当前位置:首页 » 基础知识 » 数学必修四图象的转化知识点
扩展阅读
儿童多少岁可以自己洗头 2025-01-11 05:42:15

数学必修四图象的转化知识点

发布时间: 2022-08-08 15:47:46

⑴ 高一数学必修4的知识点的总结

同角三角函数基本关系

⒈同角三角函数的基本关系式
倒数关系:
tanα •cotα=1
sinα •cscα=1
cosα •secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

六角形记忆法:(参看图片或参考资料链接)
构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
(1)倒数关系:对角线上两个函数互为倒数;
(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。
(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式

⒉两角和与差的三角函数公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ
tan(α+β)=——————
1-tanα •tanβ

tanα-tanβ
tan(α-β)=——————
1+tanα •tanβ

倍角公式

⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

2tanα
tan2α=—————
1-tan^2(α)

半角公式

⒋半角的正弦、余弦和正切公式(降幂扩角公式)

1-cosα
sin^2(α/2)=—————
2

1+cosα
cos^2(α/2)=—————
2

1-cosα
tan^2(α/2)=—————
1+cosα

万能公式

⒌万能公式
2tan(α/2)
sinα=——————
1+tan^2(α/2)

1-tan^2(α/2)
cosα=——————
1+tan^2(α/2)

2tan(α/2)
tanα=——————
1-tan^2(α/2)

万能公式推导

附推导:
sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,
(因为cos^2(α)+sin^2(α)=1)
再把*分式上下同除cos^2(α),可得sin2α=tan2α/(1+tan^2(α))
然后用α/2代替α即可。
同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。

三倍角公式

⒍三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα

3tanα-tan^3(α)
tan3α=——————
1-3tan^2(α)

三倍角公式推导

附推导:
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^2(α)
=3sinα-4sin^3(α)

cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα

sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα

三倍角公式联想记忆

记忆方法:谐音、联想
正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))
余弦三倍角:4元3角 减 3元(减完之后还有“余”)
☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

和差化积公式

⒎三角函数的和差化积公式

α+β α-β
sinα+sinβ=2sin—----•cos—---
2 2

α+β α-β
sinα-sinβ=2cos—----•sin—----
2 2

α+β α-β
cosα+cosβ=2cos—-----•cos—-----
2 2

α+β α-β
cosα-cosβ=-2sin—-----•sin—-----
2 2

积化和差公式

⒏三角函数的积化和差公式
sinα •cosβ=0.5[sin(α+β)+sin(α-β)]
cosα •sinβ=0.5[sin(α+β)-sin(α-β)]
cosα •cosβ=0.5[cos(α+β)+cos(α-β)]
sinα •sinβ=- 0.5[cos(α+β)-cos(α-β)]

⑵ 高一数学必修1和必修4的知识点总结

看书去,没什么可总结……多做点基础题,自己就会了

⑶ 高中数学人教版必修四的知识点归纳!!!!

必修四主要介绍三角函数问题,主要要求掌握广义角,角度制,弧度制,三角基本关系,诱导公式,三角函数(图象和性质),和角、差角公式,倍角公式以及相公的积化和差,和差化积等公式;y=Asin(wx+a)的图象问题,正余弦定理等。主要是会运用知识解决实际问题,知识点都很容易理解。后面好象是向量问题。

⑷ 高中数学必修四知识点

三角函数,角度制弧度制的转化,同角三角函数的基本关系,诱导公式 ,三角函数图像性质,正弦余弦正切。图像平移变换
平面向量,概念运算,性质。
三角函数的运算两角和差公式,倍角公式,辅助角公式,主要是运用

⑸ 高一数学必修4函数知识点总结

§1.2.1、函数的概念
1、 设A、B是非空的数集,如果按照某种确定的对应关系,使对于集合A中的任意一个数,在集合B中都有惟一确定的数和它对应,那么就称为集合A到集合B的一个函数,记作:.
2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.

§1.2.2、函数的表示法
1、 函数的三种表示方法:解析法、图象法、列表法.
§1.3.1、单调性与最大(小)值
1、 注意函数单调性证明的一般格式:
§1.3.2、奇偶性
1、 一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为偶函数.偶函数图象关于轴对称.
2、 一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为奇函数.奇函数图象关于原点对称.
第二章、基本初等函数(Ⅰ)
§2.1.1、指数与指数幂的运算
1、 一般地,如果,那么叫做 的次方根。其中.
若需要可以发邮箱

⑹ 高中数学必修四知识点归纳有男

高中数学必修四知识点归纳有如下:

一、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

二、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

三、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

四、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

五、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

六、高中数学必修四知识点:指数函数和对数函数。

七、高中数学必修四知识点:数列。

八、高中数学必修四知识点:平面向量。

九、加法公式:P(A+B)=p(A)+P(B)-P(AB),如果A与B互不相容,则P(A+B)=P(A)+P(B)。

十、差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B)。

十一、乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B)。

十二、全概率公式:P(B)=∑P(Ai)P(B|Ai),它是由因求果。

⑺ 高一必修一必修四数学的知识点。

必修4三角函数(约16课时)(1)任意角、弧度了解任意角的概念和弧度制,能进行弧度与角度的互化。(2)三角函数①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义。②借助单位圆中的三角函数线推导出诱导公式( 的正弦、余弦、正切),能画出 的图象,了解三角函数的周期性。③借助图象理解正弦函数、余弦函数在 ,正切函数在 上的性质(如单调性、最大和最小值、图象与x轴交点等)。④理解同角三角函数的基本关系式:⑤结合具体实例,了解 的实际意义;能借助计算器或计算机画出 的图象,观察参数A,ω, 对函数图象变化的影响。⑥会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型。平面向量(约12课时)(1)平面向量的实际背景及基本概念通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示。(2)向量的线性运算①掌握向量加、减法的运算,并理解其几何意义。②掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义。③了解向量的线性运算性质及其几何意义。(3)平面向量的基本定理及坐标表示①了解平面向量的基本定理及其意义。②掌握平面向量的正交分解及其坐标表示。③会用坐标表示平面向量的加、减与数乘运算。④理解用坐标表示的平面向量共线的条件。(4)平面向量的数量积①通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义。②体会平面向量的数量积与向量投影的关系。③掌握数量积的坐标表达式,会进行平面向量数量积的运算。④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。(5)向量的应用经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。三角恒等变换(约8课时)(1)经历用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用。(2)能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系。(3)能运用上述公式进行简单的恒等变换(包括引导导出积化和差、和差化积、半角公式,但不要求记忆)。