当前位置:首页 » 基础知识 » 高一数学知识框架大全

高一数学知识框架大全

发布时间: 2022-08-17 09:40:25

Ⅰ 高中数学的知识体系框架

数 学 公 理体系十九世纪末到二十世纪初,数学已发展成为一门庞大的学科,经典的数学部门已经建立起完整的体系:数论、代数学、几何学、数学分析。数学家开始探访一些基础的问题,例如什么是数?什么是曲线?什么是积分?什么是函数?……另外,怎样处理这些概念和体系也是问题。经典的方法一共有两类。一类是老的公理化的方法,不过非欧几何学的发展,各种几何学的发展暴露出它的许多毛病;另一类是构造方法或生成方法,这个办法往往有局限性,许多问题的解决不能靠构造。尤其是涉及无穷的许多问题往往靠逻辑、靠反证法、甚至靠直观。但是,哪些靠得住,哪些靠不住,不加分析也是无法断定的。对于基础概念的分析研究产生了一系列新领域—抽象代数学、拓扑学、泛函分析、测度论、积分论。而在方法上的完善,则是新公理化方法的建立,这是希尔伯特在1899年首先在《几何学基础》中做出的。

Ⅱ (人教版)高一数学必修1,3,4知识点总结,要框架结构!!!急用!!!

高一数学必修一知识点总结——框架结构
集合 集合的含义与表示方法 列举法
描述法
图示法
集合间关系 子集
真子集
集合的基本运算 并集
交集
补集

概念
三要素 大小比较
函数 图像 应用 方程解的个数
性质 不等式的解
指数函数 实际应用
对数函数

Ⅲ 跪求新目标高中数学知识点总结及解题方法

数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:

一、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二、适当多做题,养成良好的解题习惯。

要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

*****************************************************************************************************

一、 高中数学课的设置

高中数学内容丰富,知识面广泛,将有:《代数》上、下册、《立体几何》和《平面解析几何》四本课本,高一年级学习完《代数》上册和《立体几何》两本书。高二将学习完《代数》下册和《平面解析几何》两本书。一般地,在高一、高二全部学习完高中的所有高中三年的知识内容,高三进行全面复习,高三将有数学“会考”和重要的“高考”。

二、初中数学与高中数学的差异。

1、知识差异。

初中数学知识少、浅、难度容易、知识面笮。高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。如:初中学习的角的概念只是“0—1800”范围内的,但实际当中也有7200和“—300”等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小角。又如:高中要学习《立体几何》,将在三维空间中求一些几何实体的体积和表面积;还将学习“排列组合”知识,以便解决排队方法种数等问题。如:①三个人排成一行,有几种排队方法,( =6种);②四人进行乒乓球双打比赛,有几种比赛场次?(答: =3种)高中将学习统计这些排列的数学方法。初中中对一个负数开平方无意义,但在高中规定了i2=-1,就使-1的平方根为±i.即可把数的概念进行推广,使数的概念扩大到复数范围等。这些知识同学们在以后的学习中将逐渐学习到。

2、学习方法的差异。

(1)初中课堂教学量小、知识简单,通过教师课堂教慢的速度,争取让全面同学理解知识点和解题方法,课后老师布置作业,然后通过大量的课堂内、外练习、课外指导达到对知识的反反复复理解,直到学生掌握。而高中数学的学习随着课程开设多(有九们课学生同时学习),每天至少上六节课,自习时间三节课,这样各科学习时间将大大减少,而教师布置课外题量相对初中减少,这样集中数学学习的时间相对比初中少,数学教师将相初中那样监督每个学生的作业和课外练习,就能达到相初中那样把知识让每个学生掌握后再进行新课。

(2)模仿与创新的区别。

初中学生模仿做题,他们模仿老师思维推理教多,而高中模仿做题、思维学生有,但随着知识的难度大和知识面广泛,学生不能全部模仿,即就是学生全部模仿训练做题,也不能开拓学生自我思维能力,学生的数学成绩也只能是一般程度。现在高考数学考察,旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维和培养学生的创造能力培养。初中学生大量地模仿使学生带来了不利的思维定势,对高中学生带来了保守的、僵化的思想,封闭了学生的丰富反对创造精神。如学生在解决:比较a与2a的大小时要不就错、要不就答不全面。大多数学生不会分类讨论。

3、学生自学能力的差异

初中学生自学那能力低,大凡考试中所用的解题方法和数学思想,在初中教师基本上已反复训练,老师把学生要学生自己高度深刻理解的问题,都集中表现在他的耐心的讲解和大量的训练中,而且学生的听课只需要熟记结论就可以做题(不全是),学生不需自学。但高中的知识面广,知识要全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,如果不自学、不靠大量的阅读理解,将会使学生失去一类型习题的解法。另外,科学在不断的发展,考试在不断的改革,高考也随着全面的改革不断的深入,数学题型的开发在不断的多样化,近年来提出了应用型题、探索型题和开放型题,只有靠学生的自学去深刻理解和创新才能适应现代科学的发展。
其实,自学能力的提高也是一个人生活的需要,他从一个方面也代表了一个人的素养,人的一生只有18---24年时间是有导师的学习,其后半生,最精彩的人生是人在一生学习,靠的自学最终达到了自强。
4、思维习惯上的差异
初中学生由于学习数学知识的范围小,知识层次低,知识面笮,对实际问题的思维受到了局限,就几何来说,我们都接触的是现实生活中三维空间,但初中只学了平面几何,那么就不能对三维空间进行严格的逻辑思维和判断。代数中数的范围只限定在实数中思维,就不能深刻的解决方程根的类型等。高中数学知识的多元化和广泛性,将会使学生全面、细致、深刻、严密的分析和解决问题。也将培养学生高素质思维。提高学生的思维递进性。
5、定量与变量的差异
初中数学中,题目、已知和结论用常数给出的较多,一般地,答案是常数和定量。学生在分析问题时,大多是按定量来分析问题,这样的思维和问题的解决过程,只能片面地、局限地解决问题,在高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性。如:求解一元二次方程时我们采用对方程ax2+bx+c=0 (a≠0)的求解,讨论它是否有根和有根时的所有根的情形,使学生很快的掌握了对所有一元二次方程的解法。另外,在高中学习中我们还会通过对变量的分析,探索出分析、解决问题的思路和解题所用的数学思想。

三、如何学好高中数学
良好的开端是成功的一半,高中数学课即将开始与初中知识有联系,但比初中数学知识系统。高一数学中我们将学习函数,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想等,它也是高考的重点,近年来,高考压轴题都以函数题为考察方法的。高考题中与函数思想方法有关的习题占整个试题的60%以上。
1、 有良好的学习兴趣
两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。“好”和“乐”就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢?
(1)课前预习,对所学知识产生疑问,产生好奇心。
(2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。
(3)思考问题注意归纳,挖掘你学习的潜力。
(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?
(5)把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、至交坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能使对概念的理解切实可靠,在应用概念判断、推理时会准确。
2、 建立良好的学习数学习惯。
习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。
3、 有意识培养自己的各方面能力
数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。
四、其它注意事项
1、注意化归转化思想学习。
人们学习过程就是用掌握的知识去理解、解决未知知识。数学学习过程都是用旧知识引出和解决新问题,当新的知识掌握后再利用它去解决更新知识。初中知识是基础,如果能把新知识用旧知识解答,你就有了化归转化思想了。可见,学习就是不断地化归转化,不断地继承和发展更新旧知识。
2、学会数学教材的数学思想方法。
数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想作出归纳、概括是十分必要的。概括数学思想一般可分为两步进行:一是揭示数学思想内容规律,即将数学对象其具有的属性或关系抽取出来,二是明确数学思想方法知识的联系,抽取解决全体的框架。实施这两步的措施可在课堂的听讲和课外的自学中进行。
课堂学习是数学学习的主战场。课堂中教师通过讲解、分解教材中的数学思想和进行数学技能地训练,使高中学生学习所得到丰富的数学知识,教师组织的科研活动,使教材中的数学概念、定理、原理得到最大程度的理解、挖掘。如初中学习的相反数概念教学中,教师的课堂教学往往有以下理解:①从定义角度求3、-5的相反数,相反数是 的数是_____.②从数轴角度理解:什么样的两点表示数是互为相反数的。(关于原点对称的点)③从绝对值角度理解:绝对值_______的两个数是互为相反数的。④相加为零的两个数互为相反数吗?这些不同角度的教学会开阔学生思维,提高思维品质。望同学们把握好课堂这个学习的主战场。
五、学数学的几个建议。
1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师为备战高考而加的课外知识。
2、建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
3、记忆数学规律和数学小结论。
4、与同学建立好关系,争做“小老师”,形成数学学习“互助组”。
5、争做数学课外题,加大自学力度。
6、反复巩固,消灭前学后忘。
7、学会总结归类。可:①从数学思想分类②从解题方法归类③从知识应用上分类
参考资料:http://yangltez.blogchina.com/3894500.html

*****************************************************************************************************

高中数学学习方法谈

进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于学生不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。在此结合高中数学教学内容的特点,谈一下高中数学学习方法,供同学参考。

一、 高中数学与初中数学特点的变化

1、数学语言在抽象程度上突变

初、高中的数学语言有着显着的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及非常抽象的集合语言、逻辑运算语言、函数语言、图象语言等。

2、思维方法向理性层次跃迁

高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么等。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。

3、知识内容的整体数量剧增

高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。

4、知识的独立性大

初中知识的系统性是较严谨的,给我们学习带来了很大的方便。因为它便于记忆,又适合于知识的提取和使用。但高中的数学却不同了,它是由几块相对独立的知识拼合而成(如高一有集合,命题、不等式、函数的性质、指数和对数函数、指数和对数方程、三角比、三角函数、数列等),经常是一个知识点刚学得有点入门,马上又有新的知识出现。因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点。

二、如何学好高中数学

1、养成良好的学习数学习惯。

建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

2、及时了解、掌握常用的数学思想和方法

学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。

解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。

3、逐步形成 “以我为主”的学习模式

数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。

4、针对自己的学习情况,采取一些具体的措施

² 记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中

拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

² 建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再

犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

² 熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化

或半自动化的熟练程度。

² 经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,

使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。

² 阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课

外题,加大自学力度,拓展自己的知识面。

² 及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩

固,消灭前学后忘。

² 学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解

题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。

² 经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学

思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。

² 无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而

不是一味地去追求速度或技巧,这是学好数学的重要问题。

对新初三学生来说,学好数学,首先要抱着浓厚的兴趣去学习数学,积极展开思维的翅膀,主动地参与教育全过程,充分发挥自己的主观能动性,愉快有效地学数学。

其次要掌握正确的学习方法。锻炼自己学数学的能力,转变学习方式,要改变单纯接受的学习方式,要学会采用接受学习与探究学习、合作学习、体验学习等多样化的方式进行学习,要在教师的指导下逐步学会“提出问题—实验探究—开展讨论—形成新知—应用反思”的学习方法。这样,通过学习方式由单一到多样的转变,我们在学习活动中的自主性、探索性、合作性就能够得到加强,成为学习的主人。

在新学期要上好每一节课,数学课有知识的发生和形成的概念课,有解题思路探索和规律总结的习题课,有数学思想方法提炼和联系实际的复习课。要上好这些课来学会数学知识,掌握学习数学的方法。

概念课

要重视教学过程,要积极体验知识产生、发展的过程,要把知识的来龙去脉搞清楚,认识知识发生的过程,理解公式、定理、法则的推导过程,改变死记硬背的方法,这样我们就能从知识形成、发展过程当中,理解到学会它的乐趣;在解决问题的过程中,体会到成功的喜悦。

习题课

要掌握“听一遍不如看一遍,看一遍不如做一遍,做一遍不如讲一遍,讲一遍不如辩一辩”的诀窍。除了听老师讲,看老师做以外,要自己多做习题,而且要把自己的体会主动、大胆地讲给大家听,遇到问题要和同学、老师辩一辩,坚持真理,改正错误。在听课时要注意老师展示的解题思维过程,要多思考、多探究、多尝试,发现创造性的证法及解法,学会“小题大做”和“大题小做”的解题方法,即对选择题、填空题一类的客观题要认真对待绝不粗心大意,就像对待大题目一样,做到下笔如有神;对综合题这样的大题目不妨把“大”拆“小”,以“退”为“进”,也就是把一个比较复杂的问题,拆成或退为最简单、最原始的问题,把这些小题、简单问题想通、想透,找出规律,然后再来一个飞跃,进一步升华,就能凑成一个大题,即退中求进了。如果有了这种分解、综合的能力,加上有扎实的基本功还有什么题目难得倒我们。

复习课

在数学学习过程中,要有一个清醒的复习意识,逐渐养成良好的复习习惯,从而逐步学会学习。数学复习应是一个反思性学习过程。要反思对所学习的知识、技能有没有达到课程所要求的程度;要反思学习中涉及到了哪些数学思想方法,这些数学思想方法是如何运用的,运用过程中有什么特点;要反思基本问题(包括基本图形、图像等),典型问题有没有真正弄懂弄通了,平时碰到的问题中有哪些问题可归结为这些基本问题;要反思自己的错误,找出产生错误的原因,订出改正的措施。在新学期大家准备一本数学学习“病例卡”,把平时犯的错误记下来,找出“病因”开出“处方”,并且经常拿出来看看、想想错在哪里,为什么会错,怎么改正,通过你的努力,到中考时你的数学就没有什么“病例”了。并且数学复习应在数学知识的运用过程中进行,通过运用,达到深化理解、发展能力的目的,因此在新的一年要在教师的指导下做一定数量的数学习题,做到举一反三、熟练应用,避免以“练”代“复”的题海战术。

最后,要有意识地培养好自己个人的心理素质,全面系统地进行心理训练,要有决心、信心、恒心,更要有一颗平常心。
中小学数学网
http://www.mathcn.com/
中国数学在线
http://www.mathfan.com/
小学数学专业网
http://www.shuxueweb.com/
延安数学教育网站
http://yamaths.diy.myrice.com/
1+E数学乐园
http://www.aoshu.com/
数学网站联盟
http://www.sxlm.net/index2.asp
中学数学教学网
http://www.rasx.net/
华师大数学网站
http://www.hsdczsx.com/Article_Index.asp
快乐数学
http://klsx.diy.myrice.com/
数学时空
http://www.shuxue123.com/
数学教育教学资源中心
http://www.esx.net/
数学人
http://www.mathren.com/
初中数学网
http://www.czsx.com.cn/
中国奥数网
http://www.aoshu.cn/
广州市中学数学之窗
http://maths.guangztr.e.cn/Index.html
高中数学网
http://www.gzmath.com/
我形我数
http://www.wxws.cn/
数学中国
http://www.madio.net/Index.html
中学数学题库
http://www.tiku.net/
数学456资源网
http://www.maths456.net/
上海数学
http://www.shmaths.cn/Index.html
麦斯数学网
http://www.czmaths.com/
满分数学网
http://www.mfsx.com/
数学网络学术资源导航
http://www.lib.pku.e.cn/is/Navigation/Mathematics/index.htm

Ⅳ 高中数学都需要哪些初中数学基础知识

初中数学宝典,你知道学习数学最重要的是什么吗?

在初中学习数学这们课程的时候很多的学生都是比较烦恼的,因为这们课程是非常难的,并且难点非常多,很多的学生在刚开始学习的时候还可以更得上,但是过一段时间之后就会变得非常的吃力,那么你知道初中数学宝典是什么吗?我们来了解一下吧!

复习知识点

以上就是初中数学宝典的内容,当学习吃力的时候可以先复习一下之前的内容,当然这个时候之前记得笔记就可以用来复习了,这样可以更好的帮助我们学习后期的内容,并且可以改善学习吃力的问题.

Ⅳ 求高中数学所有的知识点框架,(越详细越好),包括理科专用。

高三数学备考公式篇

1. 元素与集合的关系,.
2.德摩根公式 .
3.包含关系

4.容斥原理

.
5.集合的子集个数共有 个;真子集有–1个;非空子集有 –1个;非空的真子集有–2个.
6.二次函数的解析式的三种形式
(1)一般式;(2)顶点式;
(3)零点式.
7.解连不等式常有以下转化形式
.
8.方程在上有且只有一个实根,与不等价,前者是后者的一个必要而不是充分条件.特别地, 方程有且只有一个实根在内,等价于,或且,或且.
9.闭区间上的二次函数的最值
二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:
(1)当a>0时,若,则;
,,.
(2)当a<0时,若,则,若,则,.
10.一元二次方程的实根分布
依据:若,则方程在区间内至少有一个实根 .
设,则
(1)方程在区间内有根的充要条件为或;
(2)方程在区间内有根的充要条件为或或或;
(3)方程在区间内有根的充要条件为或 .
11.定区间上含参数的二次不等式恒成立的条件依据
(1)在给定区间的子区间(形如,,不同)上含参数的二次不等式(为参数)恒成立的充要条件是.
(2)在给定区间的子区间上含参数的二次不等式(为参数)恒成立的充要条件是.
(3)恒成立的充要条件是或.
12.真值表

p

q

非p

p或q

p且q









































13.充要条件
(1)充分条件:若,则是充分条件.
(2)必要条件:若,则是必要条件.
(3)充要条件:若,且,则是充要条件.
注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.
14.函数的单调性
(1)设那么
上是增函数;
上是减函数.
(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.
15.如果函数和都是减函数,则在公共定义域内,和函数也是减函数; 如果函数和在其对应的定义域上都是减函数,则复合函数是增函数.
16.奇偶函数的图象特征
奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.
17.若函数是偶函数,则;若函数是偶函数,则.
18.对于函数(),恒成立,则函数的对称轴是函数;两个函数与 的图象关于直线对称.
19.若,则函数的图象关于点对称; 若,则函数为周期为的周期函数.
20.多项式函数的奇偶性
多项式函数是奇函数的偶次项(即奇数项)的系数全为零.
多项式函数是偶函数的奇次项(即偶数项)的系数全为零.
21.函数的图象的对称性
(1)函数的图象关于直线对称
.
(2)函数的图象关于直线对称
.
22.两个函数图象的对称性
(1)函数与函数的图象关于直线(即轴)对称.
(2)函数与函数的图象关于直线对称.
(3)函数和的图象关于直线y=x对称.
23.若将函数的图象右移、上移个单位,得到函数的图象;若将曲线的图象右移、上移个单位,得到曲线的图象.
24.互为反函数的两个函数的关系
.
25.几个常见的函数方程
(1)正比例函数,.
(2)指数函数,.
(3)对数函数,.
(4)幂函数,.
(5)余弦函数,正弦函数,,
.
26.几个函数方程的周期(约定a>0)
(1),则的周期T=a;
(2),或,或,或,则的周期T=2a;
(3),则的周期T=3a;
(4)且,则的周期T=4a;
(5)
,则的周期T=5a;
(6),则的周期T=6a.
27.分数指数幂 (1)(,且).(2)(,且).
28.根式的性质(1).(2)当为奇数时,;当为偶数时,.
2932.有理指数幂的运算性质
(1) .(2) .
(3).
注: 若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.
30.指数式与对数式的互化式
.
31.对数的换底公式 (,且,,且, ).
推论 (,且,,且,, ).
32.对数的四则运算法则
若a>0,a≠1,M>0,N>0,则(1);
(2) ;(3).
33.设函数,记.若的定义域为,则,且;若的值域为,则,且.对于的情形,需要单独检验.
34. 对数换底不等式及其推广
若,,,,则函数
(1)当时,在和上为增函数.
, (2)当时,在和上为减函数.
推论:设,,,且,则
(1).(2).
35.数列的同项公式与前n项的和的关系
( 数列的前n项的和为).
36.等差数列的通项公式;
其前n项和公式为.
37.等比数列的通项公式;
其前n项的和公式为或.
38.等比差数列:的通项公式为

其前n项和公式为.
39.常见三角不等式(1)若,则.
(2) 若,则.(3) .
40.同角三角函数的基本关系式 ,=,.
41.正弦、余弦的诱导公式(奇变偶不变)

42.和角与差角公式
;;
.
(平方正弦公式);
.
=(辅助角所在象限由点的象限决定, ).
43.二倍角公式 .
..
44. 三倍角公式
.
..
45.三角函数的周期公式
函数,x∈R及函数,x∈R(A,ω,为常数,且A≠0,ω>0)的周期;函数,(A,ω,为常数,且A≠0,ω>0)的周期.
46.正弦定理 .
47.余弦定理;;.
48.面积定理
(1)(分别表示a、b、c边上的高).
(2).
(3).
49.三角形内角和定理
在△ABC中,有
.
50.实数与向量的积的运算律
设λ、μ为实数,那么(1) 结合律:λ(μa)=(λμ)a;
(2)第一分配律:(λ+μ)a=λa+μa;(3)第二分配律:λ(a+b)=λa+λb.
51.向量的数量积的运算律:(1) a·b= b·a (交换律);
(2)(a)·b= (a·b)=a·b= a·(b);(3)(a+b)·c= a ·c +b·c.
52.平面向量基本定理
如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.
不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.
53.向量平行的坐标表示
设a=,b=,且b0,则ab(b0).
54. a与b的数量积(或内积)a·b=|a||b|cosθ.
55. a·b的几何意义数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
56.平面向量的坐标运算
(1)设a=,b=,则a+b=.
(2)设a=,b=,则a-b=.
(3)设A,B,则.
(4)设a=,则a=.
(5)设a=,b=,则a·b=.
57.两向量的夹角公式(a=,b=).
58.平面两点间的距离公式=
(A,B).
59.向量的平行与垂直
设a=,b=,且b0,则A||bb=λa .
ab(a0)a·b=0.
60.线段的定比分公式
设,,是线段的分点,是实数,且,则
().
61.三角形的重心坐标公式
△ABC三个顶点的坐标分别为、、,则△ABC的重心的坐标是.
62.点的平移公式
.
注:图形F上的任意一点P(x,y)在平移后图形上的对应点为,且的坐标为.
63.“按向量平移”的几个结论
(1)点按向量a=平移后得到点.
(2) 函数的图象按向量a=平移后得到图象,则的函数解析式为.
(3) 图象按向量a=平移后得到图象,若的解析式,则的函数解析式为.
(4)曲线:按向量a=平移后得到图象,则的方程为.
(5) 向量m=按向量a=平移后得到的向量仍然为m=.
64. 三角形五“心”向量形式的充要条件
设为所在平面上一点,角所对边长分别为,则
(1)为的外心.
(2)为的重心.
(3)为的垂心.
(4)为的内心.
(5)为的的旁心.
65.常用不等式:
(1)(当且仅当a=b时取“=”号).
(2)(当且仅当a=b时取“=”号).
(3)
(4)柯西不等式
(5).
66.极值定理
已知都是正数,则有
(1)若积是定值,则当时和有最小值;
(2)若和是定值,则当时积有最大值.
推广 已知,则有
(1)若积是定值,则当最大时,最大;当最小时,最小.
(2)若和是定值,则当最大时, 最小;当最小时, 最大.
67.一元二次不等式,如果与同号,则其解集在两根之外;如果与异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.
.
68.含有绝对值的不等式
当a> 0时,有
.
或.
69.指数不等式与对数不等式
(1)当时,;
.
(2)当时,;

70.斜率公式 (、).
71.直线的五种方程
(1)点斜式 (直线过点,且斜率为).
(2)斜截式 (b为直线在y轴上的截距).
(3)两点式 ()(、 ()).
(4)截距式 (分别为直线的横、纵截距,)
(5)一般式 (其中A、B不同时为0).
72.两条直线的平行和垂直
(1)若,
①;②.
(2)若,,且A1、A2、B1、B2都不为零,
①;②;
73.四种常用直线系方程
(1)定点直线系方程:经过定点的直线系方程为(除直线),其中是待定的系数; 经过定点的直线系方程为,其中是待定的系数.
(2)共点直线系方程:经过两直线,的交点的直线系方程为(除),其中λ是待定的系数.
(3)平行直线系方程:直线中当斜率k一定而b变动时,表示平行直线系方程.与直线平行的直线系方程是(),λ是参变量.
(4)垂直直线系方程:与直线 (A≠0,B≠0)垂直的直线系方程是,λ是参变量.
74.点到直线的距离
(点,直线:).
75. 或所表示的平面区域
设直线,则或所表示的平面区域是:
若,当与同号时,表示直线的上方的区域;当与异号时,表示直线的下方的区域.简言之,同号在上,异号在下.
若,当与同号时,表示直线的右方的区域;当与异号时,表示直线的左方的区域. 简言之,同号在右,异号在左.
76. 或所表示的平面区域
设曲线(),则
或所表示的平面区域是:
所表示的平面区域上下两部分;
所表示的平面区域上下两部分.
77. 圆的四种方程
(1)圆的标准方程 .
(2)圆的一般方程 (>0).
(3)圆的参数方程 .
(4)圆的直径式方程 (圆的直径的端点是、).
78. 圆系方程(1)过点,的圆系方程是

,其中是直线的方程,λ是待定的系数.
(2)过直线:与圆:的交点的圆系方程是,λ是待定的系数.
(3) 过圆:与圆:的交点的圆系方程是,λ是待定的系数.
79.点与圆的位置关系
点与圆的位置关系有三种
若,则
点在圆外;点在圆上;点在圆内.
80.直线与圆的位置关系
直线与圆的位置关系有三种:
;
;
.其中.
81.两圆位置关系的判定方法
设两圆圆心分别为O1,O2,半径分别为r1,r2,
;
;
;
;
.
82.圆的切线方程
(1)已知圆.
①若已知切点在圆上,则切线只有一条,其方程是
.
当圆外时, 表示过两个切点的切点弦方程.
②过圆外一点的切线方程可设为,再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线.
③斜率为k的切线方程可设为,再利用相切条件求b,必有两条切线.
(2)已知圆.
①过圆上的点的切线方程为;
②斜率为的圆的切线方程为.
83.椭圆的参数方程是.
84.椭圆焦半径公式 ,.
85.椭圆的的内外部
(1)点在椭圆的内部.
(2)点在椭圆的外部.
86. 椭圆的切线方程
(1)椭圆上一点处的切线方程是.
(2)过椭圆外一点所引两条切线的切点弦方程是
.
(3)椭圆与直线相切的条件是.
87.双曲线的焦半径公式
,.
88.双曲线的方程与渐近线方程的关系
(1)若双曲线方程为渐近线方程:.
(2)若渐近线方程为双曲线可设为.
(3)若双曲线与有公共渐近线,可设为(,焦点在x轴上,,焦点在y轴上).
89. 双曲线的切线方程
(1)双曲线上一点处的切线方程是.
(2)过双曲线外一点所引两条切线的切点弦方程是
.
(3)双曲线与直线相切的条件是.
90. 抛物线的焦半径公式 抛物线焦半径.
过焦点弦长.
91.抛物线上的动点可设为P或 P,其中 .
92.二次函数的图象是抛物线:(1)顶点坐标为;(2)焦点的坐标为;(3)准线方程是.
93. 抛物线的切线方程
(1)抛物线上一点处的切线方程是.
(2)过抛物线外一点所引两条切线的切点弦方程是.
(3)抛物线与直线相切的条件是.
94.两个常见的曲线系方程
(1)过曲线,的交点的曲线系方程是
(为参数).
(2)共焦点的有心圆锥曲线系方程,其中.当时,表示椭圆; 当时,表示双曲线.
95.直线与圆锥曲线相交的弦长公式 或
(弦端点A,由方程 消去y得到,,为直线的倾斜角,为直线的斜率).
96.圆锥曲线的两类对称问题
(1)曲线关于点成中心对称的曲线是.
(2)曲线关于直线成轴对称的曲线是
.
97.“四线”一方程
对于一般的二次曲线,用代,用代,用代,用代,用代即得方程
,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.
98.证明直线与直线的平行的思考途径
(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行;
(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行.
99.证明直线与平面的平行的思考途径
(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面面平行.
100.证明平面与平面平行的思考途径
(1)转化为判定二平面无公共点;(2)转化为线面平行;(3)转化为线面垂直.
101.证明直线与直线的垂直的思考途径
(1)转化为相交垂直;(2)转化为线面垂直;(3)转化为线与另一线的射影垂直;
(4)转化为线与形成射影的斜线垂直.
102.证明直线与平面垂直的思考途径
(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;
(5)转化为该直线与两个垂直平面的交线垂直.
103.证明平面与平面的垂直的思考途径
(1)转化为判断二面角是直二面角;(2)转化为线面垂直.
104.平面向量加法的平行四边形法则向空间的推广
始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.
105.共线向量定理
对空间任意两个向量a、b(b≠0 ),a∥b存在实数λ使a=λb.
三点共线.
、共线且不共线且不共线.
106.共面向量定理
向量p与两个不共线的向量a、b共面的存在实数对,使.
推论 空间一点P位于平面MAB内的存在有序实数对,使,
或对空间任一定点O,有序实数对,使.
107.对空间任一点和不共线的三点A、B、C,满足(),则当时,对于空间任一点,总有P、A、B、C四点共面;当时,若平面ABC,则P、A、B、C四点共面;若平面ABC,则P、A、B、C四点不共面.
四点共面与、共面
(平面ABC).
108.空间向量基本定理
如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc.
推论 设O、A、B、C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数x,y,z,使.
109.射影公式
已知向量=a和轴,e是上与同方向的单位向量.作A点在上的射影,作B点在上的射影,则
〈a,e〉=a·e
110.向量的直角坐标运算
设a=,b=则(1)a+b=;
(2)a-b=;(3)λa= (λ∈R);
(4)a·b=;
111.设A,B,则= .
112.空间的线线平行或垂直
设,,则;
.
113.夹角公式
设a=,b=,则cos〈a,b〉=.
推论 ,此即三维柯西不等式.
114. 四面体的对棱所成的角
四面体中, 与所成的角为,则.
115.异面直线所成角
=
(其中()为异面直线所成角,分别表示异面直线的方向向量)
116.直线与平面所成角(为平面的法向量).
117.若所在平面若与过若的平面成的角,另两边,与平面成的角分别是、,为的两个内角,则
.
特别地,当时,有.
118.若所在平面若与过若的平面成的角,另两边,与平面成的角分别是、,为的两个内角,则
.
特别地,当时,有.
119.二面角的平面角
或(,为平面,的法向量).
120.三余弦定理
设AC是α内的任一条直线,且BC⊥AC,垂足为C,又设AO与AB所成的角为,AB与AC所成的角为,AO与AC所成的角为.则.
121. 三射线定理
若夹在平面角为的二面角间的线段与二面角的两个半平面所成的角是,,与二面角的棱所成的角是θ,则有 ;
(当且仅当时等号成立).
122.空间两点间的距离公式
若A,B,则
=.
123.点到直线距离
(点在直线上,直线的方向向量a=,向量b=).
124.异面直线间的距离
(是两异面直线,其公垂向量为,分别是上任一点,为间的距离).
125.点到平面的距离
(为平面的法向量,是经过面的一条斜线,).
126.异面直线上两点距离公式
.
.
().
(两条异面直线a、b所成的角为θ,其公垂线段的长度为h.在直线a、b上分别取两点E、F,,,).
127.三个向量和的平方公式

128. 长度为的线段在三条两两互相垂直的直线上的射影长分别为,夹角分别为,则有
.
(立体几何中长方体对角线长的公式是其特例).
129. 面积射影定理 .
(平面多边形及其射影的面积分别是、,它们所在平面所成锐二面角的为).
130. 斜棱柱的直截面
已知斜棱柱的侧棱长是,侧面积和体积分别是和,它的直截面的周长和面积分别是和,则
① .②.
131.作截面的依据
三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行.
132.棱锥的平行截面的性质
如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.
133.欧拉定理(欧拉公式)
(简单多面体的顶点数V、棱数E和面数F).
(1)=各面多边形边数和的一半.特别地,若每个面的边数为的多边形,则面数F与棱数E的关系:;
(2)若每个顶点引出的棱数为,则顶点数V与棱数E的关系:.
134.球的半径是R,则其体积,其表面积.
135.球的组合体
(1)球与长方体的组合体:
长方体的外接球的直径是长方体的体对角线长.
(2)球与正方体的组合体:
正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长.
(3) 球与正四面体的组合体:
棱长为的正四面体的内切球的半径为,外接球的半径为.
136.柱体、锥体的体积
137.分类计数原理(加法原理).
138.分步计数原理(乘法原理).
139.排列数公式 ==.(,∈N*,且).注:规定.
140.排列恒等式 (1);(2);
(3); (4);
(5).(6) .
141.组合数公式
===(∈N*,,且).
142.组合数的两个性质
(1)= ;(2) +=.
注:规定.
143.组合恒等式
(1);(2);(3);
(4)=;(5).
(6).
(7).
(8).
(9).
(10).
144.排列数与组合数的关系 .
145.单条件排列
以下各条的大前提是从个元素中取个元素的排列.
(1)“在位”与“不在位”
①某(特)元必在某位有种;②某(特)元不在某位有(补集思想)(着眼位置)(着眼元素)种.
(2)紧贴与插空(即相邻与不相邻)
①定位紧贴:个元在固定位的排列有种.
②浮动紧贴:个元素的全排列把k个元排在一起的排法有种.注:此类问题常用捆绑法;
③插空:两组元素分别有k、h个(),把它们合在一起来作全排列,k个的一组互不能挨近的所有排列数有种.
(3)两组元素各相同的插空
个大球个小球排成一列,小球必分开,问有多少种排法?
当时,无解;当时,有种排法.
(4)两组相同元素的排列:两组元素有m个和n个,各组元素分别相同的排列数为.
146.分配问题
(1)(平均分组有归属问题)将相异的、个物件等分给个人,各得件,其分配方法数共有.
(2)(平均分组无归属问题)将相异的·个物体等分为无记号或无顺序的堆,其分配方法数共有
.
(3)(非平均分组有归属问题)将相异的个物体分给个人,物件必须被分完,分别得到,,…,件,且,,…,这个数彼此不相等,则其分配方法数共有.
(4)(非完全平均分组有归属问题)将相异的个物体分给个人,物件必须被分完,分别得到,,…,件,且,,…,这个数中分别有a、b、c、…个相等,则其分配方法数有 .
(5)(非平均分组无归属问题)将相异的个物体分为任意的,,…,件无记号的堆,且,,…,这个数彼此不相等,则其分配方法数有.
(6)(非完全平均分组无归属问题)将相异的个物体分为任意的,,…,件无记号的堆,且,,…,这个数中分别有a、b、c、…个相等,则其分配方法数有.
(7)(限定分组有归属问题)将相异的()个物体分给甲、乙、丙,……等个人,物体必须被分完,如果指定甲得件,乙得件,丙得件,…时,则无论,,…,等个数是否全相异或不全相异其分配方法数恒有
.
147.“错位问题”及其推广
贝努利装错笺问题:信封信与个信封全部错位的组合数为
.
推广: 个元素与个位置,其中至少有个元素错位的不同组合总数为

.
148.二项式定理 ;
二项展开式的通项公式.
149.等可能性事件的概率.
150.互斥事件A,B分别发生的概率的和P(A+B)=P(A)+P(B).
151.个互斥事件分别发生的概率的和P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).
152.独立事件A,B同时发生的概率P(A·B)= P(A)·P(B).
153.n个独立事件同时发生的概率 P(A1· A2·…· An)=P(A1)· P(A2)·…· P(An).
154.n次独立重复试验中某事件恰好发生k次的概率
155.离散型随机变量的分布列的两个性质
(1);(2).
156.数学期望
157.数学期望的性质
(1)(2)若~,则.
(3) 若服从几何分布,且,则.
158.方差
159.标准差=.
160.方差的性质(1);(2)若~,则.
(3) 若服从几何分布,且,则.
161.方差与期望的关系.
162.正态分布密度函数,式中的实数μ,(>0)是参数,分别表示个体的平均数与标准差.
163.标准正态分布密度函数.
164.对于,取值小于x的概率.

.
165.回归直线方程 ,其中.
166.相关系数 .
|r|≤1,且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小.
167.在处的导数(或变化率或微商)
.
168.瞬时速度.
169.在的导数.
170. 函数在点处的导数的几何意义
函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是.
171.几种常见函数的导数(1) (C为常数).(2) .
(3) .(4) . (5) ;.
(6) ; .
172.导数的运算法则
(1).(2).(3).
173.复合函数的求导法则
设函数在点处有导数,函数在点处的对应点U处有导数,则复合函数在点处有导数,且,或写作.
174.判别是极大(小)值的方法
当函数在点处连续时,
(1)如果在附近的左侧,右侧,则是极大值;
(2)如果在附近的左侧,右侧,则是极小值.
175.复数的相等.()
176.复数的模(或绝对值)==.
177.复数的四则运算法则
(1);(2);
(3);
(4).

Ⅵ 高中数学知识结构框架图

原发布者:吕明龙88
高中数学知识结构框图必修一:第一章集合第三章基本初等函数(Ⅰ)必修二:第一章立体几何初步第二章平面解析几何初步必修三:第一章算法初步第二章统计第三章概率必修四:第一章基本初等函数(II)第二章平面向量第三章三角恒等变换必修五:第一章解三角形第二章数列第三章不等式选修2-1:第一章常用逻辑用语第二章圆锥曲线与方程第三章空间向量与立体几何选修2-2:第一章导数及其应用第二章推理与证明第三章数系的扩充与复数选修2-3:第一章计数原理第二章概率第三章统计案例

Ⅶ 高中数学集合知识框架图(人教版)

1.集合、简易逻辑
理解集合、子集、补集、交集、并集的概念;

了解空集和全集的意义;

了解属于、包含、相等关系的意义;

掌握有关的术语和符号,并会用它们正确表示一些简单的集合。

理解逻辑联结词"或"、"且"、"非"的含义;

理解四种命题及其相互关系;掌握充要条件的意义。

Ⅷ 谁可以给我一个高中数学必修一,必修二,必修三,必修四的知识点的框架(人教版的)



可能拍得不清楚。

Ⅸ 高一数学必修2知识框架

1.绝对经典三角函数难题:
求sin10sin20…sin90,注意都是度,这里不好打印.
提示:利用三倍角公式sin3x=4sinxsin(60-x)sin(60+x),然后取x分别为10度,20度,30度,两边相乘即可计算.
2.超级启发式平面向量题:
设a,b是平面向量,定义向量外积为a*b=|a||b|sin@,@为a,b夹角.
(1)若a=(x1,y1),b=(x2,y2),求证|a*b|=|x1y2-x2y1|;
提示:仿造书上内积坐标公式的证明.
(2)利用上面的结论,证明向量a,b共线的充要条件是x1y2-x2y1=0;
(3)已知三角形三顶点坐标,求三角形面积.
提示:设A,B,C为三角形顶点,求出向量AB,AC坐标,注意到三角形ABC的面积为AB与AC外积绝对值的1/2,再利用第一问向量外积坐标公式即得.
PS:如果有兴趣可以把内积的结论的推导方法都用到外积上来,看看还会得到什么样的结论.