当前位置:首页 » 基础知识 » 四年级下册青教版数学知识点总结
扩展阅读
动漫绘图师怎么做 2024-12-29 18:32:27
想学建筑零基础怎么学 2024-12-29 18:27:19
编程师基础课程有哪些 2024-12-29 18:26:39

四年级下册青教版数学知识点总结

发布时间: 2022-08-18 16:38:05

❶ 小学数学四年级知识点梳理

小学数学四年级(上册) 知识点
数数知识点:
1、认识数级、数位、计数单位,并了解它们之间的对应关系。
数级 …… 亿级 万级 个级
数位 …… 千亿位 百亿位 十亿位 亿

位 千万位 百万位 十万位 万

位 千

位 百

位 十

位 个


计数单位 …… 千亿 百亿 十亿 亿 千万 百万 十万 万 千 百 十 个
2、十进制计数法。相邻两个计数单位之间的进率是十。
3、数数。能一万一万地数,十万十万地数,一百万一百万地数……

亿以内数的读法、写法知识点:
1、 亿以内数的读数方法。
含有个级、万级和亿级的数,必须先读亿级,再读万级,最后读个级。(即从高位读起)亿级或万级的数都按个级读数的方法,在后面要加上亿或万。在级末尾的零不读,在级中间的零必须读。中间不管连续有几个零,只读一个零。
2、 亿以内数的写数方法。
从高位写起,按照数位的顺序写,中间或末尾哪一位上一个单位也没有,就在那一位上写0。
3、 比较数大小的方法。
多位数比较大小,如果位数不同,那么位数多的这个数就大,位数少的这个数就小。如果位数相同,从左起第一位开始比起,哪个数字大,哪个数就大。如果左起第一位上的数相同,就开始比第二位……直到比出大小为止。

北师大版小学数学四年级(下册)知识点

一 小数的认识和加减法

【知识要点】

小数的意义

1、小数的意义: 用来表示十分之几、百分之几、千分之几……的数,叫小数。

2、体会十进分数与小数的关系,并能互相转。

3、表示十分之几的小数是一位小数,百分之几的小数是两位小数,千分之几的小数是三位小数……

4、小数的读写法。

5、借助计数器,介绍小数部分的数位以及数位之间的进率

6、掌握小数的数位和计数单位 。

7、了解小数的组成:整数部分和小数部分

测量活动(小数的单位换算 )

1、1分米=0.1米 1厘米=0.01米 1克=0.001千克……学会低级单位与高级单位之间的互化(长度单位,面积单位,重量单位……)。低级单位转化为高级单位时,先将这个低级单位的数改写成分数的形式,再写成小数的形式。

2、会进行单名数与复名数之间的互化。

比大小(比较小数的大小)

1、会比较两个小数的大小以及将几个小数按大小顺序排列。

2、比较小数大小的方法:先看整数部分,整数部分大的小数就大。整数部分相同,再看小数部分的十分位,十分位上数字大的小数就大……

购物小票-----小数的加减法(不进位,不退位)

1、不进位加法,不退位减法的计算方法:小数点对齐,也就是相同数位对齐,再按照整数加减法的法则进行计算。

2、能解决简单的小数加减法的实际问题。

量 体 重----小数的加减法(进位加、退位减)

1、小数进位加法和退位减法的计算法则(同整数加、减法的法则相同)。

2、小数的性质:小数末尾加上“0”或去掉“0”小数的大小不变。

3、整数减去小数,可以在整数小数点的后面添上“0”,帮助计算。

歌手大赛---小数加、减法的混合运算

1、掌握小数混合运算的顺序与整数四则混合运算一样。

2、整数加、减法的运算定律同样适用于小数加减法。

3、掌握小数加、减法的估算。

二 认识图形

【知识框架】

1、图形分类(按不同标准给已知图形进行分类)

三角形的分类(认识直角三角形、锐角三角形、钝角三角形、等腰三角形、等边三角形)

2、三角形 三角形内角和

三角形三边之间的关系

3、四边形的分类(初步认识梯形、进一步认识平行四边形)

4、图案欣赏

【知识要点】

图形分类

1、按照不同的标准给已知图形进行分类:

(1)按平面图形和立体图形分;

(2)按平面图形时否由线段围成来分的;

(3)按图形的边数来分。通过自己动手分类,对图形进行再认识,了解图形的特征。

2、了解平行四边形易变形和三角形的稳定性在生活中的应用。

三角形分类

1、把三角形按照不同的标准分类,并说明分类依据。

(1)按角分,分为:直角三角形、锐角三角形、钝角三角形,并了解其本质特征:三个角都是锐角的三角形是锐角三角形,有一个角是直角的三角形是直角三角形,有一个角是钝角的三角形是钝角三角形。

(2)按边分,分为:等腰三角形、等边三角形、任意三角形。有两条边相等的三角形是等腰三角形,三条边都相等的三角形是等边三角形。

2、通过分类,使学生弄清等腰三角形和等边三角形的关系:等边三角形是特殊

的等腰三角形。

三角形内角和

1、任意一个三角形内角和等于180度。

2、 能应用三角形内角和的性质解决一些简单的问题。

三角形边的关系

1、 三角形任意两边之和大于第三边。
2、根据上述知识点判断所给的已知长度的三条线段能否围成三角形。如果能围

成三角形,能围成一个什么样的三角形。

四边形的分类

1、通过观察、比较、分类等活动,了解由四条线段围成的图形是四边形,四边形中有两组对边分别平行的四边形是平行四边形,只由一组对边平行的四边形是梯形。

2、知道长方形、正方形是特殊的平行四边形。

3、了解正方形、长方形、等腰梯形、菱形、等腰三角形、等边三角形、圆形是轴对称图形。

图 案 欣 赏

1、通过欣赏图案,体会图形排列的规律,感受图案的美。
2、利用对称、平移和旋转,设计简单的图案。

三 小数乘法

【知识框架】

小数乘法的意义 小数乘法的意义

小数点移动引起小数大小变化的规律

积的小数位数与乘数的小数位数的关系

计算小数乘法 会用竖式计算小数乘法及估算

小数的混合运算(整数运算定律完全适合小数)

【知识要点】

文具店(小数乘法的意义)

通过具体情境教学使学生了解小数与整数相乘就是表示几个相同加数的和的简便运算。

1、小数乘法的意义

小数乘法的意义比整数乘法的意义,有了进一步的扩展.小数乘法的意义包括两种情况:一是同整数乘法的意义相同,即求相同加数的和的简便运算.二是求一个数的十分之几,百分之几……是多少.

2、小数的计算法则

计算小数乘法,先按照整数乘示的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点.小数计算乘法,用的是转化的思想方法.先把小数转化为整数算出积,再确定小数点的位置,还原成小数乘法的积.如6.2×0.3看作62×3相乘的积是186,因数中一共有两位小数,就从186的右边起数出两位,点上小数点还原成小数乘法的积1.86.因此,小数乘法的关键是处理好小数点.在点小数点时注意,乘得的积的小数位数不够时,要在前面用0补足,如0.04×0.2=0.008,在8的前面补两个0,点上小数点后,整数部分也写一个0.

小数点搬家(掌握小数点移动引起小数大小变化的规律)

明白小数点向左移动一位,小数就缩小到原来的十分之一;小数点向左移动两位,小数就缩小到原来的百分之一……以此类推。小数点向右移动一位,这个数就扩大到原来的10倍;小数点向右移动两位,这个数就扩大到原来100倍……以此类推。

街心广场(积的小数位数与乘数的小数位数的关系)

积的小数位数与乘法的小数位数的关系:小数乘法中各个因数中小数的位数和就是这道题中积的小数的位数。

包装(小数乘法2)

小数乘小数计算方法,即将小数乘法转化为整数乘法进行计算。根据乘数扩大的倍数,将积缩小相同倍数,进一步体会到两个乘数共有几位小数,积就有几位小数。

爬行最慢的哺乳动物(小数乘法3)

进一步理解小数乘小数的计算方法即两个因数里共有几位小数,积就有几位小数;当其中的一个因数是整十数时,积中如果有一位小数,就在末尾画掉一个零……

手拉手(小数的混合运算)

小数四则混合运算的运算顺序与整数四则混合运算的顺序相同。整数的运算定律在小数运算中仍然适用。例如乘法的结合律,交换律,分配律。等等。

四 观察物体

不同位置观察物体的范围不同

不同位置观察物体的形状不同

节日礼物(不同位置观察物体的范围不同)

1、随着观察位置的高低与远近变化,能判断出观察对象的画面所发生的相应变化。

2、根据观察到的画面,判断出观察者所在的位置。

天安门广场(不同位置观察物体的形状不同)

1、通过观察、比较一些照片,能够识别和判断拍摄地点与照片的对应关系。

2、通过观察连续拍摄到的一组照片,能够判断照片拍摄的前后顺序。

第五单元“小数除法”
《精打细算》―――除数是整数的小数除法

(1)、小数除法的意义:小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算。

(2)、小数除以整数的计算方法:除数为整数的小数除法和整数除法的计算类似,只要商的小数点和被除数的小数点对齐就可以了。

2、《参观博物馆》―――整数除以整数商是小数的小数除法

整数除以整数,商是小数的小数除法的计算方法:先按照整数除法的法则去做,如果除到被除数的末尾仍有余数,就在后面填上0继续除。

3、《谁打电话的时间长》―――除数是小数的除法

(1)、商不变的规律:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。

(2)、除数是小数的小数除法的计算方法:要把被除数和除数扩大相同的倍数,使除数变成整数,再按照小数除以整数的方法进行计算。

4、《人民币兑换》―――积、商的近似值

求近似值方法:积取近似值是先精确计算,再根据题目要求取近似值;商取近似值是直接根据要求多除一位,然后根据题目要求取近似值。注意:有时会出现四不舍、五不入的情况,应根据题目的特点去求出近似数。

5、《谁爬得快》―――循环小数

(1)、循环现象:生活中很多时候有依次不断重复出现的现象。如:日出日落、时间……

(2)、循环小数:从小数部分的某一位起,一个数字或几个数字依次不断地重复出现,这样的小数就叫做循环小数。

(3)、 会用四舍五入法对循环小数取近似值,方法与小数取近似值的方法相同,保留几位小数就看这个小数的下一位。

6、《电视.......》――小数的四则混合运算

(1)、小数连除和乘除混合运算,运算顺序和整数是一样的。

(2)、计算小数四则混合运算和整数四则混合运算的顺序完全相同。

激情奥运

(1)通过“奥运”提供的各种信息,综合应用所学的知识和方法,解决有关的问题。

(2)通过解决奥运赛场上的有关问题,体会到数学和体育这间的联系,进一步体会数学的价值。

六 游戏公平

【知识框架】

通过游戏活动,体验事件发生的等可能性。

等可能

通过游戏活动分析,判断游戏规则的公平

能制定公平的游戏规则。

能通过实验感受实际生活中的随机性。

可能性不相等

游戏公平能通过游戏活动,体验事件发生可能性不相等。

能辨别游戏可能性是否相等。

能通过自己的分析思考修改游戏规则使之公平,且方法多样。谁 先 走(判断规则的公平性,设计公平的规则)

【知识要点】

1、体会事件发生的等可能性。体会可能性相同游戏公平,可能性不同游戏不公平。

2、感受规则在游戏中的作用,建立规则意识。并会制定公平的游戏规则。

3、进一步体验游戏中存在的随机性的特点。

七 方程

用字母表示数.

方程1.方程的意义2.解简易方程3.列方程解应用题

【知识要点】

用字母表示数

1、用字母表示运算定律和有关图形的面积公式。

例如:加法交换律:a+b=b+a

加法结合律:a+b+c=a+(b+c)

减法的特性:a-b-c=a-(b+c)

乘法交换律:a×b=b×a

乘法结合律:a×b×c=a×(b×c)

乘法分配律:a×(b+c)=a×b×a×c

正方形周长:c=4a正方形面积:s=a×a

长方形的周长:C=(a+b)×2长方形面积:s=a×b

此外,还可以拓展到以前曾经学过的

路程=速度×时间总价=单价×数量……

2、字母表示数的时候,字母与数字相乘,字母与字母相乘,中间的乘号可以用小圆点代替或者省略。例如:a×5=5·a=5a 数字一般都写在字母的前面。

3、区别a的平方和2乘a的区别。

方程(方程的意义)

1、了解方程的意义:含有未知数的等式叫做方程。

2、掌握方程与等式的关系:方程是等式但等式不一定是方程.或者说方程属于等式,等式包含方程.并能用图形表示.

3、根据情境图找出等量关系,会列方程。

天平游戏一(解简易方程未知数是加数或被减数)

1、等式两边都加上或减去同一个数,等式仍然成立。

2、能根据等式的这个性质求出方程中的未知数。

方程的解:使方程左右两边相等的未知数的值叫做方程的解。

解方程:求方程的解的过程叫做解方程。

3、学会检验方程的解是否正确。

天平游戏二(解简易方程未知数是因数或被除数)

1、等式两边都乘或除以同一个数(零除外),等式仍然成立。

2、能根据一定的情境,列方程解决问题。

猜数游戏(解简易方程)

1、会利用等式的性质解ax±b=c类型的方程。并能够把方程的解带回方程中进行检验。

2、会用方程解答简单的应用题。

邮票的张数(列方程解应用题)

1、学会解形如cx±ax=b这样的方程,能够运用方程解应用题。

2、使学生掌握应将一倍数设为未知数.

❷ 四年级数学知识点有哪些

四年级数学知识点如下:

1、四位分级法:即以四位数为一个数级的分级方法。

2、数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。

3、在几何学中,直线上的一点和它一旁的部分所组成的图形称为射线。

4、连接两点间线段的长度叫做这两点间的距离。

5、角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。

❸ 四年级数学知识点有哪些

四年级数学知识点有:

1、因数中间或末尾有0的三位数乘两位数。

2、如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

3、已经学过的面积单位有平方厘米(cm2)、平方分米(dm2)、平方米(m2)、公顷、平方千米(km2)。

4、把公顷转化为平方米,只要在公顷前面的数据后面直接添写4个0。

5、房屋(建筑)面积、教室面积、校园绿化面积等,一般要用“平方米”作单位。

❹ 最新最全人教版小学四年级数学下册知识点总结

来上新啦,2021人教版的:

四年级下册数学复习资料全册1-8单元知识点归纳

第一单元 四则运算

1.加、减的意义和各部分间的关系:

(1)把两个数合并成一个数的运算,叫做加法。

(2)相加的两个数叫做加数。加得的数叫做和。

(3)已知两个数的和与其中的一个加数,求另一个加数的运算,叫做减法。

(4)在减法中,已知的和叫做被减数……。减法是加法的逆运算。

(5)加法各部分间的关系:和=加数+加数加数=和-另一个加数

(6)减法各部分间的关系:差=被减数-减数

减数=被减数-差

被减数=减数+差

2.乘、除法的意义和各部分间的关系

(1)求几个相同加数的和和的简便运算,叫做乘法。

(2)相乘的两个数叫做因数。乘得的数叫做积。

(3)已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

(4)在除法中,已知的积叫做被除数……。除法是乘法的逆运算。

(5)乘法各部分间的关系:

积=因数×因数

因数=积÷另一个因数

(6)除法各部分间的关系:

商=被除数÷除数

除数=被除数÷商

被除数=商×除数

(7)有余数的除法,

被除数=商×除数+余数

3.加法、减法、乘法、除法统称为四则运算

4.四则混和运算的顺序

(1)在没有括号的算式里,如果只有加、减法,或者只有乘、除法,都要按(从左往右)的顺序计算;

(2)在没有括号的算式里,如果既有乘、除法,又有加、减法,要先算(乘、除法),后算(加、减法);(先乘除,后加减)

(3)在有括号的算式里,要先算括号里面的,后算括号外面的。

5.有关 0 的计算

①一个数和0相加,结果还得原数:a+0=a 0+a=a

②一个数减去0,结果还得这个数:a-0=a

③一个数减去它自己,结果得零:a-a=0

④一个数和0相乘,结果得0:a×0=0 ;0×a=0

⑤0除以一个非0的数,结果得0:0÷a=0;

⑥0不能做除数:a÷0=(无意义)

6.租船问题。解答租船问题的方法:先假设、再调整。

第二单元 观察物体二

1.正确辨认从上面、前面、左面观察到物体的形状。

2.观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意,只分上下画数量。

3.从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。

4.从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。

5.从不同的位置观察,才能更全面地认识一个物体。

第三单元 运算定律

……

更多详细内容请见网络文库:2021人教版小学四年级下册数学全册1-8单元知识点归纳

整理不易,如有帮助,请予采纳。

❺ 四年级下册数学归纳总结

第单元:四则运算 知识点1:没括号算式加减左往右按顺序计算 知识点2:没括号算式乘除左往右按顺序计算 总结:同级运算左右进行计算(即加减或乘除同级) 知识点3:含加减乘除(含括号)算式要先算乘除算加减 总结:先乘除加减 知识点4:算式括号要先算括号面 总结:括号先算括号面 知识点5:0能作除数 总结:数加0原数数减0原数数乘00,0除任何数都0,0能作除数(意义)

❻ 小学四年级的下学期的数学教科书包含哪些知识点

一、运算顺序;二、位置和方向;三、运算定律和简便运算;四、三角形;五、小数的意义和性质;六、小数的加减法;七、统计图.
记得要采纳哦!

❼ 四年级下册数学知识点总结

1、加法:把两个数合并成一个数的运算。
2、减法:已知两个数的和与其中一个加数,求另一个加数的运算。
3、乘法:求相同加数和的简便计算。
4、除法:已知两个因数的积和其中一个因数,求另一个因数的运算。
小数四则运算的运算顺序和整数四则运算顺序相同。
分数四则运算的运算顺序和整数四则运算顺序相同。

❽ 小学四年级下册数学复习资料

加法交换律:a+b=b+b
加法结合律:a+b+c=a+(b+c)
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
有的可能不是
第一单元乘法
1、三位数乘两位数,所得的积不是四位数就是五位数。
2、三位数乘两位数的计算法则:先用两位数的个位上的数与三位数的每一位相乘,乘得的积和个位对齐,再用两位数十位上的数与三位数的每一位相乘,所得的积和十位对齐,最后把两次乘得的积相加。
3、末尾有0的乘法计算方法:现把两个乘数不是零的部分相乘,再看两个乘数末尾一共有几个零,就在积的末尾加几个零。
第二单元升和毫升
1、1升(L)=1000毫升(ml 、mL)
2、从里面量长、宽、高都是1分米的正方体容器正好是1升。1升水重1千克。生活中一杯水大约250毫升;一个高压锅大约盛水6升;一个家用水池大约盛水30升,一个脸盆大约盛水10升;一个浴缸大约盛水400升;一个热水瓶的容量大约是2升,一个金鱼缸大约有水30升,一瓶饮料大约是400毫升,一锅水有5升,一汤勺水有10毫升。
3、一个健康的成年人血液总量约为4000----5000毫升。义务献血者每次献血量一般为200毫升。
4、1毫升大约等于20滴水。
第三单元三角形
1、围成三角形的条件:较短两条边长度的和一定大于第三条边。
2、从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。
3、三角形具有稳定性(也就是当一个三角形的三条边的长度确定后,这个三角形的形状和大小都不会改变),生活中很多物体利用了这样的特性。如:人字梁、斜拉桥、自行车车架。
4、三个角都是锐角的三角形是锐角三角形。(两个内角的和大于第三个内角。)
5、有一个角是直角的三角形是直角三角形。(两个内角的和等于第三个内角。两个锐角的和是90度。两条直角边互为底和高。)
6、有一个角是钝角的三角形是钝角三角形。(两个内角的和小于第三个内角。)
7、任意一个三角形至少有两个锐角,都有三条高,三角形的内角和都是180度。(锐角三角形的三条高都在三角形内;直角三角形有两条高落在两条直角边上;钝角三角形有两条高在三角形外)。
8、把一个三角形分成两个直角三角形就是画它的高。
9、两条边相等的三角形是等腰三角形,相等的两条边叫做腰,另外一条边叫做底,两条腰的夹角叫做顶角,底和腰的两个夹角叫做底角,它的两个底角也相等,是轴对称图形,有一条对称轴(跟底边高正好重合。)三条边都
相等的三角形是等边三角形,三条边都相等,三个角也都
相等(每个角都是60°,所有等边三角形的三个角都是60°。)
10、有一个角是直角的等腰三角形叫做等腰直角三角形,
它的底角等于45°,顶角等于90°。
10、求三角形的一个角=180°-另外两角的和
11、等腰三角形的顶角=180°-底角×2=180°-底角-底角
12、等腰三角形的底角=(180°-顶角)÷2
13、一个三角形最大的角是60度,这个三角形一定是等边三角形。
14、多边形的内角和=180°×(n-2){n为边数}
第四单元混合运算
1、混合运算中:先乘除后加减,既有小括号,又有中括号,要先算小括号里面的,再算中括号里的。
第五单元平行四边形和梯形
1、两组对边互相平行的四边形叫平行四边形,它的对边平行且相等,对角相等。从一个顶点向对边可以作两种不同的高。
底和高一定要对应。一个平行四边形有无数条高。
2、用两块完全一样的三角尺可以拼成一个平行
四边形。
3、平行四边形容易变形(不稳定性)。生活中许
多物体都利用了这样的特性。如:(电动伸缩门、铁拉门、
伸降机)把平行四边形拉成一个长方形,周长不变,面积变了。平行四边形不是轴对称图形。
4、只有一组对边平行的四边形叫梯形。平
行的一组对边较短的叫做梯形的上底,较长的
叫做梯形的下底,不平行的一组对边叫做梯形
的腰,两条平行线之间的距离叫做梯形的高
(无数条)。
5、两条腰相等的梯形叫等腰梯形,它的两个底角相等,是轴对称图形,有一条对称轴。直角梯形有且只有两个直角。
6、两个完全一样的梯形可以拼成一个平行四边形。
7、正方形、长方形属于特殊的平行四边形。
第六单元找规律
1、搭配型规律:两种事物的个数相乘。(如帽子和衣服的搭配)
2、排列:(1)爸爸、妈妈、我排列照相,有几种排法:2×3。
(2)5个球队踢球,每两队踢一场,要踢多少场:4+3+2+1
第七单元运算律
1、乘法交换律:a×b=b×a
2、乘法结合律:(a×b)×c=a×(b×c)
3、乘法分配律:(a+b)×c=a×c+b×c(合起来乘等于分别乘)
4、衍生:(a-b)×c=a×c-b×c
5、简便运算典型例题:
102×35=(100+2)×35 36×101-36=36×(101-1)
35×98=35×(100-2)=35×100-35×2
第八单元对称、平移和旋转
1、画图形的另一半:(1)找对称轴(2)找对应点(3)连成图形。
2、正三边形(等边三角形)有3条对称轴,正四边形(正方形)有4条对称轴,正五边形有5条对称轴,……正n变形有n条对称轴。
3、图形的平移,先画平移方向,再把关键的点平移到指定的地方,最后连接成图。(本学期学习两次平移,如从左上平移到右下,先向右平移,再向下平移。)
4、图形的旋转,先找点,再把关键的边旋转到指定的地方,(注意方向和角度)再连线。(不管是平移还是旋转,基本图形不能改变。)
第九单元倍数和因数
1、4×3=12,或12÷3=4。那么12是3和4的倍数,3和4是12的因数。(倍数和因数是相互存在的,不可以说12是倍数,或者说3是因数。只能说谁是谁的倍数,谁是谁的因数。)
2、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。如18的因数有:1、2、3、6、9、18。
3、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。如:18的倍数有:18、36、54、72、90……(省略号非常重要)
4、一个数最大的因数等于这个数最小的倍数(都是它本身)。
5、是2的倍数的数叫做偶数。(个位是0、2、4、6、8的数)
6、不是2的倍数的数叫做奇数。(个位是1、3、5、7、9的数)
7、个位上是2、4、6、8、0的数是2的倍数,个位上是0或5的数是5的倍数。
8、既是2的倍数又是5的倍数个位上一定是0。(如:10、20、30、40……)
9、一个数各位上数字的和是3的倍数,这个数就是3的倍数。(如:453各位上数字的和是4+3+5=12,因为12是3的倍数,所以453也是3的倍数。)
10、一个数只有1和它本身两个因数的数叫素数。(或质数)如:2、3、5、7、11、13、17、19…… 2是素数中唯一的偶数。(所以“所有的素数都是奇数”这一说法是错误的。)
11、一个数除了1和它本身两个因数外,还有其它因数的数叫合数。如:4、6、8、9、10……
12、1既不是素数也不是合数,因为1的因数只有1个:1
13、哥德巴赫猜想:任何大于2的偶数都是两个素数之和。20=3+17、40=11+2、8=3+5、10=3+7、12=5+7、14=3+11=7+7、30=23+7=13+17
14、100以内的素数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
15、三个连续自然数(3、4、5),三个连续奇数(3、5、7),三个连续偶数(4、6、8)的和都是3的倍数。
第十单元用计算器探索规律
1、积的变化规律:
①一个因数缩小几倍,另一个因数扩大相同的倍数,积不变。
②一个因数缩小(或扩大几倍),另一个因数不变,积也随着缩小(或扩大)几倍。
2、商的变化规律:
①被除数和除数同时扩大(或缩小)相同的倍数,(0除外),商不变。(余数会变)
②被除数扩大(或缩小)几倍,除数不变,商也随之扩大(或缩小)几倍。
③被除数不变,除数缩小几倍(0除外),商反而扩大几倍。
第十二单元统计
1、折线统计图不仅能够看出数量的多少,而且能够更清楚地看出数量的增减变化情况。折线统计图的制作步骤:①定点 ②写数据 ③连线 ④写日期
第十三单元用字母表示数
1、用字母表示数的基本规律:
如果正方形的边长用a表示,周长用C表示,面积用S表示。那么:正方形的周长:C=a×4 正方形的面积:S=a×a。
a×4或4×a通常可以写成4•a或4a;a×a可以写成a•a,也可以写成a2,读作“a的平方”。如果是a与1相乘,就可以直接写成a。
附:常用数量关系
正方形的面积=边长×边长 (S=a×a=a2)
正方形的周长=边长×4 (C=a×4=4a)
长方形的面积=长×宽 (S=a×b=ab)
长方形的周长=(长+宽)×2 C=(a+b)×2
总价=单价×数量 单价=总价÷数量 数量=总价÷单价
路程=速度×时间 速度=路程÷时间 时间=路程÷速度
工总=工效×时间 工效=工总÷时间 时间=工总÷时间
房间面积=每块地面砖面积×块数
块数=房间面积÷每块面积
相遇的路程=(甲速度+乙速度)×相遇的时间=甲速度×时间+乙速度×时间
相距的路程=(甲速度—乙速度)×时间=甲速度×时间—乙
四 年 级 下 学 期 数 学 复 习 提 纲

领域 主要内容 重 点 难 点 相 关 概 念

数与代数 乘法 三位数乘两位数的笔算
三步计算解决实际问题 三位数中间有0的笔算。 三位数乘两位数,所得的积不是四位数就是五位数。
末尾有0的乘法计算方法:先把两个乘数不是零的部分相乘,再看两个乘数末尾一共有几个零,就在积的末尾加几个零。
混合运算 三步计算混合运算的运算顺序,中括号。 明确运算顺序,提高计算正确率。 先乘除后加减;既有小括号,又有中括号,要先算小括号里面的,再算中括号里的。
运算律 应用乘法分配律进行简便运算 乘法交换律、结合律、分配律的简便运算。 1、乘法交换律:a×b=b×a
2、乘法结合律:(a×b)×c=a×(b×c)
3、乘法分配律:(a+b)×c=a×c+b×c(合起来乘等于分别乘)
4、拓展:(a-b)×c=a×c-b×c
5、简便运算典型例题:102×35=(100+2)×35
36×101-36=36×(101-1) 35×98=35×(100-2)=35×100-35×2
用计算器
探索规律 积的变化规律
商的不变规律,用简便方法计算被除数和除数末尾都有0的除法 在计算和解决实际问题中的应用。 1、积的变化规律:
一个因数缩小(或扩大几倍),另一个因数不变,积也同时缩小(或扩大)相同的倍数。
2、商的变化规律:
被除数和除数同时扩大(或缩小)相同的倍数,(0除外),商不变。(余数会变)
倍数
因数 找10以内某个自然数的所有倍数(100以内)、找100以内某个自然数的所有因数
偶数和奇数,素数和合数的特征,2、5和3的倍数的特征 在掌握意义的基础上综合进行各类判断,明白每类自然数的特征。 1、4×3=12,或12÷3=4。那么12是3和4的倍数,3和4是12的因数。(倍数和因数是相互存在的,不可以说12是倍数,或者说3是因数。只能说谁是谁的倍数,谁是谁的因数。)
2、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
3、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
4、一个数最大的因数等于这个数最小的倍数(都是它本身)。
5、是2的倍数的数叫做偶数。(个位是0、2、4、6、8的数)
6、不是2的倍数的数叫做奇数。(个位是1、3、5、7、9的数)
7、个位上是2、4、6、8、0的数是2的倍数,个位上是0或5的数是5的倍数。
8、既是2的倍数又是5的倍数个位上一定是0。
9、一个数各位上数字的和是3的倍数,这个数就是3的倍数。(如:453各位上数字的和是4+3+5=12,因为12是3的倍数,所以453也是3的倍数。)
10、一个数只有1和它本身两个因数的数叫素数(或质数)。如:2、3、5、7、11、13、17、19、23、29、31、37、41、47……
2是素数中唯一的偶数。(所以“所有的素数都是奇数”这句话是错误的。)
11、一个数除了1和它本身两个因数外,还有其它因数的数叫合数。
12、1既不是素数也不是合数,因为1的因数只有1个:1
13、100以内的素数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
14、三个连续自然数(3、4、5),三个连续奇数(3、5、7),三个连续偶数(4、6、8)的和都是3的倍数。
找规律 进一步认识生活中的简单搭配、简单排列现象的规律。对几种事物进行有序的搭配或排列。 运用规律解决一些简单的实际问题。 1、搭配型规律:两种事物的个数相乘。(如帽子和衣服的搭配)
2、排列:(1)爸爸、妈妈、我排列照相,有几种排法:2×3。
(2)5个球队踢球,每两队踢一场,要踢多少场:4+3+2+1
用字母
表示数 用含有字母的式子表示简单的数量、数量关系和公式,求含有字母的式子的值,化简“ax+bx”的式子。 在具体的情境中用字母表示数量关系。 1、用字母表示数的基本规律:
如果正方形的边长用a表示,周长用C表示,面积用S表示。那么:正方形的周长:C=a×4 正方形的面积:S=a×a。
a×4或4×a通常可以写成4·a或4a;a×a可以写成a·a,也可以写成a2,读作“a的平方”。如果是a与1相乘,就可以直接写成a。
2、用字母表示数量关系:小玲到商店买1枝钢笔和4本笔记本,每枝钢笔7元,每本笔记本a元。她一共付出(7+4a)元。
3、用数代替字母求出含有字母的式子的值。4、化简含有字母的式子。

解决问题
的策略

用画图和列表的策略解决有关面积和行程的实际问题 运用画图解决面积的增减问题。
正确画示意图
合理列表
常用的数量关系:
正方形的面积=边长×边长 (S=a×a=a2)
正方形的周长=边长×4 (C=a×4=4a)
长方形的面积=长×宽 (S=a×b=ab)
长方形的周长=(长+宽)×2 (C=(a+b)×2)
总价=单价×数量 单价=总价÷数量 数量=总价÷单价
路程=速度×时间 速度=路程÷时间 时间=路程÷速度
工总=工效×时间 工效=工总÷时间 时间=工总÷时间
房间面积=每块地面砖面积×地砖的块数
地砖的块数=房间面积÷每块地砖的面积
相遇的路程=(甲速度+乙速度)×相遇的时间=甲速度×时间+乙速度×时间
相距的路程=(甲速度—乙速度)×时间=甲速度×时间—乙速度×时间
空间与图形 三角形 三角形的分类、内角和、求第三个角的度数,正确测量和画出三角形的高 三角形两边之和大于第三边的应用。 1、围成三角形的条件:较短两条边长度的和一定大于第三条边。
2、从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。
3、三角形的分类:(按边分类
三个角都是锐角的三角形是锐角三角形。(两个内角的和大于第三个内角。)
有一个角是直角的三角形是直角三角形。(两个内角的和等于第三个内角。两个锐角的和是90度。两条直角边互为底和高。)
有一个角是钝角的三角形是钝角三角形。(两个内角的和小于第三个内角。)
两条边相等的三角形是等腰三角形,相等的两条边叫做腰,另外一条边叫做底,两条腰的夹角叫做顶角,底和腰的两个夹角叫做底角,它的两个底角也相等,是轴对称图形,有一条对称轴(跟底边高正好重合。)
三条边都相等的三角形是等边三角形,三条边都相等,三个角也都相等(每个角都是60°,所有等边三角形的三个角都是60°。)
4、任意一个三角形至少有两个锐角,都有三条高,三角形的内角和都是180度。
5、把一个三角形分成两个直角三角形就是画它的高。
6、有一个角是直角的等腰三角形叫做等腰直角三角形,它的底角等于45°,顶角等于90°。
7、求三角形的一个角=180°-另外两角的和
8、等腰三角形的顶角=180°-底角×2=180°-底角-底角
9、等腰三角形的底角=(180°-顶角)÷2
10、一个三角形最大的角是60度,这个三角形一定是等边三角形。
11、多边形的内角和=180°×(n-2){n为边的条数}
平行四边形、梯形 平行四边形、梯形的特征,正确测量和画出平行四边形、梯形的高。 根据平行四边形、梯形的底画高。图形之间的变换。
1、两组对边互相平行的四边形叫平行四边形,它的对边平行且相等,对角相等。从一个顶点向对边可以作两种不同的高。底和高一定要对应。一个平行四边形有无数条高。
2、用两块完全一样的三角尺可以拼成一个平行四边形。
3、平行四边形容易变形(不稳定性)。生活中许多物体都利用了这样的特性。如:(电动伸缩门、铁拉门、伸降机)把平行四边形拉成一个长方形,周长不变,面积变了。平行四边形不是轴对称图形。
4、只有一组对边平行的四边形叫梯形。平
行的一组对边较短的叫做梯形的上底,较长的
叫做梯形的下底,不平行的一组对边叫做梯形
的腰,两条平行线之间的距离叫做梯形的高
(无数条)。
5、两条腰相等的梯形叫等腰梯形,它的两个底角相等,是轴对称图形,有一条对称轴。直角梯形有且只有两个直角。
6、两个完全一样的梯形可以拼成一个平行四边形。
7、正方形、长方形属于特殊的平行四边形。
对称、平移
和旋转 确定轴对称图形的对称轴,画简单轴对称图形的对称轴。根据对称轴画另一半
在方格纸上把简单图形连续平移两次。将简单图形旋转90度 画出简单图形按逆时针、顺时针旋转90度后的图形 1、画图形的另一半:(1)找对称轴(2)找对应点(3)连成图形。
2、正三边形(等边三角形)有3条对称轴,正四边形(正方形)有4条对称轴,正五边形有5条对称轴,……正n变形有n条对称轴。
3、图形的平移,先画平移方向,再把关键的点平移到指定的地方,最后连接成图。(本学期学习两次平移,如从左上平移到右下,先向右平移,再向下平移。)
4、图形的旋转,先找点,再把关键的边旋转到指定的地方,(注意方向和角度)再连线。(不管是平移还是旋转,基本图形不能改变。)
升和毫升 升和毫升之间的进率。升和毫升在生活中的应用。 升和毫升在生活中的应用 1、1升(L)=1000毫升(ml 、mL)
2、从里面量长、宽、高都是1分米的正方体容器正好是1升。1升水重1千克。生活中一杯水大约250毫升;一个高压锅大约盛水6升;一个家用水池大约盛水30升,一个脸盆大约盛水10升;一个浴缸大约盛水400升;一个热水瓶的容量大约是2升,一个金鱼缸大约有水30升,一瓶饮料大约是400毫升,一锅水有5升,一汤勺水有10毫升。
3、一个健康的成年人血液总量约为4000----5000毫升。义务献血者每次献血量一般为200毫升。
4、1毫升大约等于20滴水。
统计 统计 画折线统计图,对折线统计图的数据进行分析。根据数据特点和实际需要选择条形统计图.或折线统计图。 对折线统计图的数据进行分析。 折线统计图不仅能够看出数量的多少,而且能够更清楚地看出数量的增减变化情况。折线统计图的制作步骤:①定点 ②写数据 ③连线 ④写日期
回答者: 61084773400 | 一级 | 2011-6-19 17:38
一、运算顺序:

在没有括号的算式里如果只有加减法或只有乘除法有依次计算。在没有括号的算式里,有加减法又有乘除法,要先乘除法,后算加减法。算式里有括号时,要先算括号里面的。加减乘除法统称四则运算。一个数加0得原数任何一个数乘0得00不能做除数,0除以一个非0的数等于0。0除0得不到固定的商。5除0得不到商

二、位置与方向

1.根据方向和距离确定或者绘制物体的具体点。(比例尺、角的画法和度量)

2.位置间的相对性。会描述两个物体间相互位置关系。(观测点的确定)

B在A的东偏北30度2000米处;

A在B的西偏南30度200米处。

3.简单路线图的绘制。

三、运算定律及简便运算:

1.加法运算定律:

加法交换律:两个数相加,交换加数得位置,和不变。a+b=b+a
加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加 再加上第一个数 ,和不变。(a+b)+c=a+(b+c) 加法这两个定律往往结合在一起使用。如:165+93+35=93+(165+35) 依据是什么?
. 2、 连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和 。 a-b-c=a-(b+c)

3、乘法运算定律:

乘法交换律: 两个数相乘,交换因数的位置,积不变。bXa=aXb
乘法结合律: 三个数相乘,可以先把前两个数相乘,再乘第三个数 ,也可以先把后两个数相乘,再乘以第一个数,积不变。 (axb)xc=ax(bxc) 乘法这两个定律往往结合在一起使用。如:(axb)xc=ax(bxc)。如:125
乘法分配率:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。(a+b)xc=axc+bxc

4.连除的性质:一个数连续除以两个数,等于除以这两个数的积。 a除b除c=a除{b乘c}

a+b=b+a {a+b}+c=a+{b+c} 165+93+35=93+{165+35} {a+b}Xc=aXc+bXc 分母是101001000........可用小数表示

小数的单位是十分之_百分之一.千分之一

每相邻的两个计数单位的进率是+整数整读.小数依次读出每1个整数整写小数依次目小数末尾睑0可去掉

小数扩大十倍,有向右移动一位扩大100倍向右移动两位一千倍向右移动一位。。。

小数向左移一位缩小+倍向左移动两位缩小一百倍向左移动三位缩小一千倍........

保留-位小数精确到+分位2位小数精确到百分位3位小数精确到千分位.....。

三条边围成的图形叫三角形

三角的1个角到它对边作-条直线这条直线叫三角形的高对边叫三角形的底

特性稳定任意两大于笫三边

角的分类;大小分锐角直角钝角长短分三边不等等腰三角形总等180度两个三角形能拼平行四边形

把小数点对齐计算叫小数加减法在数据描出各点用线连起来间隔数=总长除间隔长

两端教植棵数等于间隔+1只植一端棵数=间隔

都不植棵数=间隔--

封闭棵数=间隔

❾ 小学四年级的下学期的数学教科书包含哪些知识点

一、运算顺序;二、位置和方向;三、运算定律和简便运算;四、三角形;五、小数的意义和性质;六、小数的加减法;七、统计图。

❿ 四年级下学期数学知识点有哪些

1、小数的意义:把单位“1”平均分成10份、100份、1000份……取其中的1份或几份,表示十分之几、百分之几、千分之几……的数,叫小数。

2、分母是10、100、1000……的分数可以用小数表示,表示十分之几的小数是一位小数、表示百分之几的小数是两位小数、表示千分之几的小数是三位小数……

3、小数的组成:以小数点为界,小数由整数部分和小数部分组成。

4、小数的数位、计算单位、进率:

①小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……与整数一样,小数每相邻两个计数单位之间的进率是10。

②小数部分最大的计算单位是十分之一,小数部分没有最小的计数单位。

③小数的数位是无限的。

④在一个小数中,小数点后面含有几个小数数位,它就是几位小数。小数部分末尾的零也要计入其中。

5、小数的读写:读小数时,从左往右,整数部分按照整数的读法来读(整数部分是0的读作“零”),小数点读作“点”,小数部分顺次读出每一个数位上的数字,即使是连续的0,也要依次读出来。

写小数时,也是从左往右,整数部分按照整数的写法来写(整数部分是零的写作“0”),小数点点在个位的右下角,小数部分顺次写出每一个数位上的数字。

6、理解0.1与0.10的区别联系:区别:0.1表示1个0.1、0.10表示10个0.01、意义不同。联系:0.1=0.10两个数大小相等。运用小数的基本性质可以不改变数的大小,改写小数或化简小数。

7、整数部分是0的小数叫做纯小数;整数部分不为0的小数叫做带小数。