当前位置:首页 » 基础知识 » 数学知识考点四年级下
扩展阅读
矿物基础油的来源是什么 2024-12-26 03:25:42
山水古诗歌词怎么读 2024-12-26 03:17:51

数学知识考点四年级下

发布时间: 2022-08-15 05:54:52

1. 四年级数学知识点有哪些

四年级数学知识点如下:

1、四位分级法:即以四位数为一个数级的分级方法。

2、数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。

3、在几何学中,直线上的一点和它一旁的部分所组成的图形称为射线。

4、连接两点间线段的长度叫做这两点间的距离。

5、角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。

2. 人教版小学四年级数学下册重点知识哪些

四则运算
1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
5、加法、减法、乘法和除法统称为四则运算。
6、先乘除,后加减,有括号,提前算
关于“0”的运算
1、“0”不能做除数; 字母表示:a÷0错误
2、一个数加上0还得原数; 字母表示:a+0= a
3、一个数减去0还得原数; 字母表示:a-0= a
4、被减数等于减数,差是0; 字母表示:a-a = 0
5、一个数和0相乘,仍得0; 字母表示:a×0= 0
6、0除以任何非0的数,还得0; 字母表示:0÷a(a≠0)= 0
7、0÷0得不到固定的商;5÷0得不到商.
位置与方向:
1、根据方向和距离确定或者绘制物体的具体地点。(比例尺、角的画法和度量)
注意:1、比例尺2、正北方向3、角的画法
2、位置间的相对性。会描述两个物体间的相互位置关系。(观测点的确定)
3、简单路线图的绘制。
4.地图的三要素:图例、方向、比例尺。
5.确定方向时:A、先确定观测点
(1)从那里出发,那里就是观测点。
(2)“在”字后面的为观测点。
B站在观测点来看方向。
例如:①东偏南25°(标25°的那个角就靠近东)
②西偏北35°(标35°的那个角就靠近西)
6.描述路线和绘路线图时:只有一条线,所作的线是首尾相连的。
7.常用的八个方位:东、南、西、北、东南、东北、西南、西北。
运算定律及简便运算:
一、加法运算定律:
1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a
2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)
加法的这两个定律往往结合起来一起使用。
如:165+93+35=93+(165+35)依据是什么?
3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)
二、乘法运算定律:
1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a
2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。
( a×b )× c = a× (b×c )
乘法的这两个定律往往结合起来一起使用。如:125×78×8的简算
3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c
乘法分配律的应用:
①类型一:(a+b)×c (a-b)×c
= a×c+b×c = a×c-b×c
②类型二:a×c+b×c a×c-b×c
=(a+b)×c =(a-b)×c
③类型三:a×99+a a×b-a
= a×(99+1) = a×(b-1)
④类型四:a×99 a×102
= a×(100-1) = a×(100+2)
= a×100-a×1 = a×100+a×2
三、简便计算
1.连加的简便计算:
①使用加法结合律(把和是整十、整百、整千、的结合在一起)
②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
2.连减的简便计算:
①连续减去几个数就等于减去这几个数的和。如:106-26-74=106-(26+74)
②减去几个数的和就等于连续减去这几个数。如: 106-(26+74)=106-26-74
3.加减混合的简便计算:
第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减)
例如:123+38-23=123-23+38 146-78+54=146+54-78
4.连乘的简便计算:
使用乘法结合律:把常见的数结合在一起 25与4;125与8 ;125与80 等。看见25就去找4,看见125就去找8;
5.连除的简便计算:
①连续除以几个数就等于除以这几个数的积。
②除以几个数的积就等于连续除以这几个数。
6.乘、除混合的简便计算:
第一个数的位置不变,其余的因数、除数可以交换位置。(可以先乘,也可以先除)例如:27×13÷9=27÷9×13
四、连除的性质:一个数连续除以两个数,等于除以这两个数的积。a÷b÷c = a÷(b×c)
1、常见乘法计算:
25×4=100 125×8=1000
2、加法交换律简算例子: 3、加法结合律简算例子:
50+98+50 488+40+60
=50+50+98 =488+(40+60)
=100+98 =488+100
=198 =588
4、乘法交换律简算例子: 5、乘法结合律简算例子:
25×56×4 99×125×8
=25×4×56 =99×(125×8)
=100×56 =99×1000
=5600 =99000
6、含有加法交换律与结合律的简便计算:
65+28+35+72
=(65+35)+(28+72)
=100+100
=200
7、含有乘法交换律与结合律的简便计算:
25×125×4×8
=(25×4)×(125×8)
=100×1000
=100000
乘法分配律简算例子:
1、分解式 2、合并式
25×(40+4) 135×12—135×2
=25×40+25×4 =135×(12—2)
=1000+100 =135×10
=1100 =1350
3、特殊1 4、特殊2
99×256+256 45×102
=99×256+256×1 =45×(100+2)
=256×(99+1) =45×100+45×2
=256×100 =4500+90
=25600 =4590

5、特殊3 6、特殊4
99×26 35×8+35×6—4×35
=(100—1)×26 =35×(8+6—4)
=100×26—1×26 =35×10
=2600—26 =350
=2574
一、 连续减法简便运算例子:
528—65—35 528—89—128 528—(150+128)
=528—(65+35) =528—128—89 =528—128—150
=528—100 =400—89 =400—150
=428 =311 =250
二、 连续除法简便运算例子:
3200÷25÷4
=3200÷(25×4)
=3200÷100
=32
三、 其它简便运算例子:
256—58+44 250÷8×4
=256+44—58 =250×4÷8
=300—58 =1000÷8
=242 =125
五、有关简算的拓展:
102×38-38×2125×25×32 125×88
37×96+37×3+37
易错的情况: 38×99+99
小数的意义和性质:
1.小数的产生:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。
2、分母是10、100、1000……的分数可以用小数来表示。
3、小数是十进制分数的另一种表现形式。
4、小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……
5、每相邻两个计数单位间的进率是10。
6、小数的数位是十分位、百分位、千分位……最高位是十分位。整数部分的最低位是个位。个位和十分位的进率是10。
7、 小数的数位顺序表
整数部分 小数点 小数部分
数位 … 万位 千位 百位 十位 个位 • 十分位 百分位 千分位 万分位 …
计数单位 … 万 千 百 十 一(个) 十分之一 百分之一 千分之一 万分之一 …
(1)6.378的计数单位是0.001。(最低位的计数单位是整个数的计数单位)
(2)6.378中有6个一,3个十分之一(0.1),7个百分之一(0.01),
8个千分之一(0.001)。
(3)6.378中有(6378)个千分之一(0.001)。
(4)9.426中的4表示4个十分之一(0.1)[4在十分位]
8、小数的读法:先读整数部分(按照原来的读法),再读小数点,再读小数部分。读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0。
9、小数的写法:先写整数部分(按照原来的写法),再写小数点,再小数部分:写小数部分,小数部分要依次写出每个数字,而且有几个0就写几个0。
10、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。注意:小数中间的“0”不能去掉,取近似数时有一些末尾的“0”不能去掉。作用可以化简小数等。
11、小数的大小比较:(1) 先比较整数部分;(2)如果整数部分相同,就比较十分位;(3)十分位相同,就比较百分位;(4)以此类推,直到比较出大小。
12、小数点的移动
小数点向右移:
移动一位,小数就扩大到原数的10倍;
移动两位,小数就扩大到原数的100倍;
移动三位,小数就扩大到原数的10 00倍;……
小数点向左移:
移动一位,小数就缩小10倍,即小数就缩小到原数的 ;
移动两位,小数就缩小100倍,即小数就缩小到原数的 ;
移动三位,小数就缩小1000倍,即小数就缩小到原数的 ;……
13、生活中常用的单位:
质量: 1吨=1000千克; 1千克=1000克
长度: 1千米=1000米 1分米=10厘米 1厘米=10毫米
1分米=100毫米 1米=10分米=100厘米=1000毫米
面积: 1平方米= 100平方分米 1平方分米=100平方厘米
1平方千米=100公顷 1公顷=10000平方米
人民币: 1元=10角 1角=10分 1元=100分
长度单位:千米 ¬¬———— 米 ———— 分米 ———— 厘米
面积单位:平方千米———公顷———平方米————平方分米———平方厘米
质量单位:吨————千克————克
单位换算:
(1)高级单位转化成低级单位=======乘以进率,小数点向右移动。
(2)低级单位转化成高级单位=======除以进率,小数点向左移动。
14、小数的近似数(用“四舍五入”的方法):
(1)保留整数,表示精确到个位,就是要把小数部分省略,要看十分位,如果十分位的数字大于或等于5则向前一位进一。如果小于五则舍。
(2)保留一位小数,表示精确到十分位,就要把第一位小数以后的部分全部省略, 这时要看小数的第二位,如果第二位的数字比5小则全部舍。反之,要向前一位进一。
(3)保留两位小数,表示精确到百分位,就要把第二位小数以后的部分全部省略,这时要看小数的第三位,如果第三位的数字比5小则全部舍。反之,要向前一位进一。
(4)为了读写的方便,常常把不是整万或整亿的数改写成用“万”或“亿”作单位的数。改写成“万”作单位的数就是小数点向左移4位,即在万位的右边点上小数点,在数的后面加上“万”字。改写成“亿”作单位的数就是小数点往左移8位即在亿位的右边点上小数点,在数的后面加上“亿”字。注意:带上单位。然后再根据小数的性质把小数末尾的零去掉即可。
(5)在表示近似数时,小数末尾的“0”不能去掉。
三角形:
1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。
2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。三角形只有3条高。重点:三角形高的画法。
3、三角形的特性:1、物理特性:稳定性。如:自行车的三角架,电线杆上的三角架。
4、边的特性:任意两边之和大于第三边。
5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。
6、三角形的分类:
按照角大小来分:锐角三角形,直角三角形,钝角三角形。
按照边长短来分:三边不等的△,等腰△(等边三角形或正三角形是特殊的等腰△)。
等边△的三边相等,每个角是60度。(顶角、底角、腰、底的概念)
7、三个角都是锐角的三角形叫做锐角三角形。
8、有一个角是直角的三角形叫做直角三角形。
9、有一个角是钝角的三角形叫做钝角三角形。
10、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角。
11、两条边相等的三角形叫做等腰三角形。
12、三条边都相等的三角形叫等边三角形,也叫正三角形。
13、等边三角形是特殊的等腰三角形
14、三角形的内角和等于180度。四边形的内角和是360°有关度数的计算以及格式。
15、图形的拼组:两个完全一样的三角形一定能拼成一个平行四边形。
16、用2个相同的三角形可以拼成一个平行四边形。
17、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。
18、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。一个大的等腰的直角的三角形。
19、密铺:可以进行密铺的图形有长方形、正方形、三角形以及正六边形等。
小数的加减法:
1、计算法则:相同数位对齐(小数点对齐),按照整数计算方法进行计算,得数的小数点要和横线上的小数的小数点对齐。结果是小数的要依据小数的性质进行化简。
2、竖式计算以及验算。注意横式上要写上答案,不要写成验算的结果。
3、整数的四则运算顺序和运算定律在小数中同样适用。(简算)
统计:
1、条形统计图优点:直观地反映数量的多少。
2、折线统计图优点:既可以反映数量的多少,又能反映数量的增减变化。
3、折线统计图中,变化趋势指:上升或者下降。
4、折线统计图:是用一个单位长度表示一定的数量,根据数量的多少描出各点,再把各点用线段顺次连接起来。
5、优点:不仅可以看出数量的多少,还可以看出数量的增减变化情况,预测今后的趋势,对今后的生产和生活提供指导和帮助。
数学广角:植树问题
(一)植树问题:
1、 两端要栽:间隔数=总长÷间距;总长=间距×间隔数;棵数=间隔数+1;间隔数=棵数-1
2、 两端不栽:间隔数=总长÷间距;总长=间距×间隔数;棵数=间隔数-1;间隔数=棵数+1
间隔数=总长度 ÷ 间隔长度
情况分类:1、两端都植:棵数=间隔数+1
2、一端植,一端不植:棵数=间隔数
3、两端都不植:棵数=间隔数-1
4、封闭:棵数=间隔数
(二)锯木问题: 段数=次数+1; 次数=段数-1
总时间=每次时间×次数
(三)方阵问题: 最外层的数目是:边长×4—4或者是(边长-1)×4
整个方阵的总数目是:边长×边长
(四)封闭的图形(例如围成一个圆形、椭圆形):总长÷间距=间隔数;棵数=间隔数
(五)棋盘棋子数目:
1.棋盘最外层棋子数:每边棋子数×边数-边数
2.棋盘总的棋子数:每行棋子数×每列棋子数
3.方阵最外层人数:每边人数×4-4
4.多边形上摆花盆:每边摆的花盆数×边数-边数

3. 最新人教版四年级下册数学知识点总结

这里有最新2021人教版的:

四年级下册数学复习资料全册1-8单元知识点归纳


第一单元 四则运算

1.加、减的意义和各部分间的关系:

(1)把两个数合并成一个数的运算,叫做加法。

(2)相加的两个数叫做加数。加得的数叫做和。

(3)已知两个数的和与其中的一个加数,求另一个加数的运算,叫做减法。

(4)在减法中,已知的和叫做被减数……。减法是加法的逆运算。

(5)加法各部分间的关系:和=加数+加数加数=和-另一个加数

(6)减法各部分间的关系:差=被减数-减数

减数=被减数-差

被减数=减数+差

2.乘、除法的意义和各部分间的关系

(1)求几个相同加数的和和的简便运算,叫做乘法。

(2)相乘的两个数叫做因数。乘得的数叫做积。

(3)已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

(4)在除法中,已知的积叫做被除数……。除法是乘法的逆运算。

(5)乘法各部分间的关系:

积=因数×因数

因数=积÷另一个因数

(6)除法各部分间的关系:

商=被除数÷除数

除数=被除数÷商

被除数=商×除数

(7)有余数的除法,

被除数=商×除数+余数

3.加法、减法、乘法、除法统称为四则运算

4.四则混和运算的顺序

(1)在没有括号的算式里,如果只有加、减法,或者只有乘、除法,都要按(从左往右)的顺序计算;

(2)在没有括号的算式里,如果既有乘、除法,又有加、减法,要先算(乘、除法),后算(加、减法);(先乘除,后加减)

(3)在有括号的算式里,要先算括号里面的,后算括号外面的。

5.有关 0 的计算

①一个数和0相加,结果还得原数:a+0=a 0+a=a

②一个数减去0,结果还得这个数:a-0=a

③一个数减去它自己,结果得零:a-a=0

④一个数和0相乘,结果得0:a×0=0 ;0×a=0

⑤0除以一个非0的数,结果得0:0÷a=0;

⑥0不能做除数:a÷0=(无意义)

6.租船问题。解答租船问题的方法:先假设、再调整。


第二单元 观察物体二

1.正确辨认从上面、前面、左面观察到物体的形状。

2.观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意,只分上下画数量。

3.从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。

4.从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。

5.从不同的位置观察,才能更全面地认识一个物体。


第三单元 运算定律

……

更多详细内容请见网络文库:2021人教版小学四年级下册数学全册1-8单元知识点归纳

4. 四年级下册数学一单元重点,难点,归纳总结

    1. 轴对称的基本性质是对应点到对称轴的距离相等

5. 四年级数学知识点有哪些

四年级数学知识点有:

1、大数的认识: 亿以内的数的认识: 十万:10个一万; 一百万:10个十万; 一千万:10个一百万; 一亿:10个一千万。

2、数级:数级是为便于人们记读阿拉伯数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。通常在阿拉伯数的书写上,以小数点或者空格作为各个数级的标识,从右向左把数分开。

3、数级分类:四位分级法即以四位数为一个数级的分级方法。我国读数的习惯,就是按这种方法读的。如:万(数字后面4个0)、亿(数字后面8个0)、兆(数字后面12个0,这是中法计数)。这些级分别叫做个级,万级,亿级。

三位分级法即以三位数为一个数级的分级方法。这西方的分级方法,这种分级方法也是国际通行的分级方法。如:千,数字后面3个0、百万,数字后面6个0、十亿,数字后面9个0。

4、数位:数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。这就说明计数单位和数位的概念是不同的。

5、数的产生:阿拉伯数字的由来:古代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。

6. 最新最全人教版小学四年级数学下册知识点总结

来上新啦,2021人教版的:

四年级下册数学复习资料全册1-8单元知识点归纳

第一单元 四则运算

1.加、减的意义和各部分间的关系:

(1)把两个数合并成一个数的运算,叫做加法。

(2)相加的两个数叫做加数。加得的数叫做和。

(3)已知两个数的和与其中的一个加数,求另一个加数的运算,叫做减法。

(4)在减法中,已知的和叫做被减数……。减法是加法的逆运算。

(5)加法各部分间的关系:和=加数+加数加数=和-另一个加数

(6)减法各部分间的关系:差=被减数-减数

减数=被减数-差

被减数=减数+差

2.乘、除法的意义和各部分间的关系

(1)求几个相同加数的和和的简便运算,叫做乘法。

(2)相乘的两个数叫做因数。乘得的数叫做积。

(3)已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

(4)在除法中,已知的积叫做被除数……。除法是乘法的逆运算。

(5)乘法各部分间的关系:

积=因数×因数

因数=积÷另一个因数

(6)除法各部分间的关系:

商=被除数÷除数

除数=被除数÷商

被除数=商×除数

(7)有余数的除法,

被除数=商×除数+余数

3.加法、减法、乘法、除法统称为四则运算

4.四则混和运算的顺序

(1)在没有括号的算式里,如果只有加、减法,或者只有乘、除法,都要按(从左往右)的顺序计算;

(2)在没有括号的算式里,如果既有乘、除法,又有加、减法,要先算(乘、除法),后算(加、减法);(先乘除,后加减)

(3)在有括号的算式里,要先算括号里面的,后算括号外面的。

5.有关 0 的计算

①一个数和0相加,结果还得原数:a+0=a 0+a=a

②一个数减去0,结果还得这个数:a-0=a

③一个数减去它自己,结果得零:a-a=0

④一个数和0相乘,结果得0:a×0=0 ;0×a=0

⑤0除以一个非0的数,结果得0:0÷a=0;

⑥0不能做除数:a÷0=(无意义)

6.租船问题。解答租船问题的方法:先假设、再调整。

第二单元 观察物体二

1.正确辨认从上面、前面、左面观察到物体的形状。

2.观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意,只分上下画数量。

3.从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。

4.从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。

5.从不同的位置观察,才能更全面地认识一个物体。

第三单元 运算定律

……

更多详细内容请见网络文库:2021人教版小学四年级下册数学全册1-8单元知识点归纳

整理不易,如有帮助,请予采纳。

7. 四年级下册数学知识重点

一、亿以内数的认识
1. 一(个),十,百、千、万……亿都是计数单位。
2. 每相邻两个计数单位之间有什么关系?
每相邻两个计数单位的进率都是“10”。
3. 求近似数的方法叫“四舍五入”法。
4. 是“舍”还是“入”要看省略的尾数部分的最高位数是小于5还是大于5。
5. 表示物体个数的1,2,3,4,5,6,7,8,9,10,11,……都是自然数。一个物体也没有用0表示。0也是自然数。
6. 最小的自然数是0,没有最大的自然数,自然数的个数是无限的。
7. 每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法。
二、角的度量
1. 像手电简、汽车灯和太阳等射出来的光线,都可以近似地看成是射线。射线只有一个端点,可以向一端无限延伸。
2. 直线没有端点、可以向两端无限延伸。
3. 直线、射钱与线段有什么联系和区别?
联系:射线、线段都是直线的一部分,线段是直线的有限部分。
区别:直线无端点,长度无限,向两方无限延伸,射线只有一个端点,长度无限,向一方无限延伸,线段有两个端点,长度有限。
4. 直线和射线都可以无限延伸。线段可以量出长度。
5. 从一点引出两条直线所组成的图形叫做角。
6. 角的计量单位是“度”,用符号号“°”表示。把半圆分成180等份,每一份所对的角的大小是1度,记作1°。
7. 锐角、钝角、直角,平角和周角之间有什么关系?
直角=90度,钝角大于直角小于平角,平角=180度,周角=360度,锐角小于90度,锐角<直角<钝角<平角<周角。
8. 钝角大于90°,而小于180°。锐角小于90°。平角等于180°,等于两个直角。
三、三位数乘两位数
1. 速度x时间=路程
四、平行四边形和梯形
1. 在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
2. 从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。
3. 两组对边分别平行的四边形叫做平行四边形,只有一组对边平行的四边形叫做梯形。
4. 长方形和正方形可以看成特殊的平行四边形吗?为什么?
可以,因为长方形和正方形两组对边分别平行,而且都是四边形,所以可以看成特殊的平行四边形。
5. 从平行四边形一条边上的一点到对边引一条垂线。这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。
6. 两腰相等的梯形叫做等腰梯形。
7. 有一种特殊的平行四边形,它的四条边都相等,这样的平行四边形叫菱形。
五、除数是两位数的除法
六、统计
七、数学广角(转)

8. 人教四年级下册数学下册知识总结

知识点概括总结
1.整数加法
(1)把两个数合并成一个数的运算叫做加法。
(2)在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。
(3)加数+加数=和,一个加数=和-另一个加数
2.整数减法
(1)已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
(2)在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。
(3)加法和减法互为逆运算。
3.整数乘法
(1)求几个相同加数的和的简便运算叫做乘法。
(2)在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。
(3)在乘法里,0和任何数相乘都得0.
(4)1和任何数相乘都的任何数。
(5)一个因数×一个因数
=积;一个因数=积÷另一个因数

9. 小学四年级下册数学复习资料

加法交换律:a+b=b+b
加法结合律:a+b+c=a+(b+c)
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
有的可能不是
第一单元乘法
1、三位数乘两位数,所得的积不是四位数就是五位数。
2、三位数乘两位数的计算法则:先用两位数的个位上的数与三位数的每一位相乘,乘得的积和个位对齐,再用两位数十位上的数与三位数的每一位相乘,所得的积和十位对齐,最后把两次乘得的积相加。
3、末尾有0的乘法计算方法:现把两个乘数不是零的部分相乘,再看两个乘数末尾一共有几个零,就在积的末尾加几个零。
第二单元升和毫升
1、1升(L)=1000毫升(ml 、mL)
2、从里面量长、宽、高都是1分米的正方体容器正好是1升。1升水重1千克。生活中一杯水大约250毫升;一个高压锅大约盛水6升;一个家用水池大约盛水30升,一个脸盆大约盛水10升;一个浴缸大约盛水400升;一个热水瓶的容量大约是2升,一个金鱼缸大约有水30升,一瓶饮料大约是400毫升,一锅水有5升,一汤勺水有10毫升。
3、一个健康的成年人血液总量约为4000----5000毫升。义务献血者每次献血量一般为200毫升。
4、1毫升大约等于20滴水。
第三单元三角形
1、围成三角形的条件:较短两条边长度的和一定大于第三条边。
2、从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。
3、三角形具有稳定性(也就是当一个三角形的三条边的长度确定后,这个三角形的形状和大小都不会改变),生活中很多物体利用了这样的特性。如:人字梁、斜拉桥、自行车车架。
4、三个角都是锐角的三角形是锐角三角形。(两个内角的和大于第三个内角。)
5、有一个角是直角的三角形是直角三角形。(两个内角的和等于第三个内角。两个锐角的和是90度。两条直角边互为底和高。)
6、有一个角是钝角的三角形是钝角三角形。(两个内角的和小于第三个内角。)
7、任意一个三角形至少有两个锐角,都有三条高,三角形的内角和都是180度。(锐角三角形的三条高都在三角形内;直角三角形有两条高落在两条直角边上;钝角三角形有两条高在三角形外)。
8、把一个三角形分成两个直角三角形就是画它的高。
9、两条边相等的三角形是等腰三角形,相等的两条边叫做腰,另外一条边叫做底,两条腰的夹角叫做顶角,底和腰的两个夹角叫做底角,它的两个底角也相等,是轴对称图形,有一条对称轴(跟底边高正好重合。)三条边都
相等的三角形是等边三角形,三条边都相等,三个角也都
相等(每个角都是60°,所有等边三角形的三个角都是60°。)
10、有一个角是直角的等腰三角形叫做等腰直角三角形,
它的底角等于45°,顶角等于90°。
10、求三角形的一个角=180°-另外两角的和
11、等腰三角形的顶角=180°-底角×2=180°-底角-底角
12、等腰三角形的底角=(180°-顶角)÷2
13、一个三角形最大的角是60度,这个三角形一定是等边三角形。
14、多边形的内角和=180°×(n-2){n为边数}
第四单元混合运算
1、混合运算中:先乘除后加减,既有小括号,又有中括号,要先算小括号里面的,再算中括号里的。
第五单元平行四边形和梯形
1、两组对边互相平行的四边形叫平行四边形,它的对边平行且相等,对角相等。从一个顶点向对边可以作两种不同的高。
底和高一定要对应。一个平行四边形有无数条高。
2、用两块完全一样的三角尺可以拼成一个平行
四边形。
3、平行四边形容易变形(不稳定性)。生活中许
多物体都利用了这样的特性。如:(电动伸缩门、铁拉门、
伸降机)把平行四边形拉成一个长方形,周长不变,面积变了。平行四边形不是轴对称图形。
4、只有一组对边平行的四边形叫梯形。平
行的一组对边较短的叫做梯形的上底,较长的
叫做梯形的下底,不平行的一组对边叫做梯形
的腰,两条平行线之间的距离叫做梯形的高
(无数条)。
5、两条腰相等的梯形叫等腰梯形,它的两个底角相等,是轴对称图形,有一条对称轴。直角梯形有且只有两个直角。
6、两个完全一样的梯形可以拼成一个平行四边形。
7、正方形、长方形属于特殊的平行四边形。
第六单元找规律
1、搭配型规律:两种事物的个数相乘。(如帽子和衣服的搭配)
2、排列:(1)爸爸、妈妈、我排列照相,有几种排法:2×3。
(2)5个球队踢球,每两队踢一场,要踢多少场:4+3+2+1
第七单元运算律
1、乘法交换律:a×b=b×a
2、乘法结合律:(a×b)×c=a×(b×c)
3、乘法分配律:(a+b)×c=a×c+b×c(合起来乘等于分别乘)
4、衍生:(a-b)×c=a×c-b×c
5、简便运算典型例题:
102×35=(100+2)×35 36×101-36=36×(101-1)
35×98=35×(100-2)=35×100-35×2
第八单元对称、平移和旋转
1、画图形的另一半:(1)找对称轴(2)找对应点(3)连成图形。
2、正三边形(等边三角形)有3条对称轴,正四边形(正方形)有4条对称轴,正五边形有5条对称轴,……正n变形有n条对称轴。
3、图形的平移,先画平移方向,再把关键的点平移到指定的地方,最后连接成图。(本学期学习两次平移,如从左上平移到右下,先向右平移,再向下平移。)
4、图形的旋转,先找点,再把关键的边旋转到指定的地方,(注意方向和角度)再连线。(不管是平移还是旋转,基本图形不能改变。)
第九单元倍数和因数
1、4×3=12,或12÷3=4。那么12是3和4的倍数,3和4是12的因数。(倍数和因数是相互存在的,不可以说12是倍数,或者说3是因数。只能说谁是谁的倍数,谁是谁的因数。)
2、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。如18的因数有:1、2、3、6、9、18。
3、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。如:18的倍数有:18、36、54、72、90……(省略号非常重要)
4、一个数最大的因数等于这个数最小的倍数(都是它本身)。
5、是2的倍数的数叫做偶数。(个位是0、2、4、6、8的数)
6、不是2的倍数的数叫做奇数。(个位是1、3、5、7、9的数)
7、个位上是2、4、6、8、0的数是2的倍数,个位上是0或5的数是5的倍数。
8、既是2的倍数又是5的倍数个位上一定是0。(如:10、20、30、40……)
9、一个数各位上数字的和是3的倍数,这个数就是3的倍数。(如:453各位上数字的和是4+3+5=12,因为12是3的倍数,所以453也是3的倍数。)
10、一个数只有1和它本身两个因数的数叫素数。(或质数)如:2、3、5、7、11、13、17、19…… 2是素数中唯一的偶数。(所以“所有的素数都是奇数”这一说法是错误的。)
11、一个数除了1和它本身两个因数外,还有其它因数的数叫合数。如:4、6、8、9、10……
12、1既不是素数也不是合数,因为1的因数只有1个:1
13、哥德巴赫猜想:任何大于2的偶数都是两个素数之和。20=3+17、40=11+2、8=3+5、10=3+7、12=5+7、14=3+11=7+7、30=23+7=13+17
14、100以内的素数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
15、三个连续自然数(3、4、5),三个连续奇数(3、5、7),三个连续偶数(4、6、8)的和都是3的倍数。
第十单元用计算器探索规律
1、积的变化规律:
①一个因数缩小几倍,另一个因数扩大相同的倍数,积不变。
②一个因数缩小(或扩大几倍),另一个因数不变,积也随着缩小(或扩大)几倍。
2、商的变化规律:
①被除数和除数同时扩大(或缩小)相同的倍数,(0除外),商不变。(余数会变)
②被除数扩大(或缩小)几倍,除数不变,商也随之扩大(或缩小)几倍。
③被除数不变,除数缩小几倍(0除外),商反而扩大几倍。
第十二单元统计
1、折线统计图不仅能够看出数量的多少,而且能够更清楚地看出数量的增减变化情况。折线统计图的制作步骤:①定点 ②写数据 ③连线 ④写日期
第十三单元用字母表示数
1、用字母表示数的基本规律:
如果正方形的边长用a表示,周长用C表示,面积用S表示。那么:正方形的周长:C=a×4 正方形的面积:S=a×a。
a×4或4×a通常可以写成4•a或4a;a×a可以写成a•a,也可以写成a2,读作“a的平方”。如果是a与1相乘,就可以直接写成a。
附:常用数量关系
正方形的面积=边长×边长 (S=a×a=a2)
正方形的周长=边长×4 (C=a×4=4a)
长方形的面积=长×宽 (S=a×b=ab)
长方形的周长=(长+宽)×2 C=(a+b)×2
总价=单价×数量 单价=总价÷数量 数量=总价÷单价
路程=速度×时间 速度=路程÷时间 时间=路程÷速度
工总=工效×时间 工效=工总÷时间 时间=工总÷时间
房间面积=每块地面砖面积×块数
块数=房间面积÷每块面积
相遇的路程=(甲速度+乙速度)×相遇的时间=甲速度×时间+乙速度×时间
相距的路程=(甲速度—乙速度)×时间=甲速度×时间—乙
四 年 级 下 学 期 数 学 复 习 提 纲

领域 主要内容 重 点 难 点 相 关 概 念

数与代数 乘法 三位数乘两位数的笔算
三步计算解决实际问题 三位数中间有0的笔算。 三位数乘两位数,所得的积不是四位数就是五位数。
末尾有0的乘法计算方法:先把两个乘数不是零的部分相乘,再看两个乘数末尾一共有几个零,就在积的末尾加几个零。
混合运算 三步计算混合运算的运算顺序,中括号。 明确运算顺序,提高计算正确率。 先乘除后加减;既有小括号,又有中括号,要先算小括号里面的,再算中括号里的。
运算律 应用乘法分配律进行简便运算 乘法交换律、结合律、分配律的简便运算。 1、乘法交换律:a×b=b×a
2、乘法结合律:(a×b)×c=a×(b×c)
3、乘法分配律:(a+b)×c=a×c+b×c(合起来乘等于分别乘)
4、拓展:(a-b)×c=a×c-b×c
5、简便运算典型例题:102×35=(100+2)×35
36×101-36=36×(101-1) 35×98=35×(100-2)=35×100-35×2
用计算器
探索规律 积的变化规律
商的不变规律,用简便方法计算被除数和除数末尾都有0的除法 在计算和解决实际问题中的应用。 1、积的变化规律:
一个因数缩小(或扩大几倍),另一个因数不变,积也同时缩小(或扩大)相同的倍数。
2、商的变化规律:
被除数和除数同时扩大(或缩小)相同的倍数,(0除外),商不变。(余数会变)
倍数
因数 找10以内某个自然数的所有倍数(100以内)、找100以内某个自然数的所有因数
偶数和奇数,素数和合数的特征,2、5和3的倍数的特征 在掌握意义的基础上综合进行各类判断,明白每类自然数的特征。 1、4×3=12,或12÷3=4。那么12是3和4的倍数,3和4是12的因数。(倍数和因数是相互存在的,不可以说12是倍数,或者说3是因数。只能说谁是谁的倍数,谁是谁的因数。)
2、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
3、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
4、一个数最大的因数等于这个数最小的倍数(都是它本身)。
5、是2的倍数的数叫做偶数。(个位是0、2、4、6、8的数)
6、不是2的倍数的数叫做奇数。(个位是1、3、5、7、9的数)
7、个位上是2、4、6、8、0的数是2的倍数,个位上是0或5的数是5的倍数。
8、既是2的倍数又是5的倍数个位上一定是0。
9、一个数各位上数字的和是3的倍数,这个数就是3的倍数。(如:453各位上数字的和是4+3+5=12,因为12是3的倍数,所以453也是3的倍数。)
10、一个数只有1和它本身两个因数的数叫素数(或质数)。如:2、3、5、7、11、13、17、19、23、29、31、37、41、47……
2是素数中唯一的偶数。(所以“所有的素数都是奇数”这句话是错误的。)
11、一个数除了1和它本身两个因数外,还有其它因数的数叫合数。
12、1既不是素数也不是合数,因为1的因数只有1个:1
13、100以内的素数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
14、三个连续自然数(3、4、5),三个连续奇数(3、5、7),三个连续偶数(4、6、8)的和都是3的倍数。
找规律 进一步认识生活中的简单搭配、简单排列现象的规律。对几种事物进行有序的搭配或排列。 运用规律解决一些简单的实际问题。 1、搭配型规律:两种事物的个数相乘。(如帽子和衣服的搭配)
2、排列:(1)爸爸、妈妈、我排列照相,有几种排法:2×3。
(2)5个球队踢球,每两队踢一场,要踢多少场:4+3+2+1
用字母
表示数 用含有字母的式子表示简单的数量、数量关系和公式,求含有字母的式子的值,化简“ax+bx”的式子。 在具体的情境中用字母表示数量关系。 1、用字母表示数的基本规律:
如果正方形的边长用a表示,周长用C表示,面积用S表示。那么:正方形的周长:C=a×4 正方形的面积:S=a×a。
a×4或4×a通常可以写成4·a或4a;a×a可以写成a·a,也可以写成a2,读作“a的平方”。如果是a与1相乘,就可以直接写成a。
2、用字母表示数量关系:小玲到商店买1枝钢笔和4本笔记本,每枝钢笔7元,每本笔记本a元。她一共付出(7+4a)元。
3、用数代替字母求出含有字母的式子的值。4、化简含有字母的式子。

解决问题
的策略

用画图和列表的策略解决有关面积和行程的实际问题 运用画图解决面积的增减问题。
正确画示意图
合理列表
常用的数量关系:
正方形的面积=边长×边长 (S=a×a=a2)
正方形的周长=边长×4 (C=a×4=4a)
长方形的面积=长×宽 (S=a×b=ab)
长方形的周长=(长+宽)×2 (C=(a+b)×2)
总价=单价×数量 单价=总价÷数量 数量=总价÷单价
路程=速度×时间 速度=路程÷时间 时间=路程÷速度
工总=工效×时间 工效=工总÷时间 时间=工总÷时间
房间面积=每块地面砖面积×地砖的块数
地砖的块数=房间面积÷每块地砖的面积
相遇的路程=(甲速度+乙速度)×相遇的时间=甲速度×时间+乙速度×时间
相距的路程=(甲速度—乙速度)×时间=甲速度×时间—乙速度×时间
空间与图形 三角形 三角形的分类、内角和、求第三个角的度数,正确测量和画出三角形的高 三角形两边之和大于第三边的应用。 1、围成三角形的条件:较短两条边长度的和一定大于第三条边。
2、从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。
3、三角形的分类:(按边分类
三个角都是锐角的三角形是锐角三角形。(两个内角的和大于第三个内角。)
有一个角是直角的三角形是直角三角形。(两个内角的和等于第三个内角。两个锐角的和是90度。两条直角边互为底和高。)
有一个角是钝角的三角形是钝角三角形。(两个内角的和小于第三个内角。)
两条边相等的三角形是等腰三角形,相等的两条边叫做腰,另外一条边叫做底,两条腰的夹角叫做顶角,底和腰的两个夹角叫做底角,它的两个底角也相等,是轴对称图形,有一条对称轴(跟底边高正好重合。)
三条边都相等的三角形是等边三角形,三条边都相等,三个角也都相等(每个角都是60°,所有等边三角形的三个角都是60°。)
4、任意一个三角形至少有两个锐角,都有三条高,三角形的内角和都是180度。
5、把一个三角形分成两个直角三角形就是画它的高。
6、有一个角是直角的等腰三角形叫做等腰直角三角形,它的底角等于45°,顶角等于90°。
7、求三角形的一个角=180°-另外两角的和
8、等腰三角形的顶角=180°-底角×2=180°-底角-底角
9、等腰三角形的底角=(180°-顶角)÷2
10、一个三角形最大的角是60度,这个三角形一定是等边三角形。
11、多边形的内角和=180°×(n-2){n为边的条数}
平行四边形、梯形 平行四边形、梯形的特征,正确测量和画出平行四边形、梯形的高。 根据平行四边形、梯形的底画高。图形之间的变换。
1、两组对边互相平行的四边形叫平行四边形,它的对边平行且相等,对角相等。从一个顶点向对边可以作两种不同的高。底和高一定要对应。一个平行四边形有无数条高。
2、用两块完全一样的三角尺可以拼成一个平行四边形。
3、平行四边形容易变形(不稳定性)。生活中许多物体都利用了这样的特性。如:(电动伸缩门、铁拉门、伸降机)把平行四边形拉成一个长方形,周长不变,面积变了。平行四边形不是轴对称图形。
4、只有一组对边平行的四边形叫梯形。平
行的一组对边较短的叫做梯形的上底,较长的
叫做梯形的下底,不平行的一组对边叫做梯形
的腰,两条平行线之间的距离叫做梯形的高
(无数条)。
5、两条腰相等的梯形叫等腰梯形,它的两个底角相等,是轴对称图形,有一条对称轴。直角梯形有且只有两个直角。
6、两个完全一样的梯形可以拼成一个平行四边形。
7、正方形、长方形属于特殊的平行四边形。
对称、平移
和旋转 确定轴对称图形的对称轴,画简单轴对称图形的对称轴。根据对称轴画另一半
在方格纸上把简单图形连续平移两次。将简单图形旋转90度 画出简单图形按逆时针、顺时针旋转90度后的图形 1、画图形的另一半:(1)找对称轴(2)找对应点(3)连成图形。
2、正三边形(等边三角形)有3条对称轴,正四边形(正方形)有4条对称轴,正五边形有5条对称轴,……正n变形有n条对称轴。
3、图形的平移,先画平移方向,再把关键的点平移到指定的地方,最后连接成图。(本学期学习两次平移,如从左上平移到右下,先向右平移,再向下平移。)
4、图形的旋转,先找点,再把关键的边旋转到指定的地方,(注意方向和角度)再连线。(不管是平移还是旋转,基本图形不能改变。)
升和毫升 升和毫升之间的进率。升和毫升在生活中的应用。 升和毫升在生活中的应用 1、1升(L)=1000毫升(ml 、mL)
2、从里面量长、宽、高都是1分米的正方体容器正好是1升。1升水重1千克。生活中一杯水大约250毫升;一个高压锅大约盛水6升;一个家用水池大约盛水30升,一个脸盆大约盛水10升;一个浴缸大约盛水400升;一个热水瓶的容量大约是2升,一个金鱼缸大约有水30升,一瓶饮料大约是400毫升,一锅水有5升,一汤勺水有10毫升。
3、一个健康的成年人血液总量约为4000----5000毫升。义务献血者每次献血量一般为200毫升。
4、1毫升大约等于20滴水。
统计 统计 画折线统计图,对折线统计图的数据进行分析。根据数据特点和实际需要选择条形统计图.或折线统计图。 对折线统计图的数据进行分析。 折线统计图不仅能够看出数量的多少,而且能够更清楚地看出数量的增减变化情况。折线统计图的制作步骤:①定点 ②写数据 ③连线 ④写日期
回答者: 61084773400 | 一级 | 2011-6-19 17:38
一、运算顺序:

在没有括号的算式里如果只有加减法或只有乘除法有依次计算。在没有括号的算式里,有加减法又有乘除法,要先乘除法,后算加减法。算式里有括号时,要先算括号里面的。加减乘除法统称四则运算。一个数加0得原数任何一个数乘0得00不能做除数,0除以一个非0的数等于0。0除0得不到固定的商。5除0得不到商

二、位置与方向

1.根据方向和距离确定或者绘制物体的具体点。(比例尺、角的画法和度量)

2.位置间的相对性。会描述两个物体间相互位置关系。(观测点的确定)

B在A的东偏北30度2000米处;

A在B的西偏南30度200米处。

3.简单路线图的绘制。

三、运算定律及简便运算:

1.加法运算定律:

加法交换律:两个数相加,交换加数得位置,和不变。a+b=b+a
加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加 再加上第一个数 ,和不变。(a+b)+c=a+(b+c) 加法这两个定律往往结合在一起使用。如:165+93+35=93+(165+35) 依据是什么?
. 2、 连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和 。 a-b-c=a-(b+c)

3、乘法运算定律:

乘法交换律: 两个数相乘,交换因数的位置,积不变。bXa=aXb
乘法结合律: 三个数相乘,可以先把前两个数相乘,再乘第三个数 ,也可以先把后两个数相乘,再乘以第一个数,积不变。 (axb)xc=ax(bxc) 乘法这两个定律往往结合在一起使用。如:(axb)xc=ax(bxc)。如:125
乘法分配率:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。(a+b)xc=axc+bxc

4.连除的性质:一个数连续除以两个数,等于除以这两个数的积。 a除b除c=a除{b乘c}

a+b=b+a {a+b}+c=a+{b+c} 165+93+35=93+{165+35} {a+b}Xc=aXc+bXc 分母是101001000........可用小数表示

小数的单位是十分之_百分之一.千分之一

每相邻的两个计数单位的进率是+整数整读.小数依次读出每1个整数整写小数依次目小数末尾睑0可去掉

小数扩大十倍,有向右移动一位扩大100倍向右移动两位一千倍向右移动一位。。。

小数向左移一位缩小+倍向左移动两位缩小一百倍向左移动三位缩小一千倍........

保留-位小数精确到+分位2位小数精确到百分位3位小数精确到千分位.....。

三条边围成的图形叫三角形

三角的1个角到它对边作-条直线这条直线叫三角形的高对边叫三角形的底

特性稳定任意两大于笫三边

角的分类;大小分锐角直角钝角长短分三边不等等腰三角形总等180度两个三角形能拼平行四边形

把小数点对齐计算叫小数加减法在数据描出各点用线连起来间隔数=总长除间隔长

两端教植棵数等于间隔+1只植一端棵数=间隔

都不植棵数=间隔--

封闭棵数=间隔

10. 四年级下册数学知识要点

1、加法:把两个数合并成一个数的运算。 2、减法:已知两个数的和与其中一个加数,求另一个加数的运算。 3、乘法:求相同加数和的简便计算。 4、除法:已知两个因数的积和其中一个因数,求另一个因数的运算。 小数四则运算的运算顺序和整数四则运算顺序相同。 分数四则运算的运算顺序和整数四则运算顺序相同。