㈠ 衡水教材是人教版还是冀教版
衡水教材人教版和冀教版均有使用,衡水地区教材版本说明如下:
1、衡水地区小学教材版本:语文、数学使用人教版教材,英语使用冀教版教材。
解读:在衡水小学教材版本难度上,数学、语文差异不大,英语难度较小,历年外地学生转入衡水小学或参加衡水地区小升初考试,英语成绩往往高于衡水本地学生分数;但是在衡水小学数学方面,衡水地区小学注重小学阶段的大量刷题、以及中高难度题型的练习,使衡水地区小学数学平均成绩优于外地学生。
2、衡水地区初中教材版本:除数学使用冀教版外,其他科目使用人教版版本。
解读:中考是以省为单位,河北衡水周边县市多为人教版,但是在初中整体知识点的覆盖面上,初中人教版数学和初中冀教版数学知识覆盖面相同,区别在于知识点的学习顺序不同,以初一数学为例,3/4的知识点是一样的,但是人教版部分初二的知识在冀教版初一进行学习,就难度整体而言,冀教版难度偏大一些。
冀教版和人教版区别:
1、书本的出版社不同:人教版是人民教育出版社出版的课本,冀教版是河北教育出版社出版的课本。
2、书本适用的范围不同:人教版的书本是针对全国范围内编写的,所以在很多地方的学校里面都能看到。冀教版是针对河北范围内的学生编写的,在河北省以外的学校没有那么普遍存在,主要使用于河北地区的孩子教材。
3、教材的内容不同:人教版的教材内容更加普适化。冀教版的教材内容更多因河北地区本身历史文化所决定,比较独特。
4、编写的机构不同:冀教版是河北省教育厅编写的,人教版是国家编写的,主要内容差不多。
5、内容的顺序不同:版本不同,所以知识的编排会不同,课本中的内容在顺序上也是不同的,其他的知识体系基本都是相同的。
㈡ 冀教版初中数学知识点易错题大全。。
一、数与式
例题: 的平方根是.(A)2,(B) ,(C) ,(D) .
例题:等式成立的是.(A) ,(B) ,(C) ,(D) .
二、方程与不等式
⑴字母系数
例题:关于 的方程 ,且 .求证:方程总有实数根.
例题:不等式组 的解集是 ,则 的取值范围是.
(A) ,(B) ,(C) ,(D) .
⑵判别式
例题:已知一元二次方程 有两个实数根 , ,且满足不等式 ,求实数的范围.
⑶解的定义
例题:已知实数 、 满足条件 , ,则 =____________.
⑷增根
例题: 为何值时, 无实数解.
⑸应用背景
例题:某人乘船由 地顺流而下到 地,然后又逆流而上到 地,共乘船3小时,已知船在静水中的速度为8千米/时,水流速度为2千米/时,若 、 两地间距离为2千米,求 、 两地间的距离.
⑹失根
例题:解方程 .
三、函数
⑴自变量
例题:函数 中,自变量 的取值范围是_______________.
⑵字母系数
例题:若二次函数 的图像过原点,则 =______________.
⑶函数图像
例题:如果一次函数 的自变量的取值范围是 ,相应的函数值的范围是 ,求此函数解析式.
⑷应用背景
例题:某旅社有100张床位,每床每晚收费10元时,客床可全部租出.若每床每晚收费再提高2元,则再减少10张床位租出.以每次这种提高2元的方法变化下去,为了投资少而获利大,每床每晚应提高_________元.
四、直线型
⑴指代不明
例题:直角三角形的两条边长分别为 和 ,则斜边上的高等于________.
⑵相似三角形对应性问题
例题:在 中, , , 为 上一点, ,在 上取点 ,得到 ,若两个三角形相似,求 的长.
⑶等腰三角形底边问题
例题:等腰三角形的一条边为4,周长为10,则它的面积为________.
⑷三角形高的问题
例题:等腰三角形的一边长为10,面积为25,则该三角形的顶角等于多少度?
⑸矩形问题
例题:有一块三角形 铁片,已知最长边 =12cm,高 =8cm,要把它加工成一个矩形铁片,使矩形的一边在 上,其余两个顶点分别在三角形另外两条边上,且矩形的长是宽的2倍,求加工成的铁片面积?
⑹比例问题
例题:若 ,则 =________.
五、圆中易错问题
⑴点与弦的位置关系
例题:已知 是⊙O的直径,点 在⊙O上,过点 引直径 的垂线,垂足为点 ,点 分这条直径成 两部分,如果⊙O的半径等于5,那么 = ________.
⑵点与弧的位置关系
例题: 、 是⊙O的切线, 、 是切点, ,点 是上异于 、 的任意一点,那么 ________.
⑶平行弦与圆心的位置关系
例题: 半径为5cm的圆内有两条平行弦,长度分别为6cm和8cm,则这两条弦的距离等于________.
⑷相交弦与圆心的位置关系
例题:两相交圆的公共弦长为6,两圆的半径分别为 、5,则这两圆的圆心距等于________.
⑸相切圆的位置关系
例题:若两同心圆的半径分别为2和8,第三个圆分别与两圆相切,则这个圆的半径为________.
练习题:
一、容易漏解的题目
1.一个数的绝对值是5,则这个数是_________;__________数的绝对值是它本身.( ,非负数)
2._________的倒数是它本身;_________的立方是它本身.( , 和0)
3.关于 的不等式 的正整数解是1和2;则 的取值范围是_________.( )
4.不等式组 的解集是 ,则 的取值范围是_________.( )
5.若 ,则 _________.( ,2, ,0)
6.当 为何值时,函数 是一个一次函数.( 或 )
7.若一个三角形的三边都是方程 的解,则此三角形的周长是_________.(12,24或20)
8.若实数 、 满足 , ,则 ________.(2, )
9.在平面上任意画四个点,那么这四个点一共可以确定_______条直线.
10.已知线段 =7cm,在直线 上画线段 =3cm,则线段 =_____.(4cm或10cm)
11.一个角的两边和另一个角的两边互相垂直,且其中一个角是另一个角的两倍少 ,求这两个角的度数.( , 或 , )
12.三条直线公路相互交叉成一个三角形,现在要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有_______处?(4)
13.等腰三角形一腰上的高与腰长之比为 ,则该三角形的顶角为_____.( 或 )
14.等腰三角形的腰长为 ,一腰上的高与另一腰的夹角为 ,则此等腰三角形底边上的高为_______.( 或 )
15.矩形 的对角线交于点 .一条边长为1, 是正三角形,则这个矩形的周长为______.( 或 )
16.梯形 中, , , =7cm, =3cm,试在 边上确定 的位置,使得以 、 、 为顶点的三角形与以 、 、 为顶点的三角形相似.( =1cm,6cm或 cm)
17.已知线段 =10cm,端点 、 到直线 的距离分别为6cm和4cm,则符合条件的直线有___条.(3条)
18.过直线 外的两点 、 ,且圆心在直线 的上圆共有_____个.(0个、1个或无数个)
19.在 中, , , ,以 为圆心,以 为半径的圆,与斜边 只有一个交点,求 的取值范围.( 或 )
20.直角坐标系中,已知 ,在 轴上找点 ,使 为等腰三角形,这样的点 共有多少个?(4个)
21.在同圆中,一条弦所对的圆周角的关系是______________.(相等或互补)
22.圆的半径为5cm,两条平行弦的长分别为8cm和6cm,则两平行弦间的距离为 _______.(1cm或7cm)
23.两同心圆半径分别为9和5,一个圆与这两个圆都相切,则这个圆的半径等于多少?(2或7)
24.一个圆和一个半径为5的圆相切,两圆的圆心距为3,则这个圆的半径为多少?(2或8)
25. 切⊙O于点 , 是⊙O的弦,若⊙O的半径为1, ,则 的长为____.(1或 )
26. 、 是⊙O的切线, 、 是切点, ,点 是上异于 、 的任意一点,那么 ________.( 或 )
27.在半径为1的⊙O中,弦 , ,那么 ________.( 或 )
二、容易多解的题
28.已知 ,则 _______.(3)
29.在函数 中,自变量的取值范围为_______.( )
30.已知 ,则 ________.( )
31.当 为何值时,关于 的方程 有两个实数根.( ,且 ).
32.当 为何值时,函数 是二次函数.(2)
33.若 ,则 ?.( )
34.方程组 的实数解的组数是多少?(2)
35.关于 的方程 有实数解,求 的取值范围.( )
36. 为何值时,关于 的方程 的两根的平方和为23?( )
37. 为何值时,关于 的方程 的两根恰好是一个直角三角形的两个锐角的余弦值?.( ).
38.若对于任何实数 ,分式 总有意义,则 的值应满足______.( )
39.在 中, ,作既是轴对称又是中心对称的四边形 ,使 、 、 分别在 、 、 上,这样的四边形能作出多少个?(1)
40.在⊙O中,弦 =8cm, 为弦 上一点,且 =2cm,则经过点 的最短弦长为多少?( cm)
41.两枚硬币总是保持相接触,其中一个固定,另一个沿其周围滚动,当滚动的硬币沿固定的硬币滚动一周,回到原来的位置,滚动的那个硬币自转的圈数为_______.(2)
三、容易误判的问题:
1.两条边和其中一组对边上的高对应相等的两个三角形全等。
2.两边及第三边上的高对应相等的两个三角形全等。
3.两角及其对边的和对应相等的两个三角形全等。
4.两边及其一边的对角对应相等的两个三角形全等。
㈢ 初一数学的知识点
不同版本学的内容不同,你学的什么版本?至于学的哪些知识点,你看一下目录就明白了。
㈣ 关于初一数学的所有知识点归纳,
初一数学概念
实数:
—有理数与无理数统称为实数.
有理数:
整数和分数统称为有理数.
无理数:
无理数是指无限不循环小数.
自然数:
表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数.
数轴:
规定了圆点、正方向和单位长度的直线叫做数轴.
相反数:
符号不同的两个数互为相反数.
倒数:
乘积是1的两个数互为倒数.
绝对值:
数轴上表示数a的点与圆点的距离称为a的绝对值.一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0.
数学定理公式
有理数的运算法则
⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.
⑵减法法则:减去一个数,等于加上这个数的相反数.
⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0.
⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.
文体知识
1 记叙文文体知识要点
(1) 以记叙文为主要表达方式的文章叫记叙文.语言特点,生动,形象.
(2) 作品中所反映的生活和作者对生活的看法,就是记叙文的中心,也叫中心思想.中心思想是依靠人,事,景,物这些材料来表的.因而记叙文的材料必须为中心思想服务,做到中心明确,集中.
(3) 记叙文的顺序主要有几种:顺叙,倒叙,插叙.
顺叙:按事件的发生,发展结局的过程记叙. 倒叙:把事件的结局或某个最突出的片断提到文章的开头写,然后再按时间顺序写事件的经过. 插叙:在记叙过程中,有时需要插入另一些有关的情节,然后再按着记叙原来的事情.
(4) 记叙文中的详略安排应该是能突出中心的材料应该详写;与中心有关系,但是不很重要的材料,应该略写;与中心无关的材料应该舍弃.这样,才能使记叙的中心集中,鲜明,突出.
(5) 记叙文的样式常见有:对现实生活中典型人物和事迹作具体报道的通讯.用文字语言和文学手法描述真人真事的特写.记叙山川景物,旅途见闻为主的游记. 追忆本人或生活经历和社会活动的回忆录,传记,访问记等.它们共同特点是:所写内容必须真实,不容许随意夸大或缩小事实,更不能编造虚构,即要有真实性;对所写的内容又要求作必要的加工.力求文章中心突出,形象鲜明,构思精巧
(6) 特写是报告文学的一种样式,它截取人物或事件的某个片断,细致地加以描述.
(7) 传记一般分两类:一类记叙自己的生平;一类记叙他人的生平.传记的主要特点是实录,要求实事求是,不允许虚构夸张.传记在表达上以记叙为主,也可以适当插入议论,描写.传记记叙的顺序一般以时间为序.人物和人物故事的区别在于人物故事只要具体写出人物的某个事件或某几件事就行了.小传则要求写出人物的出生地,出生年月,主要经历等.人物自传的繁简区别在于自传可以根据需要采用不同写法,可以写自己全部经历,也可以写自己某个时期的经历.
2 说明文文体知识要点
(1)以说明为主要表达方式,按一定的要求解说事物或事理的文章称为说明文.说明文的语言特点:准确,平实,简洁.
(2)说明事物的前提是抓住事物的特征.所谓特征就是事物间相互区别的标志.
(3)说明文的说明顺序有:空间顺序,时间顺序,逻辑顺序,(有总说后分说,先主要后次要,先原因后结果,由现象到本质,由性能到功用等)
(4)常用的说明方法有:分类别,作解释,举例子,打比方,作比较,用数字,列图表.
(5)说明文按说明对象和内容分有:说明实体事物和说明抽象事理两大类.说明文按写作方法和表达方式分有:平实性说明文和文艺性说明文.
(6)平实性说明文和文艺性说明文的区别在于:平实性说明文纯用说明的表达方式,语言朴实简明,内容具体,切实使人读了就能明白.如自然科学的各类教科书.科技信息资料,实验报告,说明书等.文艺性说明文以说明为主,辅以叙述,描写,抒情等多种表达方式,并常用借助一些修辞方法,形象化地介绍事物或阐述事理,使读者在获得知识的同时,还能得到艺术的享受,这类说明文通常称知识小品或科学小品.
(7)说明文的描写和记叙文中的描写区别:a 目的不同:记叙文中的描写是为了“使人有所感,”;说明文的描写是为了“使人有所知”.b 记叙文可以根据中心思想的需要,使用各种描写方法起到多方面的作用.说明文的描写则只能在说明事物的过程中,借助某钟形象化的手法,对事物的特征作一些必要的描绘,主要是起到使说明的事物特征更具体,更形象.c 记叙文中的描写可以发挥艺术想象,可以夸张,渲染,而说明文中的描写在务真求实的前提下进行语言加工,做到既形象生动,又真实可信.
3 议论文文体的知识要点
(1)生活中少不了议论,讲道理,发表意见就是议论.以议论为主要表达方式的文章就是议论文.
(2)议论总要提出看法或主张,这种看法或主张就是论点,用来证明论点的材料就为论据,用论据来证明论点的过程即为论证过程.
(3)用以证明论点的材料有两大类:事实材料(事实论据)即确凿的事例;史实;统计数字等.理论材料(道理论据)即名人名言;警句;格言;科学原理;自然定律;马列毛泽东思想.
(4)议论文的基本结构:提出问题;分析问题;解决问题.议论文的基本论证方法:摆事实,讲道理.论证方式:立论,驳论.所谓立论就是正面阐述自己的观点.驳论就是批驳错误的观点.
(5)一事一议议论文的写作特点:借事发表议论,就事说明道理.而从“事”到议.又必须理出并把握两者的联系点,才可顺理成章地展开议论,这事“一事一议”的关键.
(6)议论文常见的有几种样式:社论,评论,学术论文,专题讨论,杂感,随笔以及侧重1于议论性的讲演词,书信等.在以上样式中,有理论性较强的,有文艺性较强的.
㈤ 初一数学全部知识点有哪些
一、正负数
1、正数:大于0的数。
2、负数:小于0的数。
3、正数大于0,负数小于0,正数大于负数。
注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
二、有理数
1、有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)
三、数轴
1、数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)
2、数轴的三要素:原点、正方向、单位长度。
3、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
相反数的和为0 a+b=0 a、b互为相反数。
四、有理数的加减法
1、先定符号,再算绝对值。
2、加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。
五、有理数乘法(先定积的符号,再定积的大小)
1、同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
2、乘积是1的两个数互为倒数。
㈥ 七年级上册数学重点,把所有重要的知识点列出来,要简洁点
初一数学知识点
第一章 有理数
1正数、负数、有理数、相反数、科学记数法、近似数
2数轴:用数轴来表示数
3绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零
4正负数的大小比较:正数大于零,零大于负数,正数大于负数,绝对值大的负数值反而小 。
5有理数的加法法则:
同号两数相加,取相同的符号,并把绝对值相加;
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去减小的绝对值;
互为相反数的两数相加为零;
一个数加上零,仍得这个数。
6有理数的减法(把减法转换为加法)
减去一个数,等于加上这个数的相反数。
7有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同零相乘,都得零。
乘积是一的两个数互为倒数。
8有理数的除法(转换为乘法)
除以一个不为零的数,等于乘这个数的倒数。
9有理数的乘方
正数的任何次幂都是正数;
零的任何次幂都是负数;
负数的奇次幂是负数,负数的偶次幂是正数。
10混合运算顺序
(1) 先乘方,再乘除,最后加减;
(2) 同级运算,从左到右进行;
(3) 如果有括号,先做括号内的运算,按照小括号、中括号、大括号依次进行。
第二章 整式的加减
1 整式:单项式和多项式的统称;
2整式的加减
(1) 合并同类项
(2) 去括号
第三章 一元一次方程
1 一元一次方程的认识
2 等式的性质
等式两边加上或减去同一个数或者式子,结果仍然相等;
等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。
3 解一元一次方程
一般步骤:去分母、去括号、移项、合并同类项、系数化为一
第四章 图形认识初步
1 几何图形:平面图和立体图
2 点、线、面、体
3 直线、射线、线段
两点确定一条直线;
两点之间,线段最短
4 角
角的度量度数
角的比较和运算
补角和余角:等角的补角和余角相等
初一下册
第五章 相交线和平行线
1 相交线:对顶角相等
2 垂线
经过一点有且只有一条直线和已知直线垂直;
连接直线外一点与直线上各点的所有线段中,垂线段最短(垂线段最短)
3 平行线
平行公理:经过直线外一点,有且只有一条直线与已知直线平行;
若两直线都与第三条直线平行,那么这两条直线也相互平行;
判定:同位角相等,两直线平行;
内错角相等,两直线平行;
同旁内角互补,两直线平行。
性质:两直线平行,同位角相等,内错角相等,同旁内角互补。
4 命题:判断一件事情的语句
5 平移
第六章 平面直角坐标系
1 有序数对:(a,b)
2 平面直角坐标系、原点、横轴、纵轴、象限
3简单应用:用坐标表示位置;用坐标表示平移。
第七章 三角形
1 与三角形有关的边:
三角形的边、高、中线、角平分线、稳定性
2 与三角形有关的角
内角:三角形的内角和是180度
外角:三角形的一个外角等于与它不相邻的两个内角的和;
三角形的一个外角大于与它不相邻的任何一个内角。
2 多边形
内角:多边形的内角和为(n-2)*180;
外角:多边形的外角和为360度。
第八章 二元一次方程组
1 二元一次方程与二元一次方程组的介绍
2 二元一次方程组的解法
代入法 消元法(加减法)
3 二元一次方程组的实际应用
第九章 不等式和不等式组
1 不等式及其解集:含有不等关系号的式子;
2 不等式的性质
性质1 不等式的两边加减同一个数或式子,不等号的方向不变;
性质2 不等式两边乘或除以同一个正数,不等号的方向不变;
性质3 不等式的两边乘或除以同一个负数,不等号的方向改变。
3 一元一次不等式在实际问题中的应用
4 一元一次不等式组及其解法:大大取大;小小取小;大于大的,小于小的取两边,大于小的,小于大的去中间。
第十章 实数
1 平方根:正数有两个平方根,它们互为相反数;
零的平方根是零;
负数没有平方根;
正数算术平方根是正数;
零的算术平方根是零。
2 立方根:正数的立方根是正数;
负数的立方根是负数;
零的立方根是零。
3 实数:有理数和无理数的统称。无理数即是无限不循环小数。
我也不知道你要多简洁的,这算是比较全面的。。。
㈦ 初一的所有知识点数学
1.数轴
(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.
数轴的三要素:原点,单位长度,正方向.
(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)
(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大.
2.相反数
(1)相反数的概念:只有符号不同的两个数叫做互为相反数.
(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.
(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.
(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.
3.绝对值
(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值.
①互为相反数的两个数绝对值相等;
②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.
③有理数的绝对值都是非负数.
(2)如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:
①当a是正有理数时,a的绝对值是它本身a;
②当a是负有理数时,a的绝对值是它的相反数﹣a;
③当a是零时,a的绝对值是零.
即|a|={a(a>0)0(a=0)﹣a(a<0)
4.有理数大小比较
(1)有理数的大小比较
比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.
(2)有理数大小比较的法则:
①正数都大于0;
②负数都小于0;
③正数大于一切负数;
④两个负数,绝对值大的其值反而小.
㈧ 初一数学到底有哪些重要重要的知识点
代数初步知识
1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.
2.列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用“• ” 乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“• ”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a× 应写成 a;
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成 的形式;
(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .
3.几个重要的代数式:(m、n表示整数)
(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;
(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;
(4)若b>0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .
有理数
1.有理数:
(1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;
(2)有理数的分类: ① ②
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数 0和正整数;a>0 a是正数;a<0 a是负数;
a≥0 a是正数或0 a是非负数;a≤ 0 a是负数或0 a是非正数.
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
(3)相反数的和为0 a+b=0 a、b互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨论;
(3) ; ;
(4) |a|是重要的非负数,即|a|≥0;注意:|a|•|b|=|a•b|, .
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么 的倒数是 ;倒数是本身的数是±1;若ab=1 a、b互为倒数;若ab=-1 a、b互为负倒数.
7. 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
10 有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
11 有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .
㈨ 初一上册数学简单讲述知识点
第一章
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。
1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。
第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。
第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。
3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。
㈩ 初一数学的重点
初中数学知识点总结
一、基本知识
一、数与代数A、数与式:
1、有理数
有理数:①整数→正整数/0/负整数
②分数→正分数/负分数
数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:
加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数
无理数:无限不循环小数叫无理数
平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。
3、代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式
整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一样。
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式
整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。
B、方程与不等式
1、方程与方程组
一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解
A、图形的认识
1、点,线,面
点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。
2、角
线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。
比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。
垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等;
判定定理:到线段2端点距离相等的点在这线段的垂直平分线上
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
正方形:一组邻边相等的矩形是正方形
性质:正方形具有平行四边形、菱形、矩形的一切性质
判定:1、对角线相等的菱形2、邻边相等的矩形
二、基本定理
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
14、两直线平行,同旁内角互补
15、定理 三角形两边的和大于第三边
16、推论 三角形两边的差小于第三边
17、三角形内角和定理 三角形三个内角的和等于180°
18、推论1 直角三角形的两个锐角互余
19、推论2 三角形的一个外角等于和它不相邻的两个内角的和
20、推论3 三角形的一个外角大于任何一个和它不相邻的内角
21、全等三角形的对应边、对应角相等
22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23、角边角公理( ASA)有两角和它们的夹边对应相等的 两个三角形全等
24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25、边边边公理(SSS) 有三边对应相等的两个三角形全等
26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27、定理1 在角的平分线上的点到这个角的两边的距离相等
28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29、角的平分线是到角的两边距离相等的所有点的集合
30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33、推论3 等边三角形的各角都相等,并且每一个角都等于60°
34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35、推论1 三个角都相等的三角形是等边三角形
36、推论 2 有一个角等于60°的等腰三角形是等边三角形
37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38、直角三角形斜边上的中线等于斜边上的一半
39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42、定理1 关于某条直线对称的两个图形是全等形
43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形
48、定理 四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理 n边形的内角的和等于(n-2)×180°
51、推论 任意多边的外角和等于360°
52、平行四边形性质定理1 平行四边形的对角相等
53、平行四边形性质定理2 平行四边形的对边相等
54、推论 夹在两条平行线间的平行线段相等
55、平行四边形性质定理3 平行四边形的对角线互相平分
56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形
58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60、矩形性质定理1 矩形的四个角都是直角
61、矩形性质定理2 矩形的对角线相等
62、矩形判定定理1 有三个角是直角的四边形是矩形
63、矩形判定定理2 对角线相等的平行四边形是矩形
64、菱形性质定理1 菱形的四条边都相等
65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66、菱形面积=对角线乘积的一半,即S=(a×b)÷2
67、菱形判定定理1 四边都相等的四边形是菱形
68、菱形判定定理2 对角线互相垂直的平行四边形是菱形
69、正方形性质定理1 正方形的四个角都是直角,四条边都相等
70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71、定理1 关于中心对称的两个图形是全等的
72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75、等腰梯形的两条对角线相等
76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形
77、对角线相等的梯形是等腰梯形
78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d
84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
87、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例
90、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94、判定定理3 三边对应成比例,两三角形相似(SSS)
95、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97、性质定理2 相似三角形周长的比等于相似比
98、性质定理3 相似三角形面积的比等于相似比的平方
99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
101、圆是定点的距离等于定长的点的集合
102、圆的内部可以看作是圆心的距离小于半径的点的集合
103、圆的外部可以看作是圆心的距离大于半径的点的集合
104、同圆或等圆的半径相等
105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107、到已知角的两边距离相等的点的轨迹,是这个角的平分线
108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109、定理 不在同一直线上的三点确定一个圆。
110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111、推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112、推论2 圆的两条平行弦所夹的弧相等
113、圆是以圆心为对称中心的中心对称图形
114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116、定理 一条弧所对的圆周角等于它所对的圆心角的一半
117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121、①直线L和⊙O相交 d﹤r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d﹥r
122、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123、切线的性质定理 圆的切线垂直于经过切点的半径
124、推论1 经过圆心且垂直于切线的直线必经过切点
125、推论2 经过切点且垂直于切线的直线必经过圆心
126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角
127、圆的外切四边形的两组对边的和相等
128、弦切角定理 弦切角等于它所夹的弧对的圆周角
129、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
131、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
133、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等
134、如果两个圆相切,那么切点一定在连心线上
135、①两圆外离 d﹥R+r ②两圆外切 d=R+r③两圆相交 R-r﹤d﹤R+r(R﹥r)
④两圆内切 d=R-r(R﹥r) ⑤两圆内含 d﹤R-r(R﹥r)
136、定理 相交两圆的连心线垂直平分两圆的公共弦
137、定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139、正n边形的每个内角都等于(n-2)×180°/n
140、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142、正三角形面积√3a/4 a表示边长
143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144、弧长计算公式:L=n兀R/180
145、扇形面积公式:S扇形=n兀R^2/360=LR/2
146、内公切线长= d-(R-r) 外公切线长= d-(R+r)
一、常用数学公式
公式分类 公式表达式
乘法与因式分解 a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a
-b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a
X1*X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R
注:其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB
注:角B是边a和边c的夹角