当前位置:首页 » 基础知识 » 学霸课堂小学数学基础知识大全
扩展阅读
矿物基础油的来源是什么 2024-12-26 03:25:42
山水古诗歌词怎么读 2024-12-26 03:17:51

学霸课堂小学数学基础知识大全

发布时间: 2022-08-16 20:35:33

① 小学数学知识的相关基础理论知识有哪些

小学数学学习概述
数学学习主要是对学生数学思维能力的培养。这要以数学基础知识和基本技能为基础,以数学问题为诱因,以数学思想方法为核心,以数学活动为主线,遵循数学的内在规律和学生的思维规律开展教学。

学习类型分析
1.方式性分类
(1)接受学习与发现学习
定义:将学习的内容以定论的形式呈现给学习者的学习方式。
模式:呈现材料—讲解分析—理解领会—反馈巩固
(2)发现学习
定义:向学习者提供一定的背景材料,由学习者独立操作而习得知识的学习方式。
模式:呈现材料—假设尝试—认知整合—反馈巩固。
2.知识性分类一
(1)知识学习 定义:以理解、掌握数学基础知识为主的学习活动。过程:选择—领会—习得——巩固
(2)技能学习
定义:将一连串(内部或外部的)动作经练习而形成熟练的、自动化的反应过程。
过程:演示—模仿—练习—熟练—自动化
(3)问题解决学习
以关心问题解决过程为主、反思问题解决思考过程的一种数学学习活动。
提出问题—分析问题—解决问题—反思过程
3.知识性分类二
(1)概念性(陈述性)知识的学习
把数学中的概念、定义、公式、法则、原理、定律、规则等都称为概念性知识。
概念学习:同化与形成。
利用已有概念来学习相关新概念的方式,称概念同化;依靠直接经验,从大量的具体例子出发,概括出新概念的本质属性的方式,称为概念形成。概念形成是小学生获得数学概念的主要形式。
(2)技能性(程序性)知识的学习
小学数学技能主要是运算技能。 运算技能的形成分为三个阶段:
①认知阶段:“引导式”的尝试错误。从老师演算例题或自学法则中初步了解运算法则,在头脑中形成运算方法的表征。②联结阶段:法则阶段,即按法则一步步地运算,保证算对(使用法则解决问题,陈述性知识提供了基本的操作线索)—程序化阶段(将相关的小法则整合为整体的法则系统,此时概念性知识已退出),能算得比较快速正确。③自动化阶段:更清楚更熟练地应用第二阶段中的程序,通过较多的练习,不再思考程序,达到一定程序的自动化,获得了运算的速度和较高的正确率。
(3)问题解决(策略性知识)的学习
通过重组所掌握的数学知识,找出解决当前问题的适用策略和方法,从而获得解决问题的策略的学习。
小学生解决问题的主要方式,一是尝试错误式(又称试误法),即通过进行无定向的尝试,纠正暂时性
尝试错误,直至解决问题;二是顿悟式(也称启发式),好像答案或方法是突然出现的,而实际上是有一
定的“心向”作基础的,这就是问题解决所依据的规则、原理的评价和识别。
4.任务性分类
(1)记忆操作类学习
如口算、尺规作(画)图和掌握基本的运算法则并能进行准确计算等。
(2)理解性的学习
如认识并掌握概念的内涵、懂得数学原理并能用于解释或说明、理解一个数学命题并能用于推得新命题。
(3)探索性的学习
如需要让学生经过自己探索,发现并提出问题或学习任务,让学生通过自己的探究能总结出一个数学规律或规则,让学生通过自己的探究过程而逐步形成新的策略性知识等。
小学生数学认知学习
一、小学生数学认知学习的基本特征
1.生活常识是小学生数学认知的起点
要在儿童的生活常识和数学知识之间构建一座桥梁,让儿童从生活常识和经验出发,不断通过尝试、探索和反思,从而达到“普通常识”的“数学化”。
2.小学生数学认知是一个主体的数学活动过程
数学认知过程要成为一个“做数学”的过程,让儿童从生活常识出发,在“做数学”的过程中,去发现、了解、体验和掌握数学,去认识数学的价值、了解数学的特性、总结数学的规律,去学会用数学、提高数学修养、发展数学能力。
3.小学生数学认知思维具有直观化的特征
由于一方面儿童生活常识是其数学认知的基础,另一方面儿童思维是以直观具体形象思维为主,所以要以直观为主要手段,让儿童理解并构建起数学认知结构。
4.小学生数学认知是一个“再发现”和“再创造”的过程
小学生的数学学习,主要的不是被动的接受学习,而是主动的“再发现”和“再创造”学习的过程。要让他们在数学活动或是实践中去重新发现或重新创造数学的概念、命题、法则、方法和原理。
二、小学生数学认知发展的基本规律
1.小学生数学概念的发展
(1)从获得并建立初级概念为主发展到逐步理解并建立二级概念
(2)从认识概念的自身属性逐步发展到理解概念间的关系
(3)数学概念的建立受经验的干扰逐渐减弱
2.小学生数学技能的发展
(1)从依赖结构完满的示范导向发展到依赖对内部意义的理解
(2)从外部的展开的思维发展到内部的压缩的思维
(3)数感和符号意识的逐步提高,支持着运算向灵活性、简洁性和多样性发展
3.小学生空间知觉能力的发展
(1)方位感是逐步建立的
(2)空间概念的建立逐渐从外显特征的把握发展到对本质特征的把握
(3)空间透视能力是逐步增强的
4.小学生数学问题解决能力的发展
(1)语言表述阶段 (2)理解结构阶段 (3)多级推理能力的形成 (4)符号运算阶段
小学生数学能力的培养
一、数学能力概述
1.能力概述 能力是指个体能胜任某种活动所具有的心理特征
2.数学能力 数学能力是顺利完成数学活动所具备的,且直接影响其活动效率的一种个性心理特征
(1)运算能力:数据运算、逻辑运算和操作运算
(2)空间想象力:依据实物建立模型、依据模型还原实物、依据模型抽象出特征、大小和位置关系、模型或实物进行分解与组合等能力
(3)数学观察能力:对象的概括化、知觉的形式化、对空间结构的知觉和逻辑模式的识别等能力
(4)数学记忆能力:对概括化、形式化的符号、命题、性质及空间结构、逻辑模式等识记与再现的能力
(5)数学思维能力:对已有数学信息运用数学推理的思考方式进行思维的能力。
二、儿童数学思维能力的差异性
1.产生差异的原因 (1)多元智力理论 (2)思维类型不同
2.对待差异的态度 (1)求同存异 (2)扬长避短
三、数学能力的培养
1.培养学生的数学学习兴趣
(1)从学生生活经验着手 (2)从建立问题情境开始 (3)让学生在“做数学”中学
2.培养基本的数学能力
(1)数学操作能力动手操作既能吸引学生的注意力,又易于激发学生的思维和想象,从而调动学习积极性,培养学习兴趣,使学生主动获得知识。
在操作中,学生既“玩”了,又“学”了,也 “想”了,思维能力得到提高,学习兴趣得到培养,书本知识得到理解和消化。
2.数学语言能力
在学生动手操作活动中,还要求学生通过语言表达,对数学概念逐步建立起清晰而深刻的表象,进而自觉而巩固地掌握数学知识。
学生在表达数学时,要求语言简洁,运用数学术语准确。严谨的数学态度,需要严谨的数学语言相伴。
3.问题解决能力
发现、提出、分析、解决数学问题的能力, 是最重要的也是最终数学能力的表现。
(1)创设问题情境,培养问题意识
有目的、有意识地创设问题情境,设障立疑,造成学生对新学知识感到有问题可想,有矛盾可解决的情境,让学生处于“心求通而不能,口欲言而未得”。
(2)主动探索,增强学生的主体意识
①对问题进行大胆猜想、尝试解题
从生活经验出发提出猜想 ,从已有知识经验基础上提出猜想。
②通过各种形式交流猜想,选择更优方案
(3)拓展变化,增强学生的应用意识
强调数学应用,不全是回到测量、制图、会计等教学活动,而是培养一种应用数学知识和思想方法解决问题的欲望和方式
(4)运用所学知识,解决数学问题
生活中的数学问题很多,在教学中引导学生把生活中的问题抽象为数学问题,这样既可以加深学生对所学知识的理解,又有助于提高解决问题的能力。如房屋装修粉刷面积,铺地用多少块砖,种植面积与棵数,车轮为什么制成圆形等。
小学数学课堂教学过程
一、小学数学教学过程的主要矛盾
1.数学教与学的矛盾
教师是主导位,学生是主体。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
2.小学生的认知特点与数学学科知识间的矛盾
数学的抽象性与小学生认知的具体形象性之间,数学的严密性与小学生认知的简单化、直观化之间,数学应用的广泛性与小学生知识面窄、接触实际生活少之间,都会产生矛盾。
3.小学生认知结构发展水平与教师传授的
数学知识之间的矛盾 首先,教师对数学知识的传授与学生对数学知识的理解、掌握之间就有矛盾。其次,教师的数学语言表达与学生对它的理解之间的矛盾。再次,小学生掌握的新知识与旧有知识的矛盾。
二、小学数学教学过程
1.小学数学教学过程是师生交往与互动的过程
交往的基本属性是互动性和互惠性,交往的基本方式是对话和参与。对小学生而言,交往为他们心态的开放,主体性的凸现,创造性的解放提供了空间;对教师而言,课堂上的交往是与学生共同分享对数学的理解、共同感受学习的快乐。小学数学家教学过程是师生间、学生间的平等对话、交流的过程,这种对话、交流的内容,包括数学知识、技能的信息和情感、态度、态度价值观等各个方面的信息。师生正是通过这种对话和交流来实现课堂中的师生之间的互动的。
有效的交往互动要注意以下两个方面:
(1) 要充分调动小学生的主动性、积极性
数学教学过程对数学内容进行探索、实践与思考的学习过程,学生是学习活动的主体。教师只有引导学生开展观察、操作、比较、猜想、推理、交流等多种形式的活动,才能促使学生建构自己对数学的理解,进行掌握数学知识和技能,逐步学会从数学的角度观察事物,思考问题,产生学习数学的兴趣与愿望。
(2)要实现教师角色的转变
教师的主导作用可在以下活动中得到体现。
①调动学生的学习积极性,激发学生的学习动机,引导学生积极主动地投入到学习活动中去。 ②了解学生的想法,有针对性地引导,帮助学生解决学习困难;同时鼓励不同的观点,参与学生的讨论,评估学习,作出调整。 ③为学生的学习创设一个良好的课堂环境和精神氛围,引导学生开展积极主动的数学活动。
2.小学数学教学过程是老师引导学生开展数学活动的过程
(1)组织和引导学生经历“数学化”的过程
学生数学学习应当成为“数学化”的过程。即学生从具体情境出发,经过归纳、抽象和概括等思维活动,寻找数学模型,得出数学结论的过程。教师要善于引导学生把生活经验上升到数学知识和方法。
(2)师生共同生成与建构数学知识的过程
在学校学习的情境下,教师对于指导学生进行数学知识的建构具有重要的引导和指导作用,教师要注重引导学生有效地建构数学知识,在数学课堂教学过程中“生成”知识与方法。这种“生成”的过程正是通过师生双方交互作用、教师的外因促使学生的内因而完成的。
(3)在活动中体验数学,获得数学发展的过程
小学数学教学过程应成为师生共同参与的活动过程。在这一过程中,教师为学生设计和提供有意义的情境,组织学生共同进行操作、交流、思考等活动。要给学生提供相对充分的时间和空间,让学生获得自主探索动手实践的机会,从现实问题出发学习数学知识的机会,从相关学科和已有知识提出数学问题的机会,对数学内部的规律和原理进行探索和研究的机会。
3.小学数学教学过程是师生共同发展的过程
(1)促进学生的发展 小学数学教学的基本目的是促进学生的发展,为小学生终身发展奠定基础。学生应该在数学知识与技能、数学思考、解决问题和情感态度价值观等四个方面得到发展。这四个方面应交织、渗透,密不可分,形成一个整体。
(2)促进教师的专业成长优秀教师都是在教学实践中成长起来的。 良好的知识结构、能力结构,专业领引,同行间的切磋、交流,不断的自我反思,是优秀教师成长的关键因素。教师的专业能力包括教学设计、教学实施和教学反思等能力。教学过程必须遵循教育规律和儿童身心发展的规律,还要教师有创造性地解决师生、生生间的认知、情感和价值观的冲突的能力,形成独具个人魅力的教学风格,教学是一个富有个性化的创造过程。

② 小学数学小常识

对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?

由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.

③ 小学数学知识大全

良好的学习习惯能使孩子收益终身,尤其是小学阶段,小学阶段是孩子从一个天真顽劣的小孩到一个真正接受知识的小学生,从各个方面进行要求规范的时期。在这个时期良好的学习方法是孩子成绩优异的关键,很多家长不知道如何给孩子补习小学数学,那今天就带大家一起了解补习小学数学的五大技巧。

现在的时代是一个多元化的教育时代,孩子们的大脑不仅仅是课上的40分钟,而是要勇于积极的探索,在给孩子补习小学数学的时候着眼于以上几点,加上对课本知识的结合,孩子的成绩定会有所提高,于此同时孩子更多的学习到的是掌握知识的方法。

④ 小学数学必背公式大全你知道多少

小学数学知识概念公式汇总
小学一年级 九九乘法口诀表.学会基础加减乘.
小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形.
小学三年级 学会乘法交换律,几何面积周长等,时间量及单位.路程计算,分配律,分数小数.
小学四年级 线角自然数整数,素因数梯形对称,分数小数计算.
小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积.
小学六年级 比例百分比概率,圆扇圆柱及圆锥.
必背定义、定理公式
三角形的面积=底×高÷2. 公式 S= a×h÷2

正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度.
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高.公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积.公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高.公式:V=Sh
圆锥的体积=1/3底面×积高.公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.
分数的乘法则:用分子的积做分子,用分母的积做分母.
分数的除法则:除以一个数等于乘以这个数的倒数.
读懂理解会应用以下定义定理性质公式

一、算术方面
1、加法交换律:两数相加交换加数的位置,和不变.
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变.
3、乘法交换律:两数相乘,交换因数的位置,积不变.
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变. O除以任何不是O的数都得O.
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾.
7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式.
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立.
8、什么叫方程式?答:含有未知数的等式叫方程式.
9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式.
学会一元一次方程式的例法及计算.即例出代有χ的算式并计算.
10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数.
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母.
15、分数除以整数(0除外),等于分数乘以这个整数的倒数.
16、真分数:分子比分母小的分数叫做真分数.
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于1.
18、带分数:把假分数写成整数和真分数的形式,叫做带分数.
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变.
20、一个数除以分数,等于这个数乘以分数的倒数.
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数.
数量关系计算公式方面
1、单价×数量=总价
2、单产量×数量=总产量
3、速度×时间=路程
4、工效×时间=工作总量
5、加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
有余数的除法: 被除数=商×除数+余数

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变.例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米. 1亩=666.666平方米.
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什么叫比:两个数相除就叫做两个数的比.如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变.
8、什么叫比例:表示两个比相等的式子叫做比例.如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积.
10、解比例:求比例中的未知项,叫做解比例.如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系.如:y/x=k( k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系.如:x×y = k( k一定)或k / x = y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数.百分数也叫做百分率或百分比.
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号.其实,把小数化成百分数,只要把这个小数乘以100%就行了.
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.
14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数.其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了.
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数.
15、要学会把小数化成分数和把分数化成小数的化发.
16、最大公约数:几个数都能被同一个数一次性整除,这个数

⑤ 小学数学概念大全

小学数学知识概念公式汇总

小学一年级 九九乘法口诀表。学会基础加减乘。
小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级 学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。
小学四年级 线角自然数整数,素因数梯形对称,分数小数计算。
小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级 比例百分比概率,圆扇圆柱及圆锥。

必背定义、定理公式
三角形的面积=底×高÷2。 公式 S= a×h÷2

正方形的面积=边长×边长 公式 S= a×a

长方形的面积=长×宽 公式 S= a×b

平行四边形的面积=底×高 公式 S= a×h

梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2

内角和:三角形的内角和=180度。

长方体的体积=长×宽×高 公式:V=abh

长方体(或正方体)的体积=底面积×高 公式:V=abh

正方体的体积=棱长×棱长×棱长 公式:V=aaa

圆的周长=直径×π 公式:L=πd=2πr

圆的面积=半径×半径×π 公式:S=πr2

圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2

圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

圆锥的体积=1/3底面×积高。公式:V=1/3Sh

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做分子,用分母的积做分母。

分数的除法则:除以一个数等于乘以这个数的倒数。

读懂理解会应用以下定义定理性质公式

一、算术方面

1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5

6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8、什么叫方程式?答:含有未知数的等式叫方程式。

9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。

11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

16、真分数:分子比分母小的分数叫做真分数。

17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

18、带分数:把假分数写成整数和真分数的形式,叫做带分数。

19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

20、一个数除以分数,等于这个数乘以分数的倒数。

21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

数量关系计算公式方面

1、单价×数量=总价

2、单产量×数量=总产量

3、速度×时间=路程

4、工效×时间=工作总量

5、加数+加数=和 一个加数=和+另一个加数

被减数-减数=差 减数=被减数-差 被减数=减数+差

因数×因数=积 一个因数=积÷另一个因数

被除数÷除数=商 除数=被除数÷商 被除数=商×除数

有余数的除法: 被除数=商×除数+余数

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

6、 1公里=1千米 1千米=1000米

1米=10分米 1分米=10厘米 1厘米=10毫米

1平方米=100平方分米 1平方分米=100平方厘米

1平方厘米=100平方毫米

1立方米=1000立方分米 1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1吨=1000千克 1千克= 1000克= 1公斤= 1市斤

1公顷=10000平方米。 1亩=666.666平方米。

1升=1立方分米=1000毫升 1毫升=1立方厘米

7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

9、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y

百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

15、要学会把小数化成分数和把分数化成小数的化发。

16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)

17、互质数: 公约数只有1的两个数,叫做互质数。

18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)

21、最简分数:分子、分母是互质数的分数,叫做最简分数。

分数计算到最后,得数必须化成最简分数。

个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。

22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。

23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)

29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。

30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414

32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。

如3. 141592654

33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……

34、什么叫代数? 代数就是用字母代替数。

35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c

一般运算规则
1 每份数×份数=总数总数÷每份数=份数 总数÷份数=每份数

2 1倍数×倍数=几倍数几倍数÷1倍数=倍数 几倍数÷倍数=1倍数

3 速度×时间=路程路程÷速度=时间 路程÷时间=速度

4 单价×数量=总价总价÷单价=数量 总价÷数量=单价

5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

6 加数+加数=和和-一个加数=另一个加数

7 被减数-减数=差被减数-差=减数 差+减数=被减数

8 因数×因数=积积÷一个因数=另一个因数

9 被除数÷除数=商被除数÷商=除数 商×除数=被除数

小学数学图形计算公式

1 正方形 C周长 S面积 a边长

周长=边长×4 C=4a

面积=边长×边长 S=a×a

2 正方体 V:体积 a:棱长

表面积=棱长×棱长×6 S表=a×a×6

体积=棱长×棱长×棱长 V=a×a×a

3 长方形 C周长 S面积 a边长

周长=(长+宽)×2 C=2(a+b)

面积=长×宽 S=ab

4 长方体 V:体积 s:面积 a:长 b: 宽 h:高

表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)

体积=长×宽×高 V=abh

5 三角形 s面积 a底 h高

面积=底×高÷2 s=ah÷2

三角形高=面积 ×2÷底三角形底=面积 ×2÷高

6 平行四边形 s面积 a底 h高

面积=底×高 s=ah

7 梯形 s面积 a上底 b下底 h高

面积=(上底+下底)×高÷2 s=(a+b)× h÷2

8 圆形 S面积 C周长 ∏ d=直径 r=半径

周长=直径×∏=2×∏×半径 C=∏d=2∏r

面积=半径×半径×∏

9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长

侧面积=底面周长×高表面积=侧面积+底面积×2

体积=底面积×高体积=侧面积÷2×半径

10 圆锥体 v:体积 h:高 s;底面积 r:底面半径

体积=底面积×高÷3

⑥ 小学数学知识点有哪些

数学作为一门具有很强逻辑性和连续性的学科,是每个小学生都应该掌握的基础知识.小学数学重点是基础知识的掌握基和学习,学习数学的标准就是能够对该学籍范围内的题目进行正确的解答.考察公式概念是小学数学重点要掌握的知识,下面这几个学习方法带你学好数学.

(同学们开讲)

学习小学数学重点就是注重学习的方法,但是也需要学生有坚持不懈的精神.勤学多问不耻下问是学习的良好态度,他们会把你带到一个更高的层次,掌握好学习方法,你会对每一天的新知识充满兴趣.

⑦ 能不能分享小学数学学霸笔记PDF文档百度网盘资源,急急急,求免费分享一下

《人教版小学数学》网络网盘资源免费下载

链接:https://pan..com/s/1MTiwfGDFWvnUZGOFlWuFMg

提取码:kfvd
人教版小学数学|人教版小学数学一年级下册.rar|人教版小学数学一年级上册.rar|人教版小学数学五年级下册.rar|人教版小学数学五年级上册.rar|人教版小学数学四年级下册.rar|人教版小学数学四年级上册.rar|人教版小学数学三年级下册.rar|人教版小学数学三年级上册.rar|人教版小学数学六年级下册.rar|人教版小学数学六年级上册.rar|人教版小学数学二年级下册.rar|人教版小学数学二年级上册.rar

⑧ 小学数学的基础知识有哪些

对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?

由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.