‘壹’ 初中数学知识导图
网络图就没有了,知识点可以不?好多的知识点…还是要慢慢的一点一点的啃啊,当初我就是这样啃过来的~~
初中数学概念及定义总结:三角形三条边的关系 定理:三角形两边的和大于第三边 推论:三角形两边的差小于第三边 三角形内角和 三角形内角和定理 三角形三个内角的和等于180° 推论1 直角三角形的两个锐角互余 推论2 三角形的一个外角等于和它不相邻的两个内角和 推论3 三角形的一个外角大雨任何一个和它不相邻的内角 角的平分线 性质定理 在角的平分线上的点到这个角的两边的距离相等 判定定理 到一个角的两边的距离相等的点,在这个角的平分线上 等腰三角形的性质 等腰三角形的性质定理 等腰三角形的两底角相等 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 推论2 等边三角形的各角都相等,并且每一个角等于60° 等腰三角形的判定 判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等 推论1 三个角都相等的三角形是等边三角形 推论2 有一个角等于60°的等腰三角形是等边三角形 推论3 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半 线段的垂直平分线 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 轴对称和轴对称图形 定理1 关于某条之间对称的两个图形是全等形 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 定理3 两个图形关于某直线对称,若它们的对应线段或延长线相交,那么交点在对称轴上 逆定理 若两个图形的对应点连线被同一条直线垂直平分,那这两个图形关于这条直线对称 勾股定理 勾股定理 直角三角形两直角边a、b的平方和,等于斜边c的平方,即 a2 + b2 = c2 勾股定理的逆定理 勾股定理的逆定理 如果三角形的三边长a、b、c有关系,那么这个三角形是直角三角形 四边形 定理 任意四边形的内角和等于360° 多边形内角和 定理 多边形内角和定理n边形的内角的和等于(n - 2)·180° 推论 任意多边形的外角和等于360° 平行四边形及其性质 性质定理1 平行四边形的对角相等 性质定理2 平行四边形的对边相等 推论 夹在两条平行线间的平行线段相等 性质定理3 平行四边形的对角线互相平分 平行四边形的判定 判定定理1 两组对边分别平行的四边形是平行四边形 判定定理2 两组对角分别相等的四边形是平行四边形 判定定理3 两组对边分别相等的四边形是平行四边形 判定定理4 对角线互相平分的四边形是平行四边形 判定定理5 一组对边平行且相等的四边形是平行四边形 矩形 性质定理1 矩形的四个角都是直角 性质定理2 矩形的对角线相等 推论 直角三角形斜边上的中线等于斜边的一半 判定定理1 有三个角是直角的四边形是矩形 判定定理2 对角线相等的平行四边形是矩形 菱形 性质定理1 菱形的四条边都相等 性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 判定定理1 四边都相等的四边形是菱形 判定定理2 对角线互相垂直的平行四边形是菱形 正方形 性质定理1 正方形的四个角都是直角,四条边都相等 性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 中心对称和中心对称图形 定理1 关于中心对称的两个图形是全等形 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 梯形 等腰梯形性质定理 等腰梯形在同一底上的两个角相等 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 三角形、梯形中位线 三角形中位线定理 三角形的中位线平行与第三边,并且等于它的一半 梯形中位线定理 梯形的中位线平行与两底,并且等于两底和的一半 比例线段 1、 比例的基本性质 如果a∶b=c∶d,那么ad=bc 2、 合比性质 3、 等比性质 平行线分线段成比例定理 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 推论 平行与三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行与三角形的第三边 垂直于弦的直径 垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧 推论1 (1) 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 (2) 弦的垂直平分线过圆心,并且平分弦所对的两条弧 (3) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 推论2 圆的两条平分弦所夹的弧相等 圆心角、弧、弦、弦心距之间的关系 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距也相等 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等 圆周角 定理 一条弧所对的圆周角等于它所对的圆心角的一半 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直角 推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 圆的内接四边形 定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 切线的判定和性质 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 切线的性质定理 圆的切线垂直于经过切点半径 推论1 经过圆心且垂直于切线的直径必经过切点 推论2 经过切点且垂直于切线的直线必经过圆心 切线长定理 定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 弦切角 弦切角定理 弦切角等于它所夹的弧对的圆周角 推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 和圆有关的比例线段 相交弦定理:圆内的两条相交弦,被焦点分成的两条线段长的积相等 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点的两条线段长的比例中项 ……
太多了,不过网络很强大,之前有人问过类似的问题,这个可以看看http://..com/question/147977826.html?fr=qrl&cid=197&index=2&fr2=query
‘贰’ 初中所有几何知识结构图
初中数学基础知识点总汇 一、数与代数A:数与式: 1:有理数 有理数:①整数→正整数/0/负整数 ②分数→正分数/负分数 数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴 ②。
‘叁’ 求高中数学必修一到必修五的知识点总结 百度云下载的最好,要那种直接能够打印的
因为新课标的原因,各地使用教材并不一样,像数学,就有人教A版、人教B版、北师大版、苏教版等,先弄个人教A有你看一下吧(点击可以看大图的)
‘肆’ 高中数学必修一第二章的知识结构图 急~~~~~~~
《圆锥曲线》知识结构 二次曲线与直线的关系C:A1x2+C1y2+Dx+Ey+F=0
(A1C1不全为0)
l:A2x+B2y+C2=0
(A1、B2不全为0)
概念:
定义:
图形:
方程:
性质:
[
范围:
中心:
焦点:
顶点:
对称轴:
准线:
渐近线
离心率:
焦准距:
焦半径:
通径:
[
相离
相切
相交
圆
MC=r(r>0)
(x-x0)2+(y-y0)2=r2(r>0)
x2+y2+Dx+Ey+F=0
(D2+E2-4F>0)
x0-4≤x≤x0+r,y0-r≤y≤y0+r
C(x0,y0)
y-y0=k(x-x0)(k∈R)
及x=x0
d>r,或<0
d=r,或=0
过圆x2+y2=r2上点M(x,y)的切线方程
x1x+y1y=r2
d0
弦长l=2=
(θ∈R)
椭圆
MF1+MF2=2a(0
=e(0
+=1(a>b>0) +=1(a>b>0)
-a≤x≤a,-b≤y≤b -b≤x≤b,-a≤y≤a
0(0,0)
F1(-C,O)、F2(C,O) F1(O,-C)、F2(O,C)
C=
F1F2=2C
A1(-a,0)、A2(a,0) A1(0,-a)、A2(0,a)、
B1(0,-b)、B2(0,b) B1(-b,0)、B2(b,0)
x=0,y=0
A1A2=2a,B1B2=2b
l1:x=-,l2:x= l1:y=,l2:y=a
e(0
FK=
r1=e(x+)、r2=e(-x) r1=e(y+)、r2=e(-y)
P1P2=
<0
=0
>0
弦长l=
(θ∈R)
双曲线
MF1-MF2=2a(0<2a
=e(e>1,MN⊥l于N,Fl)
-=1(a>0,b>0) -=1(a>0,b>0)
x≤-a或x≥a,y∈R x∈R,y≤-a或y≥a
0(0,0)
F1(-C,0)、F2(C,0) F1(0,-C)、F2(0,C)
C=
F1F2=2c
A1(-a,0)、A2(a,0) A1(0,-a)、A2(0,a)
x=0,y=0
A1A2=2a,B1B2=2b
l1:x=-,l2:x= l1:y=,l2:y=
y=x、y=x y=x、y=-x
e(e<1)
FK= r1=ex+,r2=ex-,
r1=ey+,r2=ey-
P1P2= <0 =0 >0 弦长l= 抛物线 =e(e=1,MN⊥l于N,Fl)
y2=2px(p>0) y2=-2px(p>0)
x2=2py(p>0) x2=-2py(p>0)
x≥0,y∈R x≤0,y∈R x∈R,y≥0 x∈R,y≤0F(,0) F(-,0) F(0,)F(0,-) 0(0,0) y=0 x=0 l:x=- l:x= l:y=- l:y= e=1FK=pMF=x+ MF=-x MF=y+ MF=-y P1P2=2P <0 =0 >0 弦长l= 焦点弦长l=x1+x2+p l=p-x1-x2 l=y1+y2+p l=p-y1-y2
‘伍’ 求高中数学的知识树,思维导图,知识结构图,知识点总结优化记忆法······
这个真不好回答。不过一切回归课本,按照目录自己总结效果会好一些。另外还可以借助资料书。
‘陆’ 高中数学知识结构框架图
原发布者:吕明龙88
高中数学知识结构框图必修一:第一章集合第三章基本初等函数(Ⅰ)必修二:第一章立体几何初步第二章平面解析几何初步必修三:第一章算法初步第二章统计第三章概率必修四:第一章基本初等函数(II)第二章平面向量第三章三角恒等变换必修五:第一章解三角形第二章数列第三章不等式选修2-1:第一章常用逻辑用语第二章圆锥曲线与方程第三章空间向量与立体几何选修2-2:第一章导数及其应用第二章推理与证明第三章数系的扩充与复数选修2-3:第一章计数原理第二章概率第三章统计案例
‘柒’ 初二上册数学知识结构图
有理数知识梳理一、 知识结构相反意义量正数零负数有理数数轴有理数的运算有理数大小比较相反数绝对值法则运算律加法法则减法法则乘法法则乘方法则除法法则分配律结合律交换律二、 知识要点本章主要内容是有理数的有关概念及其运算。首先,从实例出发引入负数,接着引进关于有理数的一些概念,在此基础上,介绍有理数的加减法、乘除法和乘方运算的意义、法则和运算律。本章由3个单元组成.第一单元为有理数的概念.由“比零小的数”、“数轴”、“绝对值与相反数”等3节组成.第二单元为有理数的运算.由“有理数的加 法与减法”、“有理数的乘法与除法”、“有理数的乘方”等3节组成.第三单元为有理数的混合运算.由“有理数的混合运算”单独1节组成.此外,通过观察、试验、类比、推断等活动,体验数、符号和图形,能有效地描述现实世界的数量关系,发展数感和符号感;结合具体情境和生活经验中的数学信 息,发现并提出数学问题,积极参与对数学问题的讨论,积累解决问题的方法和经验,体验在解决问题的过程中如何与他人合作交流. 重点:有理数的运算难点:绝对值的理解和运用以及有理数乘法法则的理解 第二章整式的加减知识梳理一、知识结构图整式的加减运算用字母表示数列式表示数量关系单项式整式多项式合并同类项去括号二、知识要点: 本章主要内容是单项式、多项式、整式的概念,合并同类项、去括号以及整式加减运算等。整式的加减是学习下章“一元一次方程”的直接基础,也是以后学习分式方程和根式运算、方程以及函数等知识的基础,同时也是学习物理、化学等学科以及其他科学技术不可缺少的数学工具。 本章包括两节内容。在第2.1节“整式”主要介绍单项式、多项式、整式及其相关概念。这些概念是结合实际问题给出的。在引出这些概念的过程中,教科书充分重视与实际问题的联系,在实际情境中抽象出数学概念。 在第2.2节“整式的加减”是在学习合并同类项和去括号的基础上,研究整式加减的运算法则。本节内容的编写充分重视了“数式通性”,是在有理数运算的基础上,通过类比来研究整式的加减运算法则。抓住重点、加强练习,打好基础。本章教学必须抓好概念的教学,合并同类项的方法教学,以及去括号的符号变化教学。要适当进行加强练习,使学生熟练掌握整式加减运算的法则,为今后的学习打好基础本章重点和难点分析:根据学生已有知识经验和本章的地位与作用,确定本章重点和难点是整式的加减运算,合并同类项和去括号。整式的加减主要是通过合并同类项把整式化简,因此必须要熟练地进行合并同类项。本章教学大约需要9课时,具体分配如下:2.1 整式 约2课时2.2 整式的加减 约4课时数学活动及本章小结 约2课时 单元测验 1课时第三章 一元一次方程知识梳理一、知识结构框架图:实际问题数学问题(一元一次方程) 数学问题的解(x = a) 实际问题的答 案检验解方程实际问题对利用一元一次方程解决实际问题进行进一步探究结合实际问题讨论解方程(去括号与去分母)解一元一次方程的一般步骤一元一次方程等式的性质结合实际问题讨论解方程(合并同类项与移项
二、知识要点:本章主要内容包括:一元一次方程及其相关概念,一元一次方程的解法,利用一元一次方程分析解决实际问题。其中,以方程为工具分析问题、解决问题(即建立方程模型)是全章的重点,同时也是难点。全章共包括四节内容:3.1从算式到方程:分为两个小节。3.1.1一元一次方程:本小节中引出了方程、一元一次方程、方程的解等基本概念,并且对于“根据实际问题中的数量关系,设未知数,列出一元一次方程”的分析问题过程进行了归纳。3.1.2等式的性质:本小节通过观察、归纳引出等式的两条性质,并直接利用它们讨论一些较简单的一元一次方程的解法。3.2一元一次方程的讨论(一)——合并同类项与移项:重点讨论两方面的问题:(1)如何根据实际问题列方程?这是贯穿全章的中心问题。(2)如何解方程?本节重点讨论解方程中的“合并同类项”和“移项”。3.3一元一次方程的讨论(二)——去括号与去分母:重点讨论两方面的问题:(1)如何根据实际问题列方程?这是贯穿全章的中心问题。(2)如何解方程?本节重点讨论解方程中的“去括号”和“去分母”。3.4实际问题与一元一次方程:本节重点建立实际问题的方程模型,培养学生运用一元一次方程分析和解决实际问题的能力。 第四章 图形的初步认识知识梳理一、知识结构如下: 二、知识要点:本章是初中阶段“空间与图形”领域的起始章。主要内容是图形的初步认识。在前两个学段,学生已了解了一些简单几何体和平面图形的基本特征,但较为肤浅。本章将在前面学习的基础上,让学生进一步欣赏丰富多彩的图形世界,看到更多的立体图形与平面图形,初步了解立体图形与平面图形之间的关系。在此基础上,认识一些简单的平面图形——直线、射线、线段、角以及直线的两种最常见的位置关系——相交与平行。线段与角是两种最基本的图形,它们在周围随处可见,和人们的生活和生产实践密切相关。在今后的几何学习中几乎所有问题都会涉及线段和角,熟练掌握有关线段和角的知识和技能是学好几何的一个十分重要的起点。本章教材的编写注意从学生已有的生活经验和已有的知识出发,给学生提供“现实的、有意义的、富有挑战性的”学习材料,引导他们在“做数学”的活动中,在自主探索的过程中获得知识和技能。在实际教学时,教师要利用这些探究点,鼓励学生勤思考、勤动手、多交流。引导学生从开始阶段的先动手、后思考,逐步过渡到先思考、后动手验证。 教学重点:线段和角。教学难点:正确应用几何语言基本图形进行分析、判断和表述,需要一个较长的过程。
‘捌’ 求高等数学,概率论,线代的各章知识结构图或是框架图~~~在线等
已经用“瑞祥和”发你邮箱
‘玖’ 高一数学(集合)知识概念总结--结构图。
集合
1.集合的概念与表示方法
A.概念~~~~
B.表示方法 a.列举法 b.描述法 c.图示法
2.集合间的关系
A.包含---子集与真子集
B.相等
3.集合的运算
A.交集
B.并集
C.补集
4.集合的应用---不等式的解集
A.含绝对值不等式
B.一元二次不等式
C.简单分式不等式
把上面的画成网络式,再把书中对应的内容填上就行了.
‘拾’ 谁那有高中阶段数学的知识网络结构图啊