两个变量的线性相关、最小二法思想、回归方程的建立以及对回归直线与观测数据的理解。
高中数学概率知识点总结:
概率:①随机事件的概率为近几年新增添的内容,高考中主要以选择题、填空题的形式出现,与其他知识综合考查其应用,学习时,应通过基础知识的学习理解其基本概念、基本原理,然后在此基础上解决生活中的有关问题,还要理解随机事件发生的不确定性和频率的稳定性等知识。②古典概型是概率中最基本的一个概率模型,高考中,主要是利用古典概型的概率公式解决一些古典概型的应用题,考查形式可以是选择题、填空题、解答题。③几何概型是新增添内容,高考可能会有所侧重,主要以选择题、填空题出现,应注意基本概念的理解。
高中数学基本初等函数ⅱ(三角函数)知识点总结:

高中数学平面向量 知识点总结:
平面向量:在近几年的高考中,平面向量每年都考,而且有加强的趋势,在学习中应抓住两个方面:一是向量的概念、性质、运算;二是应用向量解决距离、夹角、垂直、模的问题。学会运用向量处理三角函数、解析几何、平面几何、实际应用等综合问题,以发展运算求解能力和解析、解决
高中数学三角恒等变形知识点总结:
三角恒等变形:①两角和与差的三角函数公式是历年高考的重要内容,而且有进一步加强的趋势。因此公式应用讲究一个活字,深刻理解各个公式之间的联系,掌握公式应用的通性通法是学习的关键。②三角恒等变形中的三角函数求值、化简及恒等证明是高考是热点,需要掌握的公式有两角和差、倍角的三角函数公式。学习的重点是掌握变换的基本思想方法,不是盲目地训练繁难 偏题、怪题,应注重通性、通法的运用。
实际问题的能力。
本初等函数ⅱ(三角函数):①三角函数是中学中重要的初等函数之一,它的定义和性质有十分明显的特征和规律性,它和代数、几何有着密切的联系,是研究其他部分知识的重要工具,在实际问题中也有重要的应用,是高考对基础知识和基本技能考查的重要内容之一。②在高考中主要有四类问题:一是与三角函数单调性有关的问题,二是与三角函数图像有关的问题,三是应用同角变换和诱导公式,求三角函数及化简和等式证明的问题,四是与周期和奇偶性有关的问题。③高考中多以选择题、填空题形式出现,但也不排除在解答题中单独出现,其难度为中、低档。
高中数学解三角形知识点总结:
解三角形:在高考试题中,有关解三角形的问题主要考查正弦定理、余弦定理及利用三角公式进行恒等变形的能力,以化简、求值或判断三角形的形状为主,也与其他知识结合,考查解决综合问题的能力。有关解三角形的题型主要是选择题、填空题、解答题等,一般为简单题或中档题。
高中数学数列知识点总结:
数列:数列是高中数学的重要内容,是中学数学联系实际的主要渠道之一,数列与数、式、函数、方程、不等式、三角函数、解析几何的关系十分密切。数列中的递推思想、函数思想、分类讨论思想以及数列求和、求通向公式的各种方法和技巧在中学数学中有着十分重要的地位,因此数列知识可以命综合性强的试题。每年高考中与数列有关的试题约占全卷的10%-15%,基因数列内容的客观题,也有数列与相关内容结合的综合题与实际应用题。
高中数学不等式知识点总结:
不等式:①不等关系是客观世界中量与量之间的一种主要关系,而不等式则是反映这种关系的基本形式,一直是高考考查的重点内容,尤其以实际问题、函数为背景的综合题较多。不等式的定义域性质是不等式的基础,许多不等式的定理、公式都是在此基础上推理、拓展而成的,因此学校时要抓住基本概念和性质,熟练掌握性质的变形及其应用,不断提升思维的深度和广度,才能在解决与不等式有关的综合题上有备无患、得心应手。②一元二次不等式是历年考查的重点,因为其与一元二次函数、一元二次方程等联系密切,内容交融,经常考查含参数的不等式的求解、恒成立问题、一元二次不等式的实际应用、综合推理题等。因此学习时应该通过图像了解一元二次不等式与相应的二次函数、二次方程的联系。③线性规划问题是众多知识的交汇点,在实际生活、实际生产中的应用十分广泛,而且在线性规划问题的解决中,需要用到多种数学思想方法。所以线性规划也是高考命题的热点内容。高考中主要考查平面区域的表示。线性目标函数的最值等问题,主要以选择题、填空题的形式出现,有时也以解答题的形式出现。

❽ 高中数学数列知识点归纳有哪些

高中数学数列知识点归纳有:

1、数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。

2、用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:列表法、图像法、解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。

3、等差数列通项公式:an=a1+(n-1)d,n=1时a1=S1,n≥2时an=Sn-Sn-1,an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b,则得到an=kn+b。

4、等差中项:由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。

5、等差数列性质:任意两项am,an的关系为:an=am+(n-m)d。它可以看作等差数列广义的通项公式。

6、等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。

7、等比数列性质:若m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;在等比数列中,依次每k项之和仍成等比数列。

8、在等比数列中,首项a1与公比q都不为零.注意:上述公式中an表示等比数列的第n项。

❾ 高中数学 数列的所有知识点谢谢

马上上图

❿ 高中数学知识整个体系脉络或框架

高考数学基础知识汇总
第一部分 集合
(1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;
(2) 注意:讨论的时候不要遗忘了 的情况。
(3)
第二部分 函数与导数
1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。
2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;
⑤换元法 ;⑥利用均值不等式 ; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性( 、 、 等);⑨导数法
3.复合函数的有关问题
(1)复合函数定义域求法:
① 若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:
①首先将原函数 分解为基本函数:内函数 与外函数 ;
②分别研究内、外函数在各自定义域内的单调性;
③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
注意:外函数 的定义域是内函数 的值域。
4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5.函数的奇偶性
⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;
⑵ 是奇函数 ;
⑶ 是偶函数 ;
⑷奇函数 在原点有定义,则 ;
⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;
(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;
6.函数的单调性
⑴单调性的定义:
① 在区间 上是增函数 当 时有 ;
② 在区间 上是减函数 当 时有 ;
⑵单调性的判定
1 定义法:
注意:一般要将式子 化为几个因式作积或作商的形式,以利于判断符号;
②导数法(见导数部分);
③复合函数法(见2 (2));
④图像法。
注:证明单调性主要用定义法和导数法。
7.函数的周期性
(1)周期性的定义:
对定义域内的任意 ,若有 (其中 为非零常数),则称函数 为周期函数, 为它的一个周期。
所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。
(2)三角函数的周期
① ;② ;③ ;
④ ;⑤ ;
⑶函数周期的判定
①定义法(试值) ②图像法 ③公式法(利用(2)中结论)
⑷与周期有关的结论
① 或 的周期为 ;
② 的图象关于点 中心对称 周期为2 ;
③ 的图象关于直线 轴对称 周期为2 ;
④ 的图象关于点 中心对称,直线 轴对称 周期为4 ;
8.基本初等函数的图像与性质
⑴幂函数: ( ;⑵指数函数: ;
⑶对数函数: ;⑷正弦函数: ;
⑸余弦函数: ;(6)正切函数: ;⑺一元二次函数: ;
⑻其它常用函数:
1 正比例函数: ;②反比例函数: ;特别的
2 函数 ;
9.二次函数:
⑴解析式:
①一般式: ;②顶点式: , 为顶点;
③零点式: 。
⑵二次函数问题解决需考虑的因素:
①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。
⑶二次函数问题解决方法:①数形结合;②分类讨论。
10.函数图象:
⑴图象作法 :①描点法 (特别注意三角函数的五点作图)②图象变换法③导数法
⑵图象变换:
1 平移变换:ⅰ ,2 ———“正左负右”
ⅱ ———“正上负下”;
3 伸缩变换:
ⅰ , ( ———纵坐标不变,横坐标伸长为原来的 倍;
ⅱ , ( ———横坐标不变,纵坐标伸长为原来的 倍;
4 对称变换:ⅰ ;ⅱ ;
ⅲ ; ⅳ ;
5 翻转变换:
ⅰ ———右不动,右向左翻( 在 左侧图象去掉);
ⅱ ———上不动,下向上翻(| |在 下面无图象);
11.函数图象(曲线)对称性的证明
(1)证明函数 图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明函数 与 图象的对称性,即证明 图象上任意点关于对称中心(对称轴)的对称点在 的图象上,反之亦然;
注:
①曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
②曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2a-x, y)=0;
③曲线C1:f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
④f(a+x)=f(b-x) (x∈R) y=f(x)图像关于直线x= 对称;
特别地:f(a+x)=f(a-x) (x∈R) y=f(x)图像关于直线x=a对称;
⑤函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;
12.函数零点的求法:
⑴直接法(求 的根);⑵图象法;⑶二分法.
13.导数
⑴导数定义:f(x)在点x0处的导数记作 ;
⑵常见函数的导数公式: ① ;② ;③ ;
④ ;⑤ ;⑥ ;⑦ ;
⑧ 。
⑶导数的四则运算法则:
⑷(理科)复合函数的导数:
⑸导数的应用:
①利用导数求切线:注意:ⅰ所给点是切点吗?ⅱ所求的是“在”还是“过”该点的切线?
②利用导数判断函数单调性:
ⅰ 是增函数;ⅱ 为减函数;
ⅲ 为常数;
③利用导数求极值:ⅰ求导数 ;ⅱ求方程 的根;ⅲ列表得极值。
④利用导数最大值与最小值:ⅰ求的极值;ⅱ求区间端点值(如果有);ⅲ得最值。
14.(理科)定积分
⑴定积分的定义:
⑵定积分的性质:① ( 常数);
② ;
③ (其中 。
⑶微积分基本定理(牛顿—莱布尼兹公式):
⑷定积分的应用:①求曲边梯形的面积: ;
3 求变速直线运动的路程: ;③求变力做功: 。
第三部分 三角函数、三角恒等变换与解三角形
1.⑴角度制与弧度制的互化: 弧度 , 弧度, 弧度
⑵弧长公式: ;扇形面积公式: 。
2.三角函数定义:角 中边上任意一点 为 ,设 则:

3.三角函数符号规律:一全正,二正弦,三两切,四余弦;
4.诱导公式记忆规律:“函数名不(改)变,符号看象限”;
5.⑴ 对称轴: ;对称中心: ;
⑵ 对称轴: ;对称中心: ;
6.同角三角函数的基本关系: ;

7.两角和与差的正弦、余弦、正切公式:①

② ③ 。

8.二倍角公式:① ;
② ;③ 。

9.正、余弦定理:
⑴正弦定理: ( 是 外接圆直径 )
注:① ;② ;③ 。
⑵余弦定理: 等三个;注: 等三个。
10。几个公式:
⑴三角形面积公式: ;
⑵内切圆半径r= ;外接圆直径2R=
11.已知 时三角形解的个数的判定:

第四部分 立体几何
1.三视图与直观图:注:原图形与直观图面积之比为 。
2.表(侧)面积与体积公式:
⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧= ;③体积:V=S底h
⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧= ;③体积:V= S底h:
⑶台体:①表面积:S=S侧+S上底S下底;②侧面积:S侧= ;③体积:V= (S+ )h;
⑷球体:①表面积:S= ;②体积:V= 。
3.位置关系的证明(主要方法):
⑴直线与直线平行:①公理4;②线面平行的性质定理;③面面平行的性质定理。
⑵直线与平面平行:①线面平行的判定定理;②面面平行 线面平行。
⑶平面与平面平行:①面面平行的判定定理及推论;②垂直于同一直线的两平面平行。
⑷直线与平面垂直:①直线与平面垂直的判定定理;②面面垂直的性质定理。
⑸平面与平面垂直:①定义---两平面所成二面角为直角;②面面垂直的判定定理。
注:理科还可用向量法。
4.求角:(步骤-------Ⅰ。找或作角;Ⅱ。求角)
⑴异面直线所成角的求法:
1 平移法:平移直线,2 构造三角形;
3 ②补形法:补成正方体、平行六面体、长方体等,4 发现两条异面直线间的关系。
注:理科还可用向量法,转化为两直线方向向量的夹角。
⑵直线与平面所成的角:
①直接法(利用线面角定义);②先求斜线上的点到平面距离h,与斜线段长度作比,得sin 。
注:理科还可用向量法,转化为直线的方向向量与平面法向量的夹角。
⑶二面角的求法:
①定义法:在二面角的棱上取一点(特殊点),作出平面角,再求解;
②三垂线法:由一个半面内一点作(或找)到另一个半平面的垂线,用三垂线定理或逆定理作出二面角的平面角,再求解;
③射影法:利用面积射影公式: ,其中 为平面角的大小;
注:对于没有给出棱的二面角,应先作出棱,然后再选用上述方法;
理科还可用向量法,转化为两个班平面法向量的夹角。
5.求距离:(步骤-------Ⅰ。找或作垂线段;Ⅱ。求距离)
⑴两异面直线间的距离:一般先作出公垂线段,再进行计算;
⑵点到直线的距离:一般用三垂线定理作出垂线段,再求解;
⑶点到平面的距离:
①垂面法:借助面面垂直的性质作垂线段(确定已知面的垂面是关键),再求解;
5 等体积法;
理科还可用向量法: 。
⑷球面距离:(步骤)
(Ⅰ)求线段AB的长;(Ⅱ)求球心角∠AOB的弧度数;(Ⅲ)求劣弧AB的长。
6.结论:
⑴从一点O出发的三条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面∠BOC上的射影在∠BOC的平分线上;
⑵立平斜公式(最小角定理公式):
⑶正棱锥的各侧面与底面所成的角相等,记为 ,则S侧cos =S底;
⑷长方体的性质
①长方体体对角线与过同一顶点的三条棱所成的角分别为 则:cos2 +cos2 +cos2 =1;sin2 +sin2 +sin2 =2 。
②长方体体对角线与过同一顶点的三侧面所成的角分别为 则有cos2 +cos2 +cos2 =2;sin2 +sin2 +sin2 =1 。
⑸正四面体的性质:设棱长为 ,则正四面体的:
1 高: ;②对棱间距离: ;③相邻两面所成角余弦值: ;④内切2 球半径: ;外接球半径: ;
第五部分 直线与圆
1.直线方程
⑴点斜式: ;⑵斜截式: ;⑶截距式: ;
⑷两点式: ;⑸一般式: ,(A,B不全为0)。
(直线的方向向量:( ,法向量(
2.求解线性规划问题的步骤是:
(1)列约束条件;(2)作可行域,写目标函数;(3)确定目标函数的最优解。
3.两条直线的位置关系:

4.直线系

5.几个公式
⑴设A(x1,y1)、B(x2,y2)、C(x3,y3),⊿ABC的重心G:( );
⑵点P(x0,y0)到直线Ax+By+C=0的距离: ;
⑶两条平行线Ax+By+C1=0与 Ax+By+C2=0的距离是 ;
6.圆的方程:
⑴标准方程:① ;② 。
⑵一般方程: (
注:Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆 A=C≠0且B=0且D2+E2-4AF>0;
7.圆的方程的求法:⑴待定系数法;⑵几何法;⑶圆系法。
8.圆系:
⑴ ;
注:当 时表示两圆交线。
⑵ 。
9.点、直线与圆的位置关系:(主要掌握几何法)
⑴点与圆的位置关系:( 表示点到圆心的距离)
① 点在圆上;② 点在圆内;③ 点在圆外。
⑵直线与圆的位置关系:( 表示圆心到直线的距离)
① 相切;② 相交;③ 相离。
⑶圆与圆的位置关系:( 表示圆心距, 表示两圆半径,且 )
① 相离;② 外切;③ 相交;
④ 内切;⑤ 内含。
10.与圆有关的结论:
⑴过圆x2+y2=r2上的点M(x0,y0)的切线方程为:x0x+y0y=r2;
过圆(x-a)2+(y-b)2=r2上的点M(x0,y0)的切线方程为:(x0-a)(x-a)+(y0-b)(y-b)=r2;
⑵以A(x1,y2)、B(x2,y2)为直径的圆的方程:(x-x1)(x-x2)+(y-y1)(y-y2)=0。
第六部分 圆锥曲线
1.定义:⑴椭圆: ;
⑵双曲线: ;⑶抛物线:略
2.结论
⑴焦半径:①椭圆: (e为离心率); (左“+”右“-”);
②抛物线:
⑵弦长公式:

注:(Ⅰ)焦点弦长:①椭圆: ;②抛物线: =x1+x2+p= ;(Ⅱ)通径(最短弦):①椭圆、双曲线: ;②抛物线:2p。
⑶过两点的椭圆、双曲线标准方程可设为: ( 同时大于0时表示椭圆, 时表示双曲线);
⑷椭圆中的结论:
①内接矩形最大面积 :2ab;
②P,Q为椭圆上任意两点,且OP 0Q,则 ;
③椭圆焦点三角形:<Ⅰ>. ,( );<Ⅱ>.点 是 内心, 交 于点 ,则 ;
④当点 与椭圆短轴顶点重合时 最大;
⑸双曲线中的结论:
①双曲线 (a>0,b>0)的渐近线: ;
②共渐进线 的双曲线标准方程为 为参数, ≠0);
③双曲线焦点三角形:<Ⅰ>. ,( );<Ⅱ>.P是双曲线 - =1(a>0,b>0)的左(右)支上一点,F1、F2分别为左、右焦点,则△PF1F2的内切圆的圆心横坐标为 ;
④双曲线为等轴双曲线 渐近线为 渐近线互相垂直;
(6)抛物线中的结论:
①抛物线y2=2px(p>0)的焦点弦AB性质:<Ⅰ>. x1x2= ;y1y2=-p2;
<Ⅱ>. ;<Ⅲ>.以AB为直径的圆与准线相切;<Ⅳ>.以AF(或BF)为直径的圆与 轴相切;<Ⅴ>. 。
②抛物线y2=2px(p>0)内结直角三角形OAB的性质:
<Ⅰ>. ; <Ⅱ>. 恒过定点 ;
<Ⅲ>. 中点轨迹方程: ;<Ⅳ>. ,则 轨迹方程为: ;<Ⅴ>. 。
③抛物线y2=2px(p>0),对称轴上一定点 ,则:
<Ⅰ>.当 时,顶点到点A距离最小,最小值为 ;<Ⅱ>.当 时,抛物线上有关于 轴对称的两点到点A距离最小,最小值为 。
3.直线与圆锥曲线问题解法:
⑴直接法(通法):联立直线与圆锥曲线方程,构造一元二次方程求解。
注意以下问题:
①联立的关于“ ”还是关于“ ”的一元二次方程?
②直线斜率不存在时考虑了吗?
③判别式验证了吗?
⑵设而不求(代点相减法):--------处理弦中点问题
步骤如下:①设点A(x1,y1)、B(x2,y2);②作差得 ;③解决问题。
4.求轨迹的常用方法:(1)定义法:利用圆锥曲线的定义; (2)直接法(列等式);(3)代入法(相关点法或转移法);⑷待定系数法;(5)参数法;(6)交轨法。
第七部分 平面向量
⑴设a=(x1,y1),b=(x2,y2),则: ① a‖b(b≠0) a= b ( x1y2-x2y1=0;
② a⊥b(a、b≠0) a•b=0 x1x2+y1y2=0 .
⑵a•b=|a||b|cos<a,b>=x2+y1y2;
注:①|a|cos<a,b>叫做a在b方向上的投影;|b|cos<a,b>叫做b在a方向上的投影;
6 a•b的几何意义:a•b等于|a|与|b|在a方向上的投影|b|cos<a,b>的乘积。
⑶cos<a,b>= ;
⑷三点共线的充要条件:P,A,B三点共线 ;
附:(理科)P,A,B,C四点共面 。
第八部分 数列
1.定义:
⑴等差数列 ;
⑵等比数列

2.等差、等比数列性质
等差数列 等比数列
通项公式
前n项和
性质 ①an=am+ (n-m)d, ①an=amqn-m;
②m+n=p+q时am+an=ap+aq ②m+n=p+q时aman=apaq
③ 成AP ③ 成GP
④ 成AP, ④ 成GP,
等差数列特有性质:
1 项数为2n时:S2n=n(an+an+1)=n(a1+a2n); ; ;
2 项数为2n-1时:S2n-1=(2n-1) ; ; ;
3 若 ;若 ;
若 。
3.数列通项的求法:
⑴分析法;⑵定义法(利用AP,GP的定义);⑶公式法:累加法( ;
⑷叠乘法( 型);⑸构造法( 型);(6)迭代法;
⑺间接法(例如: );⑻作商法( 型);⑼待定系数法;⑽(理科)数学归纳法。
注:当遇到 时,要分奇数项偶数项讨论,结果是分段形式。
4.前 项和的求法:
⑴拆、并、裂项法;⑵倒序相加法;⑶错位相减法。
5.等差数列前n项和最值的求法:
⑴ ;⑵利用二次函数的图象与性质。
第九部分 不等式
1.均值不等式:
注意:①一正二定三相等;②变形, 。
2.绝对值不等式:
3.不等式的性质:
⑴ ;⑵ ;⑶ ;
;⑷ ; ;
;⑸ ;(6)

4.不等式等证明(主要)方法:
⑴比较法:作差或作比;⑵综合法;⑶分析法。
第十部分 复数
1.概念:
⑴z=a+bi∈R b=0 (a,b∈R) z= z2≥0;
⑵z=a+bi是虚数 b≠0(a,b∈R);
⑶z=a+bi是纯虚数 a=0且b≠0(a,b∈R) z+ =0(z≠0) z2<0;
⑷a+bi=c+di a=c且c=d(a,b,c,d∈R);
2.复数的代数形式及其运算:设z1= a + bi , z2 = c + di (a,b,c,d∈R),则:
(1) z 1± z2 = (a + b) ± (c + d)i;⑵ z1.z2 = (a+bi)•(c+di)=(ac-bd)+ (ad+bc)i;⑶z1÷z2 = (z2≠0) ;
3.几个重要的结论:
;⑶ ;⑷
⑸ 性质:T=4; ;
(6) 以3为周期,且 ; =0;
(7) 。
4.运算律:(1)
5.共轭的性质:⑴ ;⑵ ;⑶ ;⑷ 。
6.模的性质:⑴ ;⑵ ;⑶ ;⑷ ;
第十一部分 概率
1.事件的关系:
⑴事件B包含事件A:事件A发生,事件B一定发生,记作 ;
⑵事件A与事件B相等:若 ,则事件A与B相等,记作A=B;
⑶并(和)事件:某事件发生,当且仅当事件A发生或B发生,记作 (或 );
⑷并(积)事件:某事件发生,当且仅当事件A发生且B发生,记作 (或 ) ;
⑸事件A与事件B互斥:若 为不可能事件( ),则事件A与互斥;
(6)对立事件: 为不可能事件, 为必然事件,则A与B互为对立事件。
2.概率公式:
⑴互斥事件(有一个发生)概率公式:P(A+B)=P(A)+P(B);
⑵古典概型: ;
⑶几何概型: ;

第十二部分 统计与统计案例
1.抽样方法
⑴简单随机抽样:一般地,设一个总体的个数为N,通过逐个不放回的方法从中抽取一个容量为n的样本,且每个个体被抽到的机会相等,就称这种抽样为简单随机抽样。
注:①每个个体被抽到的概率为 ;
②常用的简单随机抽样方法有:抽签法;随机数法。
⑵系统抽样:当总体个数较多时,可将总体均衡的分成几个部分,然后按照预先制定的
规则,从每一个部分抽取一个个体,得到所需样本,这种抽样方法叫系统抽样。
注:步骤:①编号;②分段;③在第一段采用简单随机抽样方法确定其时个体编号 ;
④按预先制定的规则抽取样本。
⑶分层抽样:当已知总体有差异比较明显的几部分组成时,为使样本更充分的反映总体的情况,将总体分成几部分,然后按照各部分占总体的比例进行抽样,这种抽样叫分层抽样。
注:每个部分所抽取的样本个体数=该部分个体数
2.总体特征数的估计:
⑴样本平均数 ;
⑵样本方差 ;
⑶样本标准差 = ;
3.相关系数(判定两个变量线性相关性):
注:⑴ >0时,变量 正相关; <0时,变量 负相关;
⑵① 越接近于1,两个变量的线性相关性越强;② 接近于0时,两个变量之间几乎不存在线性相关关系。
4.回归分析中回归效果的判定:
⑴总偏差平方和: ⑵残差: ;⑶残差平方和: ;⑷回归平方和: - ;⑸相关指数 。
注:① 得知越大,说明残差平方和越小,则模型拟合效果越好;
② 越接近于1,,则回归效果越好。
5.独立性检验(分类变量关系):
随机变量 越大,说明两个分类变量,关系越强,反之,越弱。
第十四部分 常用逻辑用语与推理证明
1. 四种命题:
⑴原命题:若p则q; ⑵逆命题:若q则p;
⑶否命题:若 p则 q;⑷逆否命题:若 q则 p
注:原命题与逆否命题等价;逆命题与否命题等价。
2.充要条件的判断:
(1)定义法----正、反方向推理;
(2)利用集合间的包含关系:例如:若 ,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;
3.逻辑连接词:
⑴且(and) :命题形式 p q; p q p q p q p
⑵或(or):命题形式 p q; 真 真 真 真 假
⑶非(not):命题形式 p . 真 假 假 真 假
假 真 假 真 真
假 假 假 假 真
4.全称量词与存在量词
⑴全称量词-------“所有的”、“任意一个”等,用 表示;
全称命题p: ;
全称命题p的否定 p: 。
⑵存在量词--------“存在一个”、“至少有一个”等,用 表示;
特称命题p: ;
特称命题p的否定 p: ;
第十五部分 推理与证明
1.推理:
⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。
①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。
注:归纳推理是由部分到整体,由个别到一般的推理。
②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。
注:类比推理是特殊到特殊的推理。
⑵演绎推理:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。
注:演绎推理是由一般到特殊的推理。
“三段论”是演绎推理的一般模式,包括:
⑴大前提---------已知的一般结论;
⑵小前提---------所研究的特殊情况;
⑶结 论---------根据一般原理,对特殊情况得出的判断。
二.证明
⒈直接证明
⑴综合法
一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。综合法又叫顺推法或由因导果法。
⑵分析法
一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。分析法又叫逆推证法或执果索因法。
2.间接证明------反证法
一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。
附:数学归纳法(仅限理科)
一般的证明一个与正整数 有关的一个命题,可按以下步骤进行:
⑴证明当 取第一个值 是命题成立;
⑵假设当 命题成立,证明当 时命题也成立。
那么由⑴⑵就可以判定命题对从 开始所有的正整数都成立。
这种证明方法叫数学归纳法。
注:①数学归纳法的两个步骤缺一不可,用数学归纳法证明问题时必须严格按步骤进行;
3 的取值视题目而4 定,5 可能是1,6 也可能是2等。
第十六部分 理科选修部分
1. 排列、组合和二项式定理
⑴排列数公式: =n(n-1)(n-2)…(n-m+1)= (m≤n,m、n∈N*),当m=n时为全排列 =n(n-1)(n-2)…3.2.1=n!;
⑵组合数公式: (m≤n), ;
⑶组合数性质: ;
⑷二项式定理:
①通项: ②注意二项式系数与系数的区别;
⑸二项式系数的性质:
①与首末两端等距离的二项式系数相等;②若n为偶数,中间一项(第 +1项)二项式系数最大;若n为奇数,中间两项(第 和 +1项)二项式系数最大;

(6)求二项展开式各项系数和或奇(偶)数项系数和时,注意运用赋值法。
2. 概率与统计
⑴随机变量的分布列:
①随机变量分布列的性质:pi≥0,i=1,2,…; p1+p2+…=1;
②离散型随机变量:
X x1 X2 … xn …
P P1 P2 … Pn …
期望:EX= x1p1 + x2p2 + … + xnpn + … ;
方差:DX= ;
注: ;
③两点分布:
X 0 1 期望:EX=p;方差:DX=p(1-p).
P 1-p p

4 超几何分布:
一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则 其中, 。
称分布列

X 0 1 … m
P …
为超几何分布列, 称X服从超几何分布。
⑤二项分布(独立重复试验):
若X~B(n,p),则EX=np, DX=np(1- p);注: 。
⑵条件概率:称 为在事件A发生的条件下,事件B发生的概率。
注:①0 P(B|A) 1;②P(B∪C|A)=P(B|A)+P(C|A)。
⑶独立事件同时发生的概率:P(AB)=P(A)P(B)。
⑷正态总体的概率密度函数: 式中 是参数,分别表示总体的平均数(期望值)与标准差;
(6)正态曲线的性质:
①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,关于直线x= 对称;
③曲线在x= 处达到峰值 ;④曲线与x轴之间的面积为1;
5 当 一定时,6 曲线随 质的变化沿x轴平移;
7 当 一定时,8 曲线形状由 确定: 越大,9 曲线越“矮胖”,10 表示总体分布越集中;
越小,曲线越“高瘦”,表示总体分布越分散。
注:P =0.6826;P =0.9544
P =0.9974