当前位置:首页 » 基础知识 » 数学语文知识大全
扩展阅读

数学语文知识大全

发布时间: 2022-08-08 08:56:46

‘壹’ 小学数学知识大全

良好的学习习惯能使孩子收益终身,尤其是小学阶段,小学阶段是孩子从一个天真顽劣的小孩到一个真正接受知识的小学生,从各个方面进行要求规范的时期。在这个时期良好的学习方法是孩子成绩优异的关键,很多家长不知道如何给孩子补习小学数学,那今天就带大家一起了解补习小学数学的五大技巧。

现在的时代是一个多元化的教育时代,孩子们的大脑不仅仅是课上的40分钟,而是要勇于积极的探索,在给孩子补习小学数学的时候着眼于以上几点,加上对课本知识的结合,孩子的成绩定会有所提高,于此同时孩子更多的学习到的是掌握知识的方法。

‘贰’ 寻几个关于数学和语文的小故事或小知识

大约1500年前,欧洲的数学家们是不知道用“0”的。他们使用罗马数字。罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。
而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家做了介绍。过了一段时间,这件事被当时的罗马教皇知道了。当时是欧洲的中世纪,教会的势力非常大,罗马教皇的权利更是远远超过皇帝。教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写字。就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。
但是,虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。

小朋友你们可知道数学天才高斯小时候的故事呢?
高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:
1+2+3+ ..... +97+98+99+100 = ?
老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?
高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说:
1+2+3+4+ ..... +96+97+98+99+100
100+99+98+97+96+ ..... +4+3+2+1
=101+101+101+ ..... +101+101+101+101
共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050>
从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!

在日常生活中,数学无处不在,比如说:买菜、卖菜、算多少钱……

下面就是一个小故事,是一个数字之间的故事。
有一天,数字卡片在一起吃午饭的时候,最小的一位说起话来了。
0弟弟说:“我们大家伙儿,一起拍几张合影吧,你们觉得怎么样?”
0的兄弟姐妹们一口齐声的说:“好啊。”
8哥哥说:“0弟弟的主意可真不错,我就做一回好人吧,我老8供应照相机和胶卷,好吧?”
老4说话了:“8哥,好是好,就是太麻烦了一点,到不如用我的数码照相机,就这么定了吧。”
于是,它们变忙了起来,终于+号帮它们拍好了,就立刻把数码照相机送往冲印店,冲是冲好了,电脑姐姐身手想它们要钱,可它们到底谁付钱呢?它们一个个呆呆的望着对方,这是电脑姐姐说:“一共5元钱,你们一共十一个兄弟姐妹,平均一人付多少元钱?”
在它们十一个人中,就数老六最聪明,这回它还是第一个算出了结果,你知道它是怎么算出来的吗?

唐僧师徒摘桃子
一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不长时间,徒弟三人摘完桃子高高兴兴回来。师父唐僧问:你们每人各摘回多少个桃子?
八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个地数,数到最后还剩1个。你算算,我们每人摘多少个?
唐僧很快说出他们每人摘桃子的个数。你知道他们每人摘多少个桃子吗?

‘叁’ 求初一数学语文英语的知识点

per month/week/year 每个月/星期/年

call sb at +号码 打某人……电话

think over=think about=think of 考虑

a single room 一间单人房间

a double-room house 一间双人房

a 3-bedroom house一间3卧室的房间

rent sth from sb. 向某人租….. 求租…

rent sth to sb. 租给某人…... 出租…..

around here 这周围

on the street corner 在街角处

There is something wrong with…….

……有什么毛病?

get sb to do sth.=ask sb to do sth.= let sb do sth. 让某人做某事.

right now 马上,立刻.

a lot of 许多.

be close to / be near与…接近

be far from 离…很远

keep money 存钱

take trains 乘火车

mail letters 寄信

see the doctor 看病

hear sb doing sth . 听到某人正做某事.

try to do sth. 试着做某事.

such a station 这样的一个车站

move from…to… 从…移到/搬到…

at the end of… 在…末梢

on the right 在右边

The traffic is heavy. 交通拥挤

enjoy doing sth.喜欢做某事

Unit 6 Topic 3

go /walk across =cross 穿过

on the corner of… 在…的拐弯处

(be) across from… 穿过…, 在…对面

on one’s /the way to

在(某人)去某地的路上

get to… 到达…get home /there/here

(be) far away from… 远离…

need to do sth. 需要做某事

need do sth. 需要做某事

change to the No.1 bus.转1路车。

a ticket for speeding(开车时)超速的罚单

thousands of 成千的,好几千的

get hurt=be hurt受伤

in a road accident 在一次交通事故中

make the road safe 使交通安全

obey the traffic rules 遵守交通规则

keep on the right 保持向右行

be clear 安全的/清洁的

It is good to do sth 做某事很好

blind people 盲人

Unit7Topic 1

next / last Saturday 下星期六/ 上星期六

be fun/interesting 有趣

plan to do sth. 计划做某事

want to do sth. 想要做某事

have a birthday party开一次生日晚会

Would you like sth.你想要……

Would you like to do sth. 你想要做某事

You bet./ Of course./ Sure./ Certainly.

当然啦

be born 出生

use sth for doing sth 用于作…

look up 查阅,查找

must be 一定是

Unit7Topic2

perform ballet 跳芭蕾舞

dance the disco跳迪斯科

take photos ( of…) 照相

sing songs for sb.为某人唱歌

take sth./sb. to sw 把某物带到某处

take sth.with sb. 随身带上某物

work out 算出 work on 演算

fly a kite / fly kites 放风筝

one year ago 一年前 two years ago两年前

play table tennis 打乒乓球

be good at (doing)sth 擅长做某事

have a good time 玩得很开心

Something is / was wrong with…

什么有毛病

with the help of ….在……的帮助下

make model planes.制作模型飞机

Unit7Topic3

It’s one’s turn. 轮到某人了

What’s the matter?/What’s wrong?What’s up? 怎么啦?

fall down 跌倒

happen to sb.发生在某人身上

go to a movie =see a film = go to the cinema

去看电影

lie to sb. 对某人说谎

tell a lie (to sb) 说谎 tell- told

talk about 谈论 in fact 事实上

sit around… 围坐在…

make the cards 做卡片

make a silent wish 默默许愿

write a letter to sb. / write to sb.

写信给某人

Unit 8 Topic 1

climb mountains = go climbing爬山

go hiking 踏青

make a snowman(snowmen) 做雪人

in spring / summer / fall / winter

在春/夏/秋/冬

like sth best 最喜欢

like sth better 更喜欢

nice and =very, quite 很,挺

all day 整天

be coming 就要来了

go on sth. 进行某事

go on a trip 进行旅行

go out 出去

take an umbrella 带伞

wear sunglasses 带太阳镜

wear warm clothes 穿暖和的衣服

remember to do sth. 记住要去做某事

remember doing sth. 记住做过某事

(be) the same as 与……一样

travel to sw. 旅游到某地

wear an overcoat 穿一件大衣

come back to life 复苏, 复活

get warm 变暖和

a hopeful season. 一个充满生机的季节。

A harvest season. 一个丰收的季节.

come after 来自……之后

be busy doing sth.忙于做….

last from…to…持续从……到

last for 持续

Unit 8 Topic2

travel around 周游

take pictures/photos of… 拍……的照片

hope to do sth. / hope (that)+句子

希望做某事

next month 下个月

places of interest 名胜

each of us 我们中的每一个人

tell sb sth.about告诉某人关于……某事

take off 拖掉,起飞

point to 指点

touch a child on the head 摸小孩的头

do some touring 观光

do some shopping/cleaning

买东西/做卫生

need to do sth.需做某事

give sth. to sb. /give sb.sth. 给某人某物

pass sth.to sb. /pass sb. sth. 递某物给某人

be friendly to sb 对某人友好

be different from 与……不同

Unit 8 Topic3

make mpings 做饺子

each other 相互,互相

have families get together.举行家庭聚会

on this day 在这一天 good luck 好运

stay up 熬夜 send sth. to sb. 送某人某物

play tricks on sb.= trick on sb 开某人玩笑

pick up摘,捡起 knock at/ on 敲

on the night of 在……夜晚

go touring / shopping 去旅行/ 购物

enjoy a seven-day holiday享受7天的假期

hold dragon boat races举行龙舟赛

the capital of ……的首都,…….的省会

go up 升起

Best wishes to sb.! 致某人最好的祝愿

on the eve of 在……前夕

at midnight 在午夜

put up 挂

with

最令某人高兴的是 To one’s joy

取得很大的进步

在户外in the open air

与某人聊天 chat with

互相 each other =with one another

与某人相聚 have a get-together with

很快,马上 (at)any minute now

及时 in time

匆忙in a hurry

动身,出发 set off

朝回走 head back

朝回家的路走 head back home

有一个美好的未来 have a great future

期望做某事 look forward to doing sth.

给某人一个拥抱 give a hug to sb.

旅途平安 Have a safe flight!

出去散步 go out for a walk

‘肆’ 小学六年级语文和数学知识

1.改正下面句中的错别字。
跳跃的小溪,一路嬉闹喧哗,唱着歌儿,从大山脚下流淌而过。( )
2.(1)我希望我能成功。
(2)每一个人都应该遵守诺言
3.仿写句子:如果我是阳光,我将照亮所有的黑暗。
如果我是春风,我将带来勃勃的生机。
如果我是花朵,我将装点美丽的世界。

数学:1.过一点到已知直线的线段中(垂线段)最短。
2.下面的现象中是平移的有(A B ,E ),是旋转的有(C D F )。
A.狗拉雪橇 B.升国旗 C.开瓶盖 D.单摆运动 E.拉出抽屉 F.转动方向盘

‘伍’ 求一些初中的语文,数学的基本知识

语文学习分四大部分
第一部分:语文基础知识
语文基础知识包括:字、词、句(语法、标点、修辞)、文体知识、文学常识五个方面。

知识要点

一、字

1.字音:

汉语拼音规则,及容易读错的字。

掌握带写规则的重点字,这些字的音节拼写对了,就可以达到触类旁通、举一反三的效果。这些字分别是:

(1)维、会、温、驼、优、流的拼写规则

(2)英、呀、烟、叶、晕的拼写规则

(3)公、荣、雄、翁、拥、窘的拼写规则

(4)女、绿、掠、虐、与、机、区、需、鱼的区别。

除此之外,再注意拼写的隔音符号,皮袄pí ǎo儿化标音花儿huār轻声不标词。

‘陆’ 高中文科数学知识点大全

高中作文语言不能太平淡,添加一些华丽的辞藻,华美的语句能加分不少。我推荐早自习可以朗诵一些现代诗歌,比如散文诗,里面全是非常优美华丽的语句,坚持一段时间后渐渐就会有语感,语言就慢慢丰满华润,不再是干巴巴的,继续坚持,你就会发现写作文不再那么难,而且分数也会慢慢提高。我高一高二时语文成绩一直90——100之间,后来作文上来了,几乎60分的作文每次都能拿到50分以上,很快就突破110分了,高考时考了126分,给我很大帮助。
对于数学,其实要善于总结,将同一类型的题目归纳到一起,写到笔记本上,慢慢积累后,做题就很简单了。但是要对基本知识要非常熟练,数学上课我基本不听讲,就在下面作总结,每次考试都在130-140,但是高考发挥不佳,只拿了120多分。
希望对你有点帮助。

‘柒’ 小学数学和语文必掌握的知识点分别有哪些

小学语文必掌握的知识点:1.修辞。2标点。3各种句式以及互换。4学会修改病句。5关联词。6书本上重点词语。

‘捌’ 求中考数学物理英语和语文的中考知识点总汇

数学

初中代数是使学生在小学数学的基础上,把数的范围从非负有理数扩充到有理数、实数;通过用字母表示数,学习代数式、方程和不等式、函数等,学习一些常用的数据处理方法算表或计算器的使用方法;发展对于数量关系的认识和抽象概括的思维,提高运算能力。

初中代数的教学要求①是:

1.使学生了解有理数、实数的有关概念,熟练掌握有理数的运算法则,灵活运用运算律简化运算;会查平方表、立方表、平方根表、立方根表或用计算器代替算表。

2.使学生了解有关代数式、整式、分式和二次根式的概念,掌握它们的性质和运算法则,能够熟练地进行整式、分式和二次根式的运算以及多项式的因式分解。

3.使学生了解有关方程、方程组的概念;灵活运用一元一次方程、二元一次方程组和一元二次方程的解法解方程和方程组,掌握分式方程和简单的二元二次方程组的解法,理解一元二次方程的根的判别式。能够分析等量关系列出方程或方程组解应用题。

使学生了解一元一次不等式、一元一次不等式组的概念,会解一元一次不等式和一元一次不等式组,并把它们的解集在数轴上表示出来。

4.使学生理解平面直角坐标系的概念,了解函数的意义,理解正比例函数、反比例函数、一次函数的概念和性质,理解二次函数的概念,会根据性质画出正比例函数、一次函数的图象,会用描点法画出反比例函数、二次函数的图象。

5.使学生了解统计的思想,掌握一些常用的数据处理方法,能够用统计的初步知识解决一些简单的实际问题。

6.使学生掌握消元、降次、配方、换元等常用的数学方法,解决某些数学问题,理解“特殊——一般——特殊”、“未知——已知”、用字母表示数、数形结合和把复杂问题转化成简单问题等基本的思想方法。

7.使学生通过各种运算和对代数式、方程、不等式的变形以及重要公式的推导,通过用概念、法则、性质进行简单的推理,发展逻辑思维能力。

8.使学生了解已知与未知、特殊与一般、正与负、等与不等、常量与变量等辩证关系,以及反映在函数概念中的运动变化观点。了解反映在数与式的运算和求方程解的过程中的矛盾转化的观点。同时,利用有关的代数史料和社会主义建设成就,对学生进

行思想教育。

教学内容①和具体要求如下。

(一)有理数

l·有理数的概念

有理数。数轴。相反数。数的绝对值。有理数大小的比较。

具体要求:

(1)了解有理数的意义,会用正数与负数表示相反意义的量,以及按要求把给出的有理数归类。

(2)了解数轴、相反数、绝对值等概念和数轴的画法,会用数轴上的点表示整数或分数(以刻度尺为工具),会求有理数的相反数与绝对值(绝对值符号内不含字母)。

(3)掌握有理数大小比较的法则,会用不等号连接两个或两个以上不同的有理数。

2。有理数的运算

有理数的加法与减法。代数和。加法运算律。有理数的乘法与除法。倒数。乘法运算律。有理数的乘方。有理数的混合运算。

科学记数法。近似数与有效数字。平方表与立方表。

具体要求:

(1)理解有理数的加、减、乘、除、乘方的意义,熟练掌握有理数的运算法则、运算律、运算顺序以及有理数的混合运算,灵活运用运算律简化运算。

(2)了解倒数概念,会求有理数的倒数。

(3)掌握大于10的有理数的科学记数法。

(4)了解近似数与有效数字的概念,会根据指定的精确度或有效数字的个数,用四舍五人法求有理数的近似数;会查平方表与立方表。

(5)了解有理数的加法与减法、乘法与除法可以相互转化。

(二)整式的加减

代数式。代数式的值。整式。

单项式。多项式。合并同类项。

去括号与添括号。数与整式相乘。整式的加减法。

具体要求:

(1)掌握用字母表示有理数,了解用字母表示数是数学的一

大进步。

(2)了解代数式、代数式的值的概念,会列出代数式表示简单的数量关系,会求代数式的值。

(3)了解整式、单项式及其系数与次数、多项式次数、项与项数的概念,会把一个多项式接某个字母降幂排列或升幂排列。

(4)掌握合并同类项的方法,去括号、添括号的法则,熟练掌握数与整式相乘的运算以及整式的加减运算。

(5)通过用字母表示数、列代数式和求代数式的值、整式的加减,了解抽象概括的思维方法和特殊与一般的辩证关系。

(三)一元一次方程

等式。等式的基本性质。方程和方程的解。解方程。

一元一次方程及其解法。

一元一次方程的应用。

具体要求:

(1)了解等式和方程的有关概念,掌握等式的基本性质,会检验一个数是不是某个一元方程的解。

(2)了解一元一次方程的概念,灵活运用等式的基本性质和移项法则解一元一次方程,会对方程的解进行检验。

(3)能够找出简单应用题中的未知量和已知量,分析各量之间的关系,并能够寻找等量关系列出一元一次方程解简单的应用题,会根据应用题的实际意义,检查求得的结果是否合理。

(4)通过解方程的教学,了解“未知”可以转化为“已知”的思想方法。

(四)二元一次方程组

二元一次方程及其解集。方程组和它的解。解方程组。

用代人(消元)法、加减(消元)法解二元一次方程组。三元一次方程组及其解法举例。

一次方程组的应用。

具体要求:

(1)了解二元一次方程的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,会检查一对数值是不是某个二元一次方程的一个解。

(2)了解方程组和它的解、解方程组等概念;会检验一对数值是不是某个二元一次方程组的一个解。

(3)灵活运用代人法、加减法解二元一次方程组,并会解简单的三元一次方程组。

(4)能够列出二元、三元一次方程组解简单的应用题。

(5)通过解方程组,了解把“三元”转化为“二元”,把“二元”转化为“一元”的消元的思想方法,从而初步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法。

(五)一元一次不等式和一元一次不等式组

I·一元一次不等式

不等式。不等式的基本性质。不等式的解集。一元一次不等式及其解法。

具体要求:

(l)了解不等式和一元一次不等式的概念,掌握不等式的基本性质,理解它们与等式基本性质的异同。

(2)了解不等式的解和解集概念,理解它们与方程的解的区别,会在数轴上表示不等式的解集。

(3)会用不等式的基本性质和移项法则解一元一次不等式。

2·一元一次不等式组

一元一次不等式组及其解法。

具体要求:

(1)了解一元一次不等式组及其解集的概念,理解一元一次不等式组与一元一次不等式的区别和联系。

(2)掌握一元一次不等式组的解法,会用数轴确定一元一次不等式组的解集。

(六)整式的乘除

l·整式的乘法

同底数幂的乘法。单项式的乘法。幂的乘方。积的乘方。单项式与多项式相乘。多项式的乘法。乘法公式:

(a十b)(a一b)=a2-b2

(a±b)2=a2±2ab+b2

(a±b)(a2±ab+ b2)=a3±b3

具体要求:

(1)掌握正整数幂的运算性质(同底数幂的乘法,幂的乘方,积的乘方),会用它们熟练地进行运算。

(2)掌握单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会用它们进行运算。

(3)灵活运用五个乘法公式进行运算(直接用公式不超过三次)。

(4)通过从幂运算到多项式的乘法,再到乘法公式的教学,初步理解“特殊———一般——一特殊”的认识规律。

2·整式的除法

同底数幂的除法。单项式除以单项式。多项式除以单项式。

具体要求:

(1)掌握同底数幂的除法运算性质,会用它熟练地进行运算。

(2)掌握单项式除以单项式、多项式除以单项式的法则,会用它们进行运算。

(3)会进行整式的加、减、乘、除、乘方的较简单的混合运算,灵活运用运算律与乘法公式使运算简便。

(七)因式分解

因式分解。提公因式法。运用(乘法)公式法。分组分解法。十字相乘法。多项式因式分解的一般步骤。

具体要求:

(1)了解因式分解的意义及其与整式乘法的区别和联系,了

解因式分解的一般步骤。

(2)掌握提公因式法(字母的指数是数字)、运用公式法(直接用公式不超过两次)、分组分解法(分组后能直接提公因式或运用公式的多项式,无需拆项或添项)和十字相乘法(二次项系数与常数项的积为绝对值不大于60的整系数二次三项式)这四种分解因式的基本方法,会用这些方法进行团式分解。

(八)分式

1.分式

分式。分式的基本性质。约分。最简分式。

分式的乘除法。分式的乘方。

同分母的分式加减法。通分。异分母的分式加减法。

具体要求:

(l)了解分式、有理式、最简分式、最简公分母的概念,掌握分式的基本性质,会熟练地进行约分和通分。

(2)掌握分式的加、减与乘、除、乘方的运算法则,会进行简单的分式运算。

2.零指数与负整数指数

零指数。负整数指数。整数指数幂的运算。

具体要求:

(l)了解零指数和负整数指数幂的意义;了解正整数指数幂的运算性质可以推广到整数指数幂,掌握整数指数幂的运算。

(2)会用科学记数法表示数。

(九)可他为一元一次方程的公式方程

含有字母系数的一元一次方程。公式变形。

分式方程。增根。可化为一元一次方程的分式方程的解法与

应用。

具体要求:

(1)掌握含有字母系数的一元一次方程的解法和简单的公式变形。

(2)了解分式方程的概念,掌握用两边同乘最简公分母的方法解可化为一元一次方程的分式方程(方程中的分式不超过三个);了解增根的概念,会检验一个数是不是分式方程的增根。

(3)能够列出可化为一元一次方程的分式方程解简单的应用题。

(十)数的开方

1.平方根与立方根

平方根。算术平方根。平方根表。

立方根。立方根表。

具体要求:

(1)了解平方根、算术平方根、立方根的概念,以及用根号表示数的平方根、算术平方根和立方根。

(2)了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根和算术平方根,用立方运算求某些数的立方根。

(3)会查表求平方根和立方根(有条件的学校可使用计算器)。

2.实数

无理数。实数。

具体要求:

( 1)了解无理数与实数的概念,会把给出的实数按要求进行归类;了解实数的相反数、绝对值的意义,以及实数与数轴上的点—一对应。

(2)了解有理数的运算律在实数运算中同样适用;会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算。

(3)结合我国古代数学家对。的研究,激励学生科学探求的精神和爱国主义的精神。

(十一)二次根式

二次根式。积与商的方根的运算性质。

二次根式的性质。

最简二次根式。同类二次根式。二次根式的加减。二次根式的乘法。二次根式的除法。分母有理化。

具体要求:

(1)了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。

(2)掌握积与商的方根的运算性质

会根据这两个性质熟练地化简二次根式(如无特别说明,根号内所有的字母都表示正数,并且不需要讨论).

(3)掌握二次根式(不含双重根号)的加、减、乘、除的运算法则,会用它们进行运算。

(4)会将分母中含有一个或两个二次根式的式于进行分母有理化。

*(5)掌握二次根式的性质

会利用它化简二次根式

(十二)一元二次方程

1.一元二次方程

一元二次方程。一元二次方程的解法:直接开平方法,配方法,公式法,因式分解法。

一元二次方程的根的判别式。

*①一元二次方程根与系数的关系。

二次三项式的因式分解(公式法)。

一元二次方程的应用。

具体要求:

(1)了解一元二次方程的概念,会用直接开平方法解形如

(x-a)2=b(b≥0)的方程,用配方法解数字系数的一元二次方程;掌握一元二次方程求根公式的推导,会用求根公式解一元二次方程;会用因式分解法解一元二次方程。灵活运用一元二次方程的四种解法求方程的根。

(2)理解一元二次方程的根的判别式,会根据根的判别式判断数字系数的一元二次方程的根的情况。

*(3)掌握一元二次方程根与系数的关系式,会用它们由已知一元二次方程的一个根求出另一个根与未知系数,会求一元二次方程两个根的倒数和与平方和。

(4)了解二次三项式的因式分解与解方程的关系,会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式。

(5)能够列出一元二次方程解应用题。

(6)结合教学内容进一步培养学生的思维能力,对学生进行辩证唯物主义观点的教育。

2.可化为一元二次方程的方程

可化为一元二次方程的分式方程。

* 可化为一元一次、一元二次方程的无理方程。

具体要求:

(1)掌握可化为一元二次方程的分式方程(方程中的分式不超过三个)的解法,会用去分母或换元法求分式方程的解,并会验根。

(2)能够列出可化为一元二次方程的分式方程解应用题。

*(3)了解无理方程的概念,掌握可化为一元一次、一元一二次方程的无理方程(方程中含有未知数的二次根式不超过两个)的解法,会用两边平方或换元法求无理方程的解,并会验根。

(4)通过可化为一元二次方程的分式方程、无理方程的教学,使学生进一步获得对事物可以转化的认识。

3.简单的二元二次方程组

二元二次方程。二元二次方程组。

由一个二元一次方程和一个二元二次方程组成的方程组的解法。

* 由一个二元二次方程和一个可以分解为两个二元一次方程

的方程组成的方程组的解法。

具体要求:

(l)了解二元二次方程、二元二次方程组的概念,掌握由一个二元一次方程和一个二元二次方程组成的方程组的解法,会用代人法求方程组的解。

*(2)掌握由一个二元二次方程和一个可以分解为两个二元一次方程的方程组成的方程组的解法。

(3)通过解简单的二元二次方程组,使学生进一步理解“.消元”、“降次”的数学方法,获得对事物可以转化的进一步认识。

(十三)函数及其图象

1·函数

平面直角坐标系。常量。变量。函数及其表示法。

具体要求:

(l)理解平面直角坐标系的有关概念,并会正确地画出直角坐标系;理解平面内点的坐标的意义,会根据坐标确定点和由点求得坐标。了解平面内的点与有序实数对之间—一对应。

(2)了解常量、变量、函数的意义,会举出函数的实例,以及分辨常量与变量、自变量与函数。

(3)理解自变量的取值范围和函数值的意义,对解析式为只含有一个自变量的简单的整式、分式、二次根式的函数,会确定它们的自变量的取值范围和求它们的函数值。

(4)了解函数的三种表示法,会用描点法画出函数的图象。

(5)通过函数的教学,使学生体会事物是互相联系和有规律地变化着的,并向学生渗透数形结合的思想方法。

2·正比例函数和反比例函数

正比例函数及其图象。反比例函数及其图象。

具体要求:

(1)理解正比例函数、反比例函数的概念,能够根据问题中的条件确定正比例函数和反比例函数的解析式。

(2)理解正比例函数、反比例函数的性质,会画出它们的图象,以及根据图象指出函数值随自变量的增加或减小而变化的情况。

(3)理解待定系数法。会用待定系数法求正、反比例函数的解析式。

3.一次函数的图象和性质

一次函数。一次函数的图象和性质。

△①二元一次方程组的图象解法。

具体要求:

(1)理解一次函数的概念,能够根据实际问题中的条件,确

定一次函数的解析式。

(2)理解一次函数的性质,会画出它的图象。

△(3)会用图象法求二元一次方程组的近似解。

(4)会用待定系数法求一次函数的解析式。

4·二次函数的图象

二次函数。抛物线的顶点、对称轴和开口方向。

西一元二次方程的图象解法。

具体要求:

(l)理解二次函数和抛物线的有关概念,会用描点法画出二

次函数的图象,会用公式(。配方法)确定抛物线的顶点和对称

轴。

△(2)会用图象法求一元二次方程的近似解。

*(3)会用待定系数法由已知图象上三个点的坐标求二次函

数的解析式。

(十四)统计初步

总体和样本。众数。中位数。平均数。方差与标准差。方差的简化计算。频率分布。

实习作业。

具体要求:

(1)了解总体、个体、样本、样本容量等概念,能够指出研究对象的总体、个体和样本。

(2)理解众数、中位数的意义,掌握它们的求法。

(3)理解平均数的意义,了解总体平均数和样本平均数的意义,掌握平均数的计算公式;理解加权平均数的概念,掌握它的计算公式;会用样本平均数估计总体平均数。

(4)了解样本方差、总体方差、样本标准差的意义,会计算(可使用计算器)样本方差和样本标准差,会根据同类问题的两组样本数据的方差或样本标准差比较这两组样本数据的波动情况。

(5)理解频数、频率的概念,了解频率分布的意义和作用,掌握整理数据的步骤和方法,会对数据进行合理的分组,列出样本频率分布表,画出频率分布直方图。

△(6)会用科学计算器求样本平均数与标准差。

(7)通过实习作业,使学生初步掌握搜集、整理和分析数据的方法,培养解决实际问题的能力。

(8)通过统计初步的教学,使学生了解用样本估计总体的数理统计的基本思想,并培养学生用数学的意识,踏实细致的作风和实事求是的科学态度。

初中几何是在小学数学中几何初步知识的基础上,使学生进

一步学习基本的平面几何图形知识,向他们直观地介绍一些空间

几何图形知识。初中几何将逻辑性与直观性相结合,通过各种图

形的概念、性质、作(画)图及运算等方面的教学,发展学生的

逻辑思维能力、空间观念和运算能力,并使他们初步获得研究几

何图形的基本方法。

几 何

初中几何的教学要求是:

1.使学生理解有关相交线、平行线、三角形、四边形、圆,以及全等三角形、相似三角形的概念和性质,掌握用这些概念和性质对简单图形进行论证和计算的方法。了解关于轴对称、中心对称的概念和性质。理解锐角三角函数的意义,会用锐角三角函数和勾股定理解直角三角形。

2.使学生会用直尺、圆规、刻度尺、三角尺、量角器等工具作和画几何图形。

3.使学生通过具体模型,了解空间的直线、平面的平行与垂直关系,并会用展开图和面积公式计算圆柱和圆锥的侧面积和全面积。

4·逐步培养学生观察、比较、分析、综合、抽象、概括的能力,逐步使学生掌握简单的推理方法,从而提高学生的逻辑思维能力。

5.通过辨认图形、画图和论证的教学,进一步培养学生的空间观念。

6.通过揭示几何知识来源于实践又应用于实践的关系,以及几何概念、性质之间的联系和图形的运动、变化,对学生进行辩证唯物主义的教育。利用有关的几何史料和社会主义建设成就,对学生进行思想教育。通过论证与画图的教学,逐步培养学生严谨的科学态度,并使他们获得美的感受。

教学内容和具体要求如下:

(一)线段、角

1·几何图形

几何体。几何图形。点。直线。平面。

具体要求:

(1)通过具体模型(如长方体)了解从物体外形抽象出来的几何体、平面、直线和点等。

(2)了解几何图形的有关概念。了解几何的研究对象。

(3)通过几何史料的介绍,对学生进行几何知识来源于实践的教育和爱国主义教育,使学生了解学习几何的必要性,从而激发他们学习几何的热情。

2.线段

两点确定一条直线。相交线。

线段。射线。线段大小的比较。线段的和与差。线段的中点。

具体要求:

(1)掌握两点确定一条直线的性质。了解两条相交直线确定一个交点。

(2)了解直线、线段和射线等概念的区别。

(3)理解线段的和与差及线段的中点等概念,会比较线段的大小。

(4)理解两点间的距离的概念,会度量两点间的距离。

3.角

角。角的度量。角的平分线。 小于平角的角的分类。

具体要求:

(1)理解角的概念。掌握角的平分线的概念,会比较角的大小。会用量角器画一个角等于已知角。

(2)掌握度、分、秒的换算。会计算角度的和、差、倍、分。

(3)理解周角、平角、直角、锐角、钝角的概念,并会进行有关的计算。

(4)掌握角的平分线的概念。会画角的平分线。

(5)掌握几何图形的符号表示法。会根据几何语句准确、整洁地画出相应的图形,会用几何语句描述简单的几何图形。

(二)相交、平行

l·相交线

对顶角。邻角、补角。

垂线。点到直线的距离。

同位角。内错角。同旁内角。

具体要求:

(1)理解对顶角的概念。理解对顶角的性质和它的推证过程,会用它进行推理和计算。

(2)理解补角、邻补角的概念,理解同角或等角的补角相等的性质和它的推证过程,会用它进行推理和计算。

(3)掌握垂线、垂线段等概念;会用三角尺或量角器过一点画一条直线的垂线。了解斜线、斜线段等概念,了解垂线段最短的性质。

(4)掌握点到直线的距离的概念,并会度量点到直线的距离。

(5)会识别同位角、内错角和同旁内角。

2.平行线 平行线。

平行线的性质及判定。

具体要求:

(1)了解平行线的概念及平行线的基本性质。会用平行的传递性进行推理。

(2)会用一直线截两平行直线所得的同位角相等、内错角相等、同旁内角互补等性质进行推理和计算;会用同位角相等,或内错角相等,或同旁内角互补判定两条直线平行。

(3)会用三角尺和直尺过已知直线外一点画这条直线的平行线。

(4)理解学过的描述图形形状和位置关系的语句,并会用这些语句描述简单的图形和根据语句画图。

3.空间直线、平面的位置关系

直线与直线,直线与平面,平面与平面的位置关系。

具体要求:

通过长方体的棱、对角线和各面之间的位置关系,了解直线与直线的平行、相交、异面的关系,以及直线与平面、平面与平面的平行、垂直关系。

4.命题、定义、公理、定理

命题。定义。公理。定理。

定理的证明。

具体要求:

(1)了解命题的概念,会区分命题的条件(题设)和结论(题断),会把命题改写成“如果…’··,那么”’…”的形式。

(2)了解定义、公理、定理的概念。

(3)了解证明的必要性和推理过程中要步步有据,了解综合法证明的格式。 (三)三角形

1.三角形

三角形。三角形的角平分线、中线、高。三角形三边间的不等关系。三角形的内角和。三角形的分类。

具体要求:

(1)理解三角形,三角形的顶点、边、内角、外角、角平分线、中线和高等概念,会画出任意三角形的角平分线、中线和高。

(2)理解三角形的任意两边之和大于第三边的性质。会根据三条线段的长度判断它们能否构成三角形。

(3)掌握三角形的内角和定理,三角形的外角等于不相邻的两内角的和,三角形的外角大于任何一个和它不相邻的内角的性质。

(4)会按角的大小和边长的关系对三角形进行分类。

2.全等三角形

全等形。全等三角形及其性质。三角形全等的判定。

具体要求:

(1)了解全等形、全等三角形的概念和性质,能够辨认全等

形中的对应元素。

(2)能够灵活运用“边、角、边”,“角、边、角”,“角、角、边”,“边、边、边”等来判定三角形全等;会证明“角、角、边”定理。了解三角形的稳定性。

(3)会用三角形全等的判定定理来证明简单的有关问题,并会进行有关的计算。

有什么不明白的地方再问我。

谢谢!!!
参考资料:http://..com/question/27836101.html?fr=qrl3

http://..com/question/11306552.html?fr=qrl3

‘玖’ 求高中数学(文科)最基础知识

数学高考基础知识、常见结论详解

一、集合与简易逻辑:
一、理解集合中的有关概念
(1)集合中元素的特征: 确定性 , 互异性 , 无序性 。
集合元素的互异性:如: , ,求 ;
(2)集合与元素的关系用符号 , 表示。
(3)常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有理数集 、实数集 。
(4)集合的表示法: 列举法 , 描述法 , 韦恩图 。
注意:区分集合中元素的形式:如: ; ; ; ; ;

(5)空集是指不含任何元素的集合。( 、 和 的区别;0与三者间的关系)
空集是任何集合的子集,是任何非空集合的真子集。
注意:条件为 ,在讨论的时候不要遗忘了 的情况。
如: ,如果 ,求 的取值。
二、集合间的关系及其运算
(1)符号“ ”是表示元素与集合之间关系的,立体几何中的体现 点与直线(面)的关系 ;
符号“ ”是表示集合与集合之间关系的,立体几何中的体现 面与直线(面)的关系 。
(2) ; ;

(3)对于任意集合 ,则:
① ; ; ;
② ; ;
; ;
③ ; ;
(4)①若 为偶数,则 ;若 为奇数,则 ;
②若 被3除余0,则 ;若 被3除余1,则 ;若 被3除余2,则 ;
三、集合中元素的个数的计算:
(1)若集合 中有 个元素,则集合 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。
(2) 中元素的个数的计算公式为: ;
(3)韦恩图的运用:
四、 满足条件 , 满足条件 ,
若 ;则 是 的充分非必要条件 ;
若 ;则 是 的必要非充分条件 ;
若 ;则 是 的充要条件 ;
若 ;则 是 的既非充分又非必要条件 ;
五、原命题与逆否命题,否命题与逆命题具有相同的 ;
注意:“若 ,则 ”在解题中的运用,
如:“ ”是“ ”的 条件。
六、反证法:当证明“若 ,则 ”感到困难时,改证它的等价命题“若 则 ”成立,
步骤:1、假设结论反面成立;2、从这个假设出发,推理论证,得出矛盾;3、由矛盾判断假设不成立,从而肯定结论正确。
矛盾的来源:1、与原命题的条件矛盾;2、导出与假设相矛盾的命题;3、导出一个恒假命题。
适用与待证命题的结论涉及“不可能”、“不是”、“至少”、“至多”、“唯一”等字眼时。
正面词语 等于 大于 小于 是 都是 至多有一个
否定

正面词语 至少有一个 任意的 所有的 至多有n个 任意两个
否定

二、函数
一、映射与函数:
(1)映射的概念: (2)一一映射:(3)函数的概念:
如:若 , ;问: 到 的映射有 个, 到 的映射有 个; 到 的函数有 个,若 ,则 到 的一一映射有 个。
函数 的图象与直线 交点的个数为 个。
二、函数的三要素: , , 。
相同函数的判断方法:① ;② (两点必须同时具备)
(1)函数解析式的求法:
①定义法(拼凑):②换元法:③待定系数法:④赋值法:
(2)函数定义域的求法:
① ,则 ; ② 则 ;
③ ,则 ; ④如: ,则 ;
⑤含参问题的定义域要分类讨论;
如:已知函数 的定义域是 ,求 的定义域。
⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。如:已知扇形的周长为20,半径为 ,扇形面积为 ,则 ;定义域为 。
(3)函数值域的求法:
①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;
②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;
④换元法:通过变量代换转化为能求值域的函数,化归思想;
⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;
⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
求下列函数的值域:① (2种方法);
② (2种方法);③ (2种方法);
三、函数的性质:
函数的单调性、奇偶性、周期性
单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)
导数法(适用于多项式函数)
复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数;
f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。
判别方法:定义法, 图像法 ,复合函数法
应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。
其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.
应用:求函数值和某个区间上的函数解析式。
四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。
常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)
平移变换 y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象。
(ⅱ)会结合向量的平移,理解按照向量 (m,n)平移的意义。
对称变换 y=f(x)→y=f(-x),关于y轴对称
y=f(x)→y=-f(x) ,关于x轴对称
y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称
y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)
伸缩变换:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。
一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;
如: 的图象如图,作出下列函数图象:
(1) ;(2) ;
(3) ;(4) ;
(5) ;(6) ;
(7) ;(8) ;
(9) 。
五、反函数:
(1)定义:
(2)函数存在反函数的条件: ;
(3)互为反函数的定义域与值域的关系: ;
(4)求反函数的步骤:①将 看成关于 的方程,解出 ,若有两解,要注意解的选择;②将 互换,得 ;③写出反函数的定义域(即 的值域)。
(5)互为反函数的图象间的关系: ;
(6)原函数与反函数具有相同的单调性;
(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。
如:求下列函数的反函数: ; ;
七、常用的初等函数:
(1)一元一次函数: ,当 时,是增函数;当 时,是减函数;
(2)一元二次函数:
一般式: ;对称轴方程是 ;顶点为 ;
两点式: ;对称轴方程是 ;与 轴的交点为 ;
顶点式: ;对称轴方程是 ;顶点为 ;
①一元二次函数的单调性:
当 时: 为增函数; 为减函数;当 时: 为增函数; 为减函数;
②二次函数求最值问题:首先要采用配方法,化为 的形式,
Ⅰ、若顶点的横坐标在给定的区间上,则
时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得;
时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得;
Ⅱ、若顶点的横坐标不在给定的区间上,则
时:最小值在距离对称轴较近的端点处取得,最大值在距离对称轴较远的端点处取得;
时:最大值在距离对称轴较近的端点处取得,最小值在距离对称轴较远的端点处取得;
有三个类型题型:
(1)顶点固定,区间也固定。如:
(2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。
(3)顶点固定,区间变动,这时要讨论区间中的参数.
③二次方程实数根的分布问题: 设实系数一元二次方程 的两根为 ;则:
根的情况
等价命题 在区间 上有两根 在区间 上有两根 在区间 或 上有一根
充要条件
注意:若在闭区间 讨论方程 有实数解的情况,可先利用在开区间 上实根分布的情况,得出结果,在令 和 检查端点的情况。
(3)反比例函数:
(4)指数函数:
指数运算法则: ; ; 。
指数函数:y= (a>o,a≠1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a>1和0<a<1两种情况进行讨论,要能够画出函数图象的简图。
(5)对数函数:
指数运算法则: ; ; ;
对数函数:y= (a>o,a≠1) 图象恒过点(1,0),单调性与a的值有关,在解题中,往往要对a分a>1和0<a<1两种情况进行讨论,要能够画出函数图象的简图。
注意:(1) 与 的图象关系是 ;
(2)比较两个指数或对数的大小的基本方法是构造相应的指数或对数函数,若底数不相同时转化为同底数的指数或对数,还要注意与1比较或与0比较。
(3)已知函数 的定义域为 ,求 的取值范围。
已知函数 的值域为 ,求 的取值范围。
六、 的图象:
定义域: ;值域: ; 奇偶性: ; 单调性: 是增函数; 是减函数。
七、补充内容:
抽象函数的性质所对应的一些具体特殊函数模型:
① 正比例函数
② ; ;
③ ; ;
④ ;
三、导 数
1.求导法则:
(c)/=0 这里c是常数。即常数的导数值为0。
(xn)/=nxn-1 特别地:(x)/=1 (x-1)/= ( )/=-x-2 (f(x)±g(x))/= f/(x)±g/(x) (k•f(x))/= k•f/(x)
2.导数的几何物理意义:
k=f/(x0)表示过曲线y=f(x)上的点P(x0,f(x0))的切线的斜率。
V=s/(t) 表示即时速度。a=v/(t) 表示加速度。
3.导数的应用:
①求切线的斜率。
②导数与函数的单调性的关系
一 与 为增函数的关系。
能推出 为增函数,但反之不一定。如函数 在 上单调递增,但 ,∴ 是 为增函数的充分不必要条件。
二 时, 与 为增函数的关系。
若将 的根作为分界点,因为规定 ,即抠去了分界点,此时 为增函数,就一定有 。∴当 时, 是 为增函数的充分必要条件。
三 与 为增函数的关系。
为增函数,一定可以推出 ,但反之不一定,因为 ,即为 或 。当函数在某个区间内恒有 ,则 为常数,函数不具有单调性。∴ 是 为增函数的必要不充分条件。
函数的单调性是函数一条重要性质,也是高中阶段研究的重点,我们一定要把握好以上三个关系,用导数判断好函数的单调性。因此新教材为解决单调区间的端点问题,都一律用开区间作为单调区间,避免讨论以上问题,也简化了问题。但在实际应用中还会遇到端点的讨论问题,要谨慎处理。
四单调区间的求解过程,已知 (1)分析 的定义域;(2)求导数 (3)解不等式 ,解集在定义域内的部分为增区间(4)解不等式 ,解集在定义域内的部分为减区间。
我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性。以下以增函数为例作简单的分析,前提条件都是函数 在某个区间内可导。
③求极值、求最值。
注意:极值≠最值。函数f(x)在区间[a,b]上的最大值为极大值和f(a) 、f(b)中最大的一个。最小值为极小值和f(a) 、f(b)中最小的一个。
f/(x0)=0不能得到当x=x0时,函数有极值。
但是,当x=x0时,函数有极值 f/(x0)=0
判断极值,还需结合函数的单调性说明。
4.导数的常规问题:
(1)刻画函数(比初等方法精确细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于 次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
四、不等式
一、不等式的基本性质:
注意:(1)特值法是判断不等式命题是否成立的一种方法,此法尤其适用于不成立的命题。
(2)注意课本上的几个性质,另外需要特别注意:
①若ab>0,则 。即不等式两边同号时,不等式两边取倒数,不等号方向要改变。
②如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论。
③图象法:利用有关函数的图象(指数函数、对数函数、二次函数、三角函数的图象),直接比较大小。
④中介值法:先把要比较的代数式与“0”比,与“1”比,然后再比较它们的大小
二、均值不等式:两个数的算术平均数不小于它们的几何平均数。
若 ,则 (当且仅当 时取等号)
基本变形:① ; ;
②若 ,则 ,
基本应用:①放缩,变形;
②求函数最值:注意:①一正二定三取等;②积定和小,和定积大。
当 (常数),当且仅当 时, ;
当 (常数),当且仅当 时, ;
常用的方法为:拆、凑、平方;
如:①函数 的最小值 。
②若正数 满足 ,则 的最小值 。
三、绝对值不等式:
注意:上述等号“=”成立的条件;
四、常用的基本不等式:
(1)设 ,则 (当且仅当 时取等号)
(2) (当且仅当 时取等号); (当且仅当 时取等号)
(3) ; ;
五、证明不等式常用方法:
(1)比较法:作差比较:
作差比较的步骤:
⑴作差:对要比较大小的两个数(或式)作差。
⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和。
⑶判断差的符号:结合变形的结果及题设条件判断差的符号。
注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。
(2)综合法:由因导果。
(3)分析法:执果索因。基本步骤:要证……只需证……,只需证……
(4)反证法:正难则反。
(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的。
放缩法的方法有:
⑴添加或舍去一些项,如: ;
⑵将分子或分母放大(或缩小)
⑶利用基本不等式,如: ;

⑷利用常用结论:
Ⅰ、 ;
Ⅱ、 ; (程度大)
Ⅲ、 ; (程度小)
(6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。如:
已知 ,可设 ;
已知 ,可设 ( );
已知 ,可设 ;
已知 ,可设 ;
(7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;
六、不等式的解法:
(1)一元一次不等式:
Ⅰ、 :⑴若 ,则 ;⑵若 ,则 ;
Ⅱ、 :⑴若 ,则 ;⑵若 ,则 ;
(2)一元二次不等式: 一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对 进行讨论:
(5)绝对值不等式:若 ,则 ; ;
注意:(1).几何意义: : ; : ;
(2)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:
⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;①若 则 ;②若 则 ;③若 则 ;
(3).通过两边平方去绝对值;需要注意的是不等号两边为非负值。
(4).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。
(6)分式不等式的解法:通解变形为整式不等式;
⑴ ;⑵ ;
⑶ ;⑷ ;
(7)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。
(8)解含有参数的不等式:
解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:
①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.
②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.
③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为 (或更多)但含参数,要分 、 、 讨论。

五、数列
本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.
②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;
③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整
体思想求解.
(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.
一、基本概念:
1、 数列的定义及表示方法:
2、 数列的项与项数:
3、 有穷数列与无穷数列:
4、 递增(减)、摆动、循环数列:
5、 数列{an}的通项公式an:
6、 数列的前n项和公式Sn:
7、 等差数列、公差d、等差数列的结构:
8、 等比数列、公比q、等比数列的结构:
二、基本公式:
9、一般数列的通项an与前n项和Sn的关系:an=
10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
11、等差数列的前n项和公式:Sn= Sn= Sn=
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k
(其中a1为首项、ak为已知的第k项,an≠0)
13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);
当q≠1时,Sn= Sn=
三、有关等差、等比数列的结论
14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。
15、等差数列{an}中,若m+n=p+q,则
16、等比数列{an}中,若m+n=p+q,则
17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。
18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
19、两个等比数列{an}与{bn}的积、商、倒数组成的数列
{an bn}、 、 仍为等比数列。
20、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
21、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
23、三个数成等比的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)
24、{an}为等差数列,则 (c>0)是等比数列。
25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列。
26. 在等差数列 中:
(1)若项数为 ,则
(2)若数为 则, ,
27. 在等比数列 中:
(1) 若项数为 ,则
(2)若数为 则,
四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。
28、分组法求数列的和:如an=2n+3n
29、错位相减法求和:如an=(2n-1)2n
30、裂项法求和:如an=1/n(n+1)
31、倒序相加法求和:如an=
32、求数列{an}的最大、最小项的方法:
① an+1-an=…… 如an= -2n2+29n-3
② (an>0) 如an=
③ an=f(n) 研究函数f(n)的增减性 如an=
33、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解:
(1)当 >0,d<0时,满足 的项数m使得 取最大值.
(2)当 <0,d>0时,满足 的项数m使得 取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
六、平面向量
1.基本概念:
向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。
2. 加法与减法的代数运算:
(1) .
(2)若a=( ),b=( )则a b=( ).
向量加法与减法的几何表示:平行四边形法则、三角形法则。
以向量 = 、 = 为邻边作平行四边形ABCD,则两条对角线的向量 = + , = - , = -
且有| |-| |≤| |≤| |+| |.
向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律);
+0= +(- )=0.
3.实数与向量的积:实数 与向量 的积是一个向量。
(1)| |=| |·| |;
(2) 当 >0时, 与 的方向相同;当 <0时, 与 的方向相反;当 =0时, =0.
(3)若 =( ),则 · =( ).
两个向量共线的充要条件:
(1) 向量b与非零向量 共线的充要条件是有且仅有一个实数 ,使得b= .
(2) 若 =( ),b=( )则 ‖b .
平面向量基本定理:
若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 , ,使得 = e1+ e2.
4.P分有向线段 所成的比:
设P1、P2是直线 上两个点,点P是 上不同于P1、P2的任意一点,则存在一个实数 使 = , 叫做点P分有向线段 所成的比。
当点P在线段 上时, >0;当点P在线段 或 的延长线上时, <0;
分点坐标公式:若 = ; 的坐标分别为( ),( ),( );则 ( ≠-1), 中点坐标公式: .
5. 向量的数量积:
(1).向量的夹角:
已知两个非零向量 与b,作 = , =b,则∠AOB= ( )叫做向量 与b的夹角。
(2).两个向量的数量积:
已知两个非零向量 与b,它们的夹角为 ,则 ·b=| |·|b|cos .
其中|b|cos 称为向量b在 方向上的投影.
(3).向量的数量积的性质:
若 =( ),b=( )则e· = ·e=| |cos (e为单位向量);
⊥b ·b=0 ( ,b为非零向量);| |= ;
cos = = .
(4) .向量的数量积的运算律:
·b=b· ;( )·b= ( ·b)= ·( b);( +b)·c= ·c+b·c.
6.主要思想与方法:
本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。
七、立体几何
1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。
能够用斜二测法作图。
2.空间两条直线的位置关系:平行、相交、异面的概念;
会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法。
3.直线与平面
①位置关系:平行、直线在平面内、直线与平面相交。
②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据。
③直线与平面垂直的证明方法有哪些?
④直线与平面所成的角:关键是找它在平面内的射影,范围是{00.900}
⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理. 三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线.
4.平面与平面
(1)位置关系:平行、相交,(垂直是相交的一种特殊情况)
(2)掌握平面与平面平行的证明方法和性质。
(3)掌握平面与平面垂直的证明方法和性质定理。尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直。
(4)两平面间的距离问题→点到面的距离问题→
(5)二面角。二面角的平面交的作法及求法:
①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形;
②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形。
③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法?

具体的公式
http://www.ggjy.net/xspd/xsbk/200408/815.html
高中数学公式大全
http://www.xyjy.cn/Article/UploadFiles/200510/20051013100307519.doc
高中数学常用公式及常用结论

高中数学常用公式及常用结论

高中数学常用公式及常用结论

1. 元素与集合的关系
, .
2.德摩根公式
.
3.包含关系

4.容斥原理

.
5.集合 的子集个数共有 个;真子集有 –1个;非空子集有 –1个;非空的真子集有 –2个.
6.二次函数的解析式的三种形式
(1)一般式 ;
(2)顶点式 ;
(3)零点式 .
7.解连不等式 常有以下转化形式

.
8.方程 在 上有且只有一个实根,与 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程 有且只有一个实根在 内,等价于 ,或 且 ,或 且 .
9.闭区间上的二次函数的最值
二次函数 在闭区间 上的最值只能在 处及区间的两端点处取得,具体如下:
(1)当a>0时,若 ,则 ;
, , .
http://www.ggjy.net/xspd/student/200481211513358.rar

经测试可用,不过不一定是文科用的~

另提供一网站作参考:http://www.happycampus.cn/pages/2004/01/27/D128361.html

‘拾’ 小学一年级下册语文和数学的知识点有哪些

第四单元 分类:1。任何事物都有自己的所属的类别,根据这些类别将同类的事物分在一起就是分类,而这些类别就是我们分类的标准,2,分类的步骤和方法。

(1)给定标准:当已知分类标准时,我们只需要判断所给的事物是属于哪个类别的,然后将同一类的事物放在一起即可。

(2)未给定标准:当有很多物体摆在面前,让我们自己确定类别分类时,应首先观察每个物体都有什么样的特点,把具有相同特点的特点的物体放在一起,表示同一类,而这些特点就是分类的标准。

(3),分类的方法是多种多样的。我们可以根据不同的标准分类,可以根据物体的形状。颜色。作用等将物体分类。(1)把同一类的物体圈起来。(2)同类的物体画符号“○”“√”。(3)同类的物体番号填在一起。

第五单元,位置与顺序

1.物体的位置。 (1)上和下:以图形为列。在什么上面;在什么下面。(2)左和右:同样以图形为例在什么左边;在什么右边。2。物体的顺序。前和后:确定目的地后,更靠近目的地的称作在前面,远离目的地的称作在后面。3,确定物体位置与顺序的方法:要想准确描述物体的位置必须选定参照物,有了参照物,就能确定物体位置与顺序。

第六单元。认识物体。

1,认识长方体。长方体是长长的,有6个面,有些面是一样的。有些面是不一样。平是见到的火柴盒、文具盒都是长方体。

2。认识正方体。正方体四四方方的,它也有六个面,他的边也是直直的。但是它的边都是一样长,每个面都一样大,无论怎么平放在桌子上,它的高矮都都是一样的,魔方就是正方体。

3。认识圆柱。圆柱就像一根柱子。它有上下两个圆圆的面,而且大小一样,另一个面是弯曲的,我们把弯曲的面放在桌子上就可以滚动它。

4.认识球。圆圆的,可以滚来滚去的就是球。平时玩的皮球、篮球、踢的足球都是球。